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Abstract: A novel delay-dependent stability criterion for Takagi-Sugeno (T-S) fuzzy systems with
multiplicative noise is addressed in this paper subject to passivity performance. The general case of
interval time-varying delay is considered for the practical control issue. For the criterion, an integral
Lyapunov-Krasovskii function is proposed to derive some sufficient relaxed conditions and to avoid
the derivative of the membership function. Moreover, a free-matrix inequality is adopted to deal with
the delay terms such that the available derivative of time-varying delay is bigger than one. In order
to employ a convex optimization algorithm to find the control gain, a projection lemma is applied
to acquire the Linear Matrix Inequality (LMI) form of the sufficient conditions. With the obtained
gains, a fuzzy controller is designed by the concept of Parallel Distributed Compensation (PDC) such
that the delayed T-S fuzzy systems with multiplicative noise are asymptotically stable and passive in
the mean square. Finally, a stabilization problem of the ship’s autopilot dynamic system and some
comparisons are discussed during the simulation results.

Keywords: T-S fuzzy system; integral Lyapunov function; free-matrix inequality; passivity theory;
projection lemma

1. Introduction

To simplify stability problems of nonlinear systems, the Takagi-Sugeno (T-S) fuzzy sys-
tem [1–17] is generally widely used by merging a group of linear systems and membership
functions. Furthermore, a concept of Parallel Distributed Compensation (PDC) was first
proposed by [1] to design a fuzzy controller whose structure is the same as the T-S fuzzy
system. Based on the T-S fuzzy system and PDC concept, many linear stability theories
can be directly adopted to discuss the control issues of nonlinear systems. Moreover, some
stability criteria [2–8] for nonlinear stochastic systems were developed via the T-S fuzzy
system. Referring to [6–8], a stochastic differential equation was modeled by combining
a deterministic differential equation and a multiplicative noise term. The term consists
of states and Brownian motion [8] and is employed to describe stochastic behavior. To
discuss the stability of a stochastic system, the Itô formula and concept of mean square
are generally required according to the unpredicted property and complete probability.
Based on the T-S fuzzy model and stochastic differential equation, several PDC-based fuzzy
controller design methods were developed to achieve performances such as the H∞ mixed
performance [9–11], passivity [7,12,13], robustness [5,17], and so on.

Usually, time delay is a common effect that causes poor control performance during
the signal transmission of physical systems such as the COVID epidemic, a ship stabilizer,
a network system, a chemical changer, and a hydraulic machine [18]. For example, an inter-
nal time-varying delay is considered a general case because both upper and lower bounds
are simultaneously considered. According to this consideration, the stability of systems
with an interval time-varying delay is more difficult and complex to achieve compared to

Processes 2021, 9, 1445. https://doi.org/10.3390/pr9081445 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0812-9661
https://orcid.org/0000-0001-5054-8451
https://doi.org/10.3390/pr9081445
https://doi.org/10.3390/pr9081445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9081445
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr9081445?type=check_update&version=2


Processes 2021, 9, 1445 2 of 20

the stability of systems with other delay cases [19,20]. Furthermore, some delay-dependent
stability criteria [21–24] were discussed by the Lyapunov-Krasovskii function. Based on
the T-S fuzzy modeling approach, delay-dependent stability criteria [25,26] have been
developed for nonlinear systems. The Lyapunov-Krasovskii function used by [25,26] is
constructed by a common positive definite matrix. It is well known that a common matrix
causes conservative results when solving a control problem. To achieve a relaxed criterion,
the Lyapunov-Krasovskii function has been improved by choosing a parameter-dependent
structure [27] to increase the number of variables. Furthermore, several technologies [28,29]
were proposed to introduce some slack variables and relax the conservatism of controller
design methods. On the other hand, a limitation is naturally caused such that the derivative
of the time-varying function of delays is less than one. Referring to [29], a free-matrix
inequality was developed to eliminate the limitation caused by the derivation. Unfortu-
nately, the controller design problem of the delayed nonlinear systems was not discussed
by [29] due to the conversion of sufficient conditions for satisfying the form of Linear
Matrix Inequality (LMI). Therefore, the relaxed stabilization issue of a nonlinear delayed
system is worth investigating for the design of a PDC-based fuzzy controller.

