Comparison of Two Extraction Procedures, SPE and DLLME, for Determining Plasticizer Residues in Hot Drinks at Vending Machines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. GC-FID Conditions
2.3. Extraction Methods
2.3.1. Solid Phase Extraction (SPE)
2.3.2. Dispersive Liquid-Liquid Microextraction (DLLME)
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maier, R.D.; Schiller, M. Plastics Additives Handbook, 6th ed.; Carl Hanser: New York, NY, USA, 2009; ISBN 3446408010. [Google Scholar]
- Rasmussen, S.C. From Parkesine to Celluloid: The birth of organic plastics. Angew. Chem. 2021, 60, 8012–8016. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.; Brazel, C.S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges. Prog. Polym. Sci. 2004, 29, 1223–1248. [Google Scholar] [CrossRef]
- Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. Off. J. Eur. Union 2006, L 396/1–520. Available online: https://osha.europa.eu/en/legislation/directives/regulation-ec-no-1907-2006-of-the-european-parliament-and-of-the-council (accessed on 5 September 2021).
- The European Commission. Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food. Off. J. Eur. Union 2011, 54, L 12/1–L 12/89. [Google Scholar]
- Sarath Josh, M.K.; Pradeep, S.; Balachandran, S.; Sudha Devi, R.; Vijayalakshmi Amma, K.S.; Benjamin, S. Temperature- and solvent-dependent migrations of di(2-ethylhexyl)phthalate, the hazardous plasticizer from commercial PVC blood storage bag. J. Polym. Res. 2021, 19, 9915. [Google Scholar] [CrossRef]
- Notardonato, I.; Passarella, S.; Ianiri, G.; Di Fiore, C.; Russo, M.V.; Avino, P. Analytical scheme for simultaneous determination of phthalates and bisphenol A in honey samples based on dispersive liquid-liquid microextraction followed by GC-IT/MS. Effect of the thermal stress on PAE/BP-A levels. Methods Protoc. 2020, 3, 23. [Google Scholar] [CrossRef] [PubMed][Green Version]
- De Toni, L.; Tisato, F.; Seraglia, R.; Roverso, M.; Gandin, V.; Marzano, C.; Padrini, R.; Foresta, C. Phthalates and heavy metals as endocrine disruptors in food: A study on prepacked coffee products. Toxicol. Rep. 2017, 4, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Lo Turco, V.; Di Bella, G.; Giorgia Potortì, A.; Fede, M.R.; Dugo, G. Determination of plasticizer residues in tea by solid phase extraction–gas chromatography–mass spectrometry. Eur. Food Res. Technol. 2015, 240, 451–458. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Saitta, M.; Dugo, G. Plasticizer residues by HRGC-MS in espresso coffees from capsules, pods and moka pots. Food Control 2014, 41, 185–192. [Google Scholar] [CrossRef]
- Ranjan, V.P.; Joseph, A.; Goel, S. Microplastics and other harmful substances released from disposable paper cups into hot water. J. Hazard. Mater. 2021, 404, 124118. [Google Scholar] [CrossRef]
- Casajuana, N.; Lacorte, S. Presence and release of phthalic esters and other endocrine disrupting compounds in drinking water. Chromatographia 2003, 57, 649–655. [Google Scholar] [CrossRef]
- Russo, M.V.; Avino, P.; Cinelli, G.; Notardonato, I. Sampling of organophosphorus pesticides at trace levels in the atmosphere using XAD-2 adsorbent and analysis by gas chromatography coupled with nitrogen-phosphorus and ion-trap mass spectrometry detectors. Anal. Bioanal. Chem. 2012, 404, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Russo, M.V.; Avino, P.; Perugini, L.; Notardonato, I. Extraction and GC-MS analysis of phthalate esters in food matrices: A review. RSC Adv. 2015, 5, 37023–37043. [Google Scholar] [CrossRef]