Most of the stability criteria in the present results were proposed by choosing the
Lyapunov function. For a polynomial description, such as the T-S fuzzy system [4] and
linear parameter varying systems [30], a class of fuzzy Lyapunov functions and parameter-
dependent Lyapunov functions were employed to increase the relaxation of the proposed
criteria. Referring to [15], although multiple matrices in the fuzzy Lyapunov function
provide relaxation, a potential conservatism is caused by the derivative of the membership
function. Hence an integral Lyapunov function was proposed by [16] to avoid the conser-
vatism caused by the derivative. Depending on the structure of the matrices in the integral
Lyapunov function, it is hard to convert the sufficient condition into an LMI form. Thus, an
extra iterative LMI algorithm [12] was proposed to find a solution to the condition derived
by the integral Lyapunov function. It should be noted that the extra algorithm causes
not only some conservatism but also computational complexity. Therefore, an interesting
solution to applying the integral Lyapunov function is to extend the advantage for other
stability criteria without using an extra algorithm.

According to the above motivations, a novel delay-dependent stability criterion of a
nonlinear stochastic system is investigated in this paper subject to passivity. Based on the
modeling approach and stochastic differential equation, the nonlinear stochastic system
is represented by a T-S fuzzy system with multiplicative noise terms. For the general
delay effect, the interval time-varying case is considered to discuss the delay-dependent
stability problem. For the problem, an integral Lyapunov-Krasovskii function is proposed
to avoid the conservatism caused by the derivative of the membership function. Dealing
with the delay term in the derivative, the free-matrix inequality is employed such that
the differentiation of the delay function is not limited by one. In addition to the delay,
the attenuation performance is also concerned by the passivity theory [24] to constrain
the effect of external disturbance on the system. With the Itô formula, some sufficient
conditions are derived to ensure the asymptotical stability of the system in the mean square.
Furthermore, the concept of PDC is adopted to establish a fuzzy controller and to discuss
the stabilization problem. Based on the convex optimization algorithm, the projection
lemmas [28] are employed such that the derived conditions are in strict LMI form. To
summarize the contributions of this paper, three points are provided: (1) A novel integral
Lyapunov-Krasovskii function is proposed to eliminate the conservatism caused by the
derivative of the membership function. (2) The differentiation of the time-varying function
of delay is bigger than the one that increases the application of the proposed design method.
(3) No extra algorithm is required to find feasible solutions to the derived conditions.

The paper is organized as follows: In Section 2, the stability problem of the delayed
T-S fuzzy system with multiplicative noise is presented. In Section 3, the relaxed stability
criterion is proposed to ensure the asymptotical stability of the system in the mean square.



Processes 2021, 9, 1445 3 of 20

The numerical simulation and comparisons are provided in Section 4. Finally, some
conclusions to this paper are stated in Section 5.

Notation: sym{•} denotes the elements with their symmetry matrices. diag{•}n×n
denotes the diagonal matrix with dimension n× n, whose all-diagonal element is •. I de-
notes the identity matrix with proper dimension. ∗ denotes the transpose matrix. E{•}
denotes the expected value of •.

2. System Descriptions and Problem Statements

The continuous-time T-S stochastic system with interval time-varying delay and
external disturbance is presented as follows:

IF x1(t) is Mσi1
i1 and x2(t) is Mσi2

i2 and . . . and xl(t) is Mσi1
i1 THEN

dx(t) = (Aix(t) + Aτix(t− τ(t)) + Biu(t) + Eiw(t))dt
+
(
Aix(t) + Aτix(t− τ(t)) + Biu(t) + Eiw(t)

)
dβ(t)

(1)

y(t) = Cix(t) + Diw(t)
x(t) = φ(t), t ∈ [−dM, 0]

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input vector, w(t) ∈ Rq is the
disturbance, y(t) ∈ Rv is the system output, φ(t) is the initial condition, β(t) is a scalar
continuous type Brownian motion satisfying the independent increment property [6] such
as E{dβ(t)} = 0, E{x(t)dβ(t)} = 0 and E{dβ(t)dβ(t)} = 1. Besides, Ai, Ai, Aτi, Aτi, Bi,
Bi, Ci, Di, Ei and Ei are the constant matrices with compatible dimension, i = 1, 2, · · · , r is
the number of fuzzy rules, Mσil

il is the fuzzy set, l is the premise variable number and σij
specifies which gj(t)-based fuzzy set is used in the i-th fuzzy rule, therefore 1 ≤ σij ≤ rl
for any i. τ(t) > 0 is the time-varying delay satisfying 0 ≤ dm ≤ τ(t) ≤ dM and
µ1 ≤

.
τ(t) ≤ µ2. The state equations for the system (1)–(2) can be inferred in terms of rules

as follows:

dx(t) =
r
∑

i=1
hi(x(t))((Aix(t) + Aτix(t− τ(t)) + Biu(t) + Eiw(t))dt

+
(
Aix(t) + Aτix(t− τ(t)) + Biu(t) + Eiw(t)

)
dβ(t)

) (3)

where hi(x(t)) = ℘i(x(t))
∑r

i=1 ℘i(x(t)) , ℘i(x(t)) = ∏l
j=1 M

σij
ij xj(t), hi(x(t)) ≥ 0 and

∑r
i=1 hi(x(t)) = 1.

Based on the PDC concept [1], the following fuzzy controller is presented to compen-
sate the considered system (3).

IF x1(t) is Mσi1
i1 and x2(t) is Mσi2

i2 and . . . and xl(t) is Mσil
il

THEN u(t) = −Fix(t)
(4)

where Fi is the control gain, which needs to be found. The final output of (4) can also be
represented as follows:

u(t) = −
r
∑

i=1
hi(x(t))Fix(t) (5)

Substituting (4) into (2), the following closed-loop system can be inferred.

x(t) =
r
∑

i=1

r
∑

j=1
hi(x(t))hj(x(t))

{(
Gijx(t) + Aτ ix(t− τ(t)) + Eiw(t)

)
dt

+
(
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)
dβ
} (6)

where Gij = Ai − BiFj and Gij = Ai − BiFj. For simplification, hi(x(t)) is defined as hi.
For the closed-loop system (6), the concerned stability and attenuation performance

are respectively ensured by the following definitions.
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Definition 1. [8] For the closed-loop systems (6), the solution is asymptotically stable in the mean
square when E{x(t)} and E

{
xT(t)x(t)

}
are converged to zero as t→ ∞ .

Definition 2. [8] If the matrices S1, S2 ≥ 0, and S3 exist to satisfy the following inequality, then
the system (6) with w(t) and y(t) is called passive.

E
{

2
∫ tp

0 yT(t) S1w(t)dt
}
> E

{∫ tp
0 yT(t) S2y(t)dt +

∫ tp
0 wT(t) S3w(t)dt

}
(7)

where tp > 0 is the terminal time.

Referring to [8], the inequality (7) can be reduced by several performance indexes by
choosing different S1, S2 ≥ 0, and S3. To deal with the delay terms during the derivative,
the following free-matrix inequality is applied.

Lemma 1. [29] Let x(t) be a differentiable function: [α, β]→ Rn . For symmetric matrices
R ∈ Rn×n and Z1, Z3 ∈ R3n×3n and matrices Z2 ∈ R3n×3n and N1, N2 ∈ R3n×n satisfying: Z1 Z2 N1

∗ Z3 N2
∗ ∗ R

 ≥ 0 (8)

Moreover, the following inequality holds.

−
∫ a

β

.
xT

(t)R
.
x(t)ds ≤ vTΩv (9)

where Ω = (β− α)
(

Z1 +
1
3 Z3

)
+ sym{N1Π1 + N2Π2}, e1 =

[
I 0 0

]
, e2 =

[
0 I 0

]
,

e3 =
[

0 0 I
]
, Π1 = e1 − e2, Π2 = 2e3 − e1 − e2 and

v =
[

xT(β) xT(α) 1
β−α

∫ β
α xT(s)ds

]T
.

Besides, the following projection lemma is applied to transfer the bilinear condition
into the LMI problem.