- Silvestre, C.I.C.; Santos, J.L.M.; Lima, J.L.F.C.; Zagatto, E.A.G. Liquid-liquid extraction in flow analysis: A critical review. Anal. Chim. Acta 2009, 652, 54–65. [Google Scholar] [CrossRef]
- Żwir-Ferenc, A.; Biziuk, M. Solid Phase Extraction technique—Trends, opportunities and applications. Pol. J. Environ. Stud. 2006, 15, 677–690. [Google Scholar]
- Fontanals, N.; Marcé, R.M.; Borrull, F. New materials in sorptive extraction techniques for polar compounds. J. Chromatogr. A 2007, 1152, 14–31. [Google Scholar] [CrossRef] [PubMed]
- Forgács, E. Retention characteristics and practical applications of carbon sorbents. J. Chromatogr. A 2002, 975, 229–243. [Google Scholar] [CrossRef]
- Esteve-Turrillas, F.A.; Mercader, J.V.; Agulló, C.; Abad-Somovilla, A.; Abad-Fuentes, A. Development of immunoaffinity columns for pyraclostrobin extraction from fruit juices and analysis by liquid chromatography with UV detection. J. Chromatogr. A 2011, 1218, 4902–4909. [Google Scholar] [CrossRef] [PubMed]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 2006, 26, 1–9. [Google Scholar] [CrossRef]
- Šandrejová, J.; Campillo, N.; Viñas, P.; Andruch, V. Classification and terminology in dispersive liquid-liquid microextraction. Microchem. J. 2016, 127, 184–186. [Google Scholar] [CrossRef]
- Russo, M.V.; Notardonato, I.; Avino, P.; Cinelli, G. Fast determination of phthalate ester residues in soft drinks and light alcoholic beverages by ultrasound/vortex assisted dispersive liquid-liquid microextraction followed by gas chromatography-ion trap mass spectrometry. RSC Adv. 2014, 4, 59655–59663. [Google Scholar] [CrossRef]
- Hongyuan, Y.; Hui, W. Recent development and applications of dispersive liquid-liquid microextraction. J. Chromatogr. A 2013, 1295, 1–15. [Google Scholar]
- Rezaee, M.; Yamini, Y.; Faraji, M. Evolution of dispersive liquid–liquid microextraction method. J. Chromatogr. A 2010, 1217, 2342–2357. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, B.; Zohrabi, P.; Kim, K.-H.; Shamsipur, M.; Deep, A.; Hong, J. Recent advances in liquid-phase microextraction techniques for the analysis of environmental pollutants. TrAC-Trend. Anal. Chem. 2017, 97, 83–95. [Google Scholar] [CrossRef]
- Quigley, A.; Cummins, W.; Connolly, D. Dispersive liquid-liquid microextraction in the analysis of milk and dairy products: A review. J. Chem. 2016, 2016, 4040165. [Google Scholar] [CrossRef][Green Version]
- Notardonato, I.; Protano, C.; Vitali, M.; Avino, P. Phthalates and bisphenol-A determination and release from different beverage plastic containers by dispersive liquid-liquid microextraction and GC-IT/MS analysis. Food Anal. Method. 2019, 12, 2562–2571. [Google Scholar] [CrossRef]
- Russo, M.V.; Avino, P.; Notardonato, I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J. Chromatogr. A 2016, 1474, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Cheshmazar, E.; Arfaeinia, L.; Vasseghian, Y.; Ramavandi, B.; Moradi, M.; Hashem, S.; Asgari, E.; Arfaeinia, H.; Dragoi, E.; Mousavi, K.A. Phthalate acid esters in pickled vegetables packaged in polyethylene terephthalate container: Occurrence, migration and estrogenic activity-associated risk assessment. J. Food Compos. Anal. 2021, 99, 103880. [Google Scholar] [CrossRef]
- Wang, X.; Xu, M.; Yang, A.; Wang, Y.; Hou, S.; Zheng, N.; Liang, D.; Hua, X.; Dong, D. Health risks of population exposure to phthalic acid esters through the use of plastic containers for takeaway food in China. Sci. Total Environ. 2021, 785, 147347. [Google Scholar] [CrossRef]