Lemma 2. [30] Giving the matrices Φ = ΦT , Ψ1 and Ψ2 which satisfy rank(Ψ1) < rank(Φ)
and rank(Ψ2) < rank(Φ), if there exists any matrix X such that:

Φ + ΨT
1 XΨ2 + ΨT

2 XTΨ1 < 0 (10)

then the following inequalities are held.

ΨT
1⊥ΦΨ1⊥ < 0 (11)

and
ΨT

2⊥ΦΨ2⊥ < 0 (12)

where Ψ1⊥ and Ψ2⊥ are matrices whose column form is the null-space of Ψ1 and Ψ2 respectively.

Lemma 3. [24] For the given matrices K, L and M, if there exists J then the following inequalities
are equivalent: [

K ∗
JL −sym{J}+ M

]
< 0 (13)

and
K + LTML < 0 (14)
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According to [16], the positive matrix of the integral Lyapunov function which has the
path-independent property is constructed as follows:

IF x1(t) is Mσi1
i1 and x2(t) is Mσi2

i2 and . . . and xl(t) is Mσil
il

THEN f (x(t)) = P̂ix(t), i = 1, 2 . . . , r
(15)

in which, P̂i is a positive definite symmetric matrix and defined as follows:

P̂i =


0 p12 · · · p1m

p12 0 · · · p2m
...

...
. . .

...
p1m p2m · · · 0

+


pσi1

11 0 · · · 0
0 pσi2

22 · · · 0
...

...
. . .

...
0 0 · · · pσil

nn

 for i = 1, 2, · · · , r (16)

Referring to (16), the off-diagonal elements are the same, but the diagonal elements are
different according to the fuzzy sets in the premise parts of the fuzzy rules. Furthermore,
the j-th diagonal elements are independent from each other for the different xj(t)-based
fuzzy sets. One can refer to [16] for detailed information on the integral Lyapunov function.

In the next section, a novel delay-dependent stability criterion for the closed-loop
system (6) is developed via the integral Lyapunov-Krasovskii function. Furthermore,
the above lemmas are applied to reduce the conservatism of the criterion. Based on the
criterion, the asymptotical stability and passivity are achieved in the mean square.

3. Stability Criterion Subject to Passivity Constraint

In this section, some sufficient conditions guaranteeing the asymptotical stability of
the closed-loop system (6) are derived subject to passivity in the mean square. Through
applying Lemmas 2 and 3, some LMI conditions are derived and can be directly solved by
a convex optimization algorithm to find feasible solutions. With the obtained solutions, the
fuzzy controller (5) can be established to achieve the required performance.

Theorem 1. Giving the matrices S1, S2 ≥ 0 and S3, scalars µ1, µ2, dm and dM satisfying the
definition of τ(t), the closed-loop system (6) is asymptotically stable subject to passivity in the
mean square if there exist positive symmetric matrices P̂i, Q1, Q2, Q3, R1, R2 and R3, symmetrical
matrices Z01, Z03, Z11, Z13, Z21, Z23, Z31 and Z33, any matrices Z02, Z12, Z22 Z32, N01, N02, N11,
N12, N21, N22, N31 and N32 such that:[

Λ1 ∗
Λ2 Λ3

]
< 0 f or i, j = 1, 2, · · · , r (17)

 Z01 Z02 N01
∗ Z03 N02
∗ ∗ R1

 ≥ 0 (18)

 Z11 Z12 N11
∗ Z13 N12
∗ ∗ R1

 ≥ 0 (19)

 Z21 Z22 N21
∗ Z23 N22
∗ ∗ R2

 ≥ 0 (20)

and  Z31 Z32 N31
∗ Z33 N32
∗ ∗ R3

 ≥ 0 (21)

where
Λ1 = Λ1 + Λ̃1
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Λ1 =

 U11 ∗ ∗
U21 U22 ∗
U31 U32 U33



Λ̃1 =

 CT
i S2Ci ∗ ∗

0 0 ∗
DT

i S2Ci − ST
1 Ci 0 DT

i S2Di − sym
{

ST
1 Di

}
+ S3



Λ3 =



−Q2 + α22 + r11 ∗ ∗ ∗ ∗ ∗
0 −Q3 + β22 + θ22 ∗ ∗ ∗ ∗

α32 0 α33 ∗ ∗ ∗
0 β32 0 β33 ∗ ∗

r31 0 0 0 r33 ∗
0 θ32 0 0 0 θ33



ΛT
2 =

 αT
21 βT

21 αT
31 βT

31 0 0
rT

21 θT
21 0 0 rT

32 θT
31

0 0 0 0 0 0

T

αkm = eT
k Ωαem

βkm = eT
k Ωβem

θkm = eT
k Ωθem

rkm = eT
k Ωrem, for k, m = 1, 2, 3,

U11 = GT
ijP̂i + P̂iGij + GT

ijRGij + GT
ijRGij + GT

ijP̂iGij + Q1 + Q2 + Q3 + β11 + α11

U22 = −
(
1− .

τ(t)
)
Q1 + AT

τiRAτi + AT
τiRAτi + AT

τiP̂iAτi + θ11 + r22

U31 = P̂iEi + ET
i RGij + ET

i RGij + ET
i P̂iGij

U32 = ET
i RAτi + ET

i RAτi + ET
i P̂iAτi

U21 = AT
τiP̂i + AT

τiRGij + AT
τiRGij + AT

τiP̂iGij

U33 = ET
i REi + ET

i REi + ET
i P̂iEi

Ωθ = (dM − τ(t))
(

Z01 +
1
3 Z03

)
+ sym

(
N01∏1 + N02∏2

)
Ωr = (τ(t)− dm)

(
Z11 +

1
3 Z13

)
+ sym

(
N11∏1 + N12∏2

)
Ωβ = dM

(
Z21 +

1
3 Z23

)
+ sym

(
N21∏1 + N22∏2

)
Ωα = dm

(
Z31 +

1
3 Z33

)
+ sym

(
N31∏1 + N32∏2

)
and

R = (dM − dm)R1 + (dM)R2 + (dm)R3

Proof of Theorem 1. Choosing the following integral Lyapunov-Krasovskii function.

V(x(t)) =
7
∑

i=1
Vi(x(t)) (22)

where
V1(x(t)) = 2

∫
ϕ(0,x) f (ϕ)dϕ

V2(x(t)) =
∫ −dm
−dM

∫ t
t+λ

.
xT

(s)R1
.
x(s)dsdλ
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V3(x(t)) =
∫ 0
−dM

∫ t
t+λ

.
xT

(s)R2
.
x(s)dsdλ

V4(x(t)) =
∫ 0
−dm

∫ t
t+λ

.
xT

(s)R3
.
x(s)dsdλ

V5(x(t)) =
∫ t

t−τ(t) xT(s)Q1x(s)ds

V6(x(t)) =
∫ t

t−dm
xT(s)Q2x(s)ds

and
V7(x(t)) =

∫ t
t−dM

xT(s)Q3x(s)ds

Through applying the Itô formula, the following derivation of V(x(t)) along the
trajectories of (6) can be obtained.

LV1(x(t))dt =
r
∑

i=1

r
∑

j=1
hihj

((
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)TP̂i

×
(
Gijx(t) + Eiw(t)+ Aτix(t− τ(t))

)
+
(
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)T

×P̂ix(t)+xT(t)P̂i
(
Gijx(t) + Aτix(t− τ(t)) +Eiw(t))

) (23)

LV2(x(t))dt = (dM − dm)
r
∑

i=1

r
∑

j=1
hihj

((
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)T R1

×
(
Gijx(t)+Aτix(t− τ(t)) + Eiw(t)) +

(
Gijx(t) + Aτix(t− τ(t)) +Eiw(t)

)TR1

×
(
Gijx(t) + Aτix(t− τ(t)) +Eiw(t)

))
−
∫ t−dm

t−dM

.
xT

(s)R1
.
x(s)ds

(24)

LV3(x(t))dt = dM
r
∑

i=1

r
∑

j=1
hihj

((
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)TR2
(
Gijx(t)

+Eiw(t) + Aτix(t− τ(t))) +
(
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

))T

×R2
(
Gijx(t) + Aτix(t− τ(t)) +Eiw(t)

))
−
∫ t

t−dM

.
xT

(s)R2
.
x(s)ds

(25)

LV4(x(t))dt = dm
r
∑

i=1

r
∑

j=1
hihj

((
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

)T R3
(
Gijx(t)

+Aτix(t− τ(t)) + Eiw(t)) +
(
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

))T

×R3
(
Gijx(t) + Aτix(t− τ(t))+Eiw(t)

)
−
∫ t

t−dm

.
xT

(s)R3
.
x(s)ds

(26)

LV5(x(t))dt =
r
∑

i=1

r
∑

j=1
hihj

(
xT(t)Q1x(t)−

(
1− .