PAE 2 | Acetone | Ethyl Acet. | n-Heptane | Toluene | iso-Octane | n-Pentane | Ethanol | Chloroform |
---|---|---|---|---|---|---|---|---|
DMP | 40.5 (11.2) | 101.9 (4.1) | 61.4 (8.3) | n.a. 3 | n.a. | n.a. | n.a. | n.a. |
DEP | 97.5 (8.7) | 90.7 (6.2) | 78.3 (4.2) | n.a. | n.a. | n.a. | 44.1 (17.9) | n.a. |
DiBP | 96.4 (6.3) | 21.8 (5.1) | 87.5 (4.9) | 10.4 (4.4) | 12.7 (9.9) | n.a. | 14.5 (8.3) | 13.5 (6.3) |
DBP | 100.2 (5.2) | 19.9 (3.9) | 75.2 (5.6) | 8.5 (9.9) | n.a. | n.a. | 10.9 (11.4) | 10.7 (9.5) |
DEHP | 82.0 (8.3) | 19.2 (6.4) | 91.6 (3.4) | 8.7 (7.2) | 8.8 (7.1) | 8.5 (6.2) | 19.3 (8.7) | 56.9 (7.1) |
DOP | 92.6 (7.5) | 8.1 (5.9) | 80.1 (2.9) | 4.4 (5.2) | n.a. | n.a. | 5.2 (7.9) | 6.9 (6.9) |
DDP | 85.6 (6.9) | 10.7 (4.7) | 94.7 (3.6) | 7.2 (6.9) | n.a. | n.a. | 8.4 (9.1) | 10.6 (5.1) |
PAE 1 | R2 | LOD | LOQ | Recovery | Intra-Day 1 | Intra-Day 2 | Inter-Day | RSD |
---|---|---|---|---|---|---|---|---|
(µg mL−1) | (µg mL−1) | (% ± s.d. 2) | (% ± s.d.) | (% ± s.d.) | (% ± s.d.) | (%) | ||
DMP | 0.9862 | 0.4 | 5.8 | 43.2 ± 7.1 | 62.5 ± 5.6 | 65.2 ± 7.2 | 64.3 ± 9.4 | 11.0/14.7 |
DEP | 0.9938 | 0.6 | 8.2 | 80.7 ± 4.8 | 76.6 ± 3.8 | 82.4 ± 4.9 | 79.5 ± 4.0 | 4.9/5.2 |
DiBP | 0.9954 | 0.2 | 3.4 | 86.2 ± 3.5 | 85.3 ± 3.4 | 88.3 ± 5.3 | 85.9 ± 6.9 | 6.0/8.1 |
DBP | 0.9972 | 0.2 | 4.1 | 80.1 ± 3.2 | 79.1 ± 3.9 | 76.4 ± 2.1 | 77.7 ± 5.9 | 4.9/7.6 |
DEHP | 0.9983 | 0.9 | 1.7 | 94.5 ± 1.9 | 90.9 ± 3.6 | 96.3 ± 3.9 | 93.6 ± 6.2 | 4.0/6.7 |
DOP | 0.9978 | 0.1 | 1.3 | 83.6 ± 3.3 | 83.1 ± 3.3 | 81.9 ± 3.5 | 82.5 ± 5.2 | 3.9/6.3 |
DDP | 0.9974 | 2.9 | 6.2 | 93.1 ± 4.6 | 91.5 ± 5.5 | 93.8 ± 5.8 | 92.6 ± 7.8 | 6.0/8.4 |
PAE 1 | R2 | LOD | LOQ | Recovery | Intra-Day 1 | Intra-Day 2 | Inter-Day | RSD |
---|---|---|---|---|---|---|---|---|
(µg mL−1) | (µg mL−1) | (% ± s.d. 2) | (% ± s.d.) | (% ± s.d.) | (% ± s.d.) | (%) | ||
DMP | 0.9880 | 1.2 | 2.8 | 70.2 ± 5.2 | 82.1 ± 9.3 | 84.5 ± 8.2 | 72.3 ± 6.7 | 6.9/9.2 |
DEP | 0.9991 | 0.6 | 2.4 | 89.3 ± 7.5 | 96.9 ± 4.9 | 98.1 ± 5.3 | 87.4 ± 5.3 | 5.4/6.1 |
DiBP | 0.9959 | 0.6 | 1.3 | 103.7 ± 5.2 | 104.2 ± 6.3 | 102.4 ± 5.7 | 102.3 ± 6.5 | 5.8/6.4 |
DBP | 0.9967 | 0.4 | 1.3 | 102.3 ± 3.2 | 100.2 ± 5.2 | 104.1 ± 6.1 | 99.2 ± 9.1 | 6.4/9.2 |
DEHP | 0.9970 | 0.7 | 1.2 | 100.2 ± 3.6 | 98.6 ± 3.6 | 98.5 ± 4.2 | 98.7 ± 6.8 | 4.1/6.9 |
DOP | 0.9971 | 1.6 | 2.8 | 103.7 ± 2.9 | 98.9 ± 5.1 | 97.6 ± 5.3 | 101.3 ± 5.2 | 5.2/5.1 |
DDP | 0.9965 | 0.5 | 2.4 | 104.0 ± 3.7 | 99.1 ± 4.3 | 99.2 ± 3.2 | 101.5 ± 7.3 | 4.3/7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Notardonato, I.; Passarella, S.; Iannone, A.; Fiore, C.D.; Russo, M.V.; Protano, C.; Vitali, M.; Avino, P. Comparison of Two Extraction Procedures, SPE and DLLME, for Determining Plasticizer Residues in Hot Drinks at Vending Machines. Processes 2021, 9, 1588. https://doi.org/10.3390/pr9091588
Notardonato I, Passarella S, Iannone A, Fiore CD, Russo MV, Protano C, Vitali M, Avino P. Comparison of Two Extraction Procedures, SPE and DLLME, for Determining Plasticizer Residues in Hot Drinks at Vending Machines. Processes. 2021; 9(9):1588. https://doi.org/10.3390/pr9091588
Chicago/Turabian StyleNotardonato, Ivan, Sergio Passarella, Alessia Iannone, Cristina Di Fiore, Mario Vincenzo Russo, Carmela Protano, Matteo Vitali, and Pasquale Avino. 2021. "Comparison of Two Extraction Procedures, SPE and DLLME, for Determining Plasticizer Residues in Hot Drinks at Vending Machines" Processes 9, no. 9: 1588. https://doi.org/10.3390/pr9091588