τ(t)
)
xT(t− τ(t))Q1x(t− τ(t))

)
(27)

LV6(x(t))dt =
r
∑

i=1

r
∑

j=1
hihj

(
xT(t)Q2x(t)− xT(t− dm)Q2x(t− dm)

)
(28)

and
LV7(x(t))dt =

r
∑

i=1

r
∑

j=1
hihj

(
xT(t)Q3x(t)− xT(t− dM)Q3x(t− dM)

)
(29)

Combining Equations (23)–(29), one has the following equation, when taking the
expectation with the independent increment property

E{dV(x(t))} = E
{

7
∑

n=1
LVn(x(t)) + 2

r
∑

i=1

r
∑

j=1
hihj((

xT(t)P̂i
(
Gijx(t) + Aτix(t− τ(t)) +Eiw(t)

)
+ (Gix(t) + Aτix(t− τ(t)) + Eiw(t))T

×R
(
Gijx(t) + Aτix(t− τ(t)) + Eiw(t)

))
dβ(t)= E

{
7
∑

n=1
LVn(x(t))dt

} (30)
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Applying Lemma 1, the following inequalities are inferred from the terms in (24)–(26).

−
∫ t−dm

t−dM

.
xT

(s)R1
.
x(s)ds ≤ vT

1 Ωθv1 + vT
2 Ωrv2 (31)

−
∫ t

t−dM

.
xT

(s)R2
.
x(s)ds ≤ vT

3 Ωβv3 (32)

and
−
∫ t

t−dm

.
xT

(s)R3
.
x(s)ds ≤ vT

4 Ωαv4 (33)

where
vT

1 =
[

xT(t− τ(t)) xT(t− dM) 1
dM−τ(t)

∫ t−τ(t)
t−dM

xT(s)ds
]

vT
2 =

[
xT(t− dm) xT(t− τ(t)) 1

τ(t)−dm

∫ t−dm
t−τ(t) xT(s)ds

]
vT

3 =
[

xT(t) xT(t− dM) 1
dM

∫ t
t−dM

xT(s)ds
]

and
vT

4 =
[

xT(t) xT(t− dm)
1

dm

∫ t
t−dm

xT(s)ds
]

From the results of (31)–(33), the following inequality can be easily found from (30):

E
{

7
∑

n=1
LVn(x(t))dt

}
≤ E

{
LV(x(t))

}
(34)

where

E
{

LV(x(t))dt
}
= ξT(t)

[
Λ1 ∗
Λ2 Λ3

]
ξ(t)

and

ξ(t) =
[

xT(t) xT(t− τ(t)) wT(t) xT(t− dm) xT(t− dM) 1
dm

∫ t
t−dm

xT(s)ds

1
dM

∫ t
t−dM

xT(s)ds 1
τ(t)−dm

∫ t−dm
t−τ(t) xT(s)ds 1

dM−τ(t)

∫ t−τ(t)
t−dM

xT(s)ds
]T

Let us define the following cost function with zero initial condition for all w(t).

Γ(x, w, t) = E
{ ∫ tp

0 yT(t)S2y(t)dt +
∫ tp

0 wT(t)S3w(t)dt− 2
∫ tp

0 yT(t)S1w(t)dt
}

= E
{∫ tp

0 yT(t)S2y(t)dt +
∫ tp

0 wT(t)S3w(t)dt− 2
∫ tp

0 yT(t)S1w(t)dt

+LV(x(t))dt−V
(

x
(
tp
))}
≤ E

{∫ tp
0 Ψ(x, w, t) dt

} (35)

where

Ψ(x, w, t) = yT(t)S2y(t) + wT(t)S3w(t)− 2yT(t)S1w(t) + LV(x(t))dt (36)

Substituting (2) and (34) into (36), one has.

Ψ(x, w, t) = ξT(t)
[

Λ1 ∗
Λ2 Λ3

]
ξ(t) (37)

Obviously, if the conditions (17)–(21) are satisfied, then one can obtain
[

Λ1 ∗
Λ2 Λ3

]
< 0

implying Ψ(x, w, t) < 0 in (37). From (35), one can further infer the following inequalities
for all nonzero external disturbances due to Ψ(x, w, t) < 0.

Γ(x, w, t) < 0 (38)
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or
E
{

2
∫ tp

0 yT(t)S1w(t)dt
}
> E

{∫ tp
0 yT(t)S2y(t)dt +

∫ tp
0 wT(t)S3w(t)dt

}
(39)

Because (39) is equal to (7), the closed-loop system (6) is passive due to Definition 2.
Next, it is necessary to show that the system is asymptotically stable in the mean square
with w(t) = 0. According to (37), if condition (17) holds, then one has Ψ(x, w, t) < 0. By
assuming w(t) = 0, one can find LV(x(t))dt < 0 from (36) due to Ψ(x, w, t) < 0. Since
w(t) = 0 and LV(x(t))dt < 0, one can obtain the following equation from (30).

E{dV((x)t)} < E

{
−

N
∑

i=1

N
∑

j=1
hihjxT(t)

(
CT

i S2Ci

)
x(t)

}
(40)

Obviously, if S2 ≥ 0 holds, then E{dV(x(t))} < 0 is easily inferred by (40). Based on
Definition 1, the asymptotical stability of the closed-loop system (6) is ensured in the mean
square according to E{dV(x(t))} < 0. This proof is completed. �

Remark 1. According to the existence of
.
τ(t) and τ(t), the conditions in Theorem 1 are

not in the standard LMI form with u(t) = 0. However, it is the linear function of the vari-
ables τ(t) for all τ(t) ∈ [dm, dM] and

.
τ(t) ∈ [µ1, µ2] if four cases of

(
τ(t) = dm,

.
τ(t) = µ1

)
,(

τ(t) = dM,
.
τ(t) = µ1

)
,
(
τ(t) = dm,

.
τ(t) = µ2

)
and

(
τ(t) = dM,

.
τ(t) = µ2

)
are set. It can

easily use the convex optimization algorithm for four cases to obtain feasible solutions.

The derived conditions in Theorem 1 belong to a bilinear problem which cannot be
directly solved by the convex optimization algorithm. Based on Lemmas 2 and 3, the
conditions are transferred into LMI forms in the following theorem.

Theorem 2. For the given matrices S1, S2 ≥ 0, and S3, scalars µ1, µ2, dm, and dM satisfying the
definition of τ(t), and the scalars ε1 > 0 and ε2 > 0, the closed-loop system (6) is asymptotically
stable and subject to passivity in the mean square if positive definite matrices exist P̂i, Q1, Q2, Q3,
R1, R2 and R3, symmetrical matrices Z01, Z03, Z11, Z13, Z21, Z23, Z31 and Z33, and any matrices
Z02, Z12, Z22, Z32, N01, N02, N11, N12, N21, N22, N31, N32, H, Fj and X such that:

−2ε1I ∗ ∗ ∗ ∗
υij Λ4 ∗ ∗ ∗
0 Λ2 Λ3 ∗ ∗
0 Λ5 0 Λ6 ∗
0 0 0 Λ7 Λ8

 < 0 i, j = 1, 2, · · · , r (41)

 Z01 Z02 N01
∗ Z03 N02
∗ ∗ R1

 ≥ 0 (42)

 Z11 Z12 N11
∗ Z13 N12
∗ ∗ R1

 ≥ 0 (43)

 Z21 Z22 N21
∗ Z23 N22
∗ ∗ R2

 ≥ 0 (44)

and  Z31 Z32 N31
∗ Z33 N32
∗ ∗ R3

 ≥ 0 (45)
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where

Λ5 =

 Gij Aτi Ei
Gij Aτi Ei
Gij Aτi Ei



Λ8 =

 R− sym
{

ε2HX
}

∗ ∗
0 P̂i − sym

{
ε2HX

}
∗

0 0 R− sym
{

ε2HX
}


Λ4 =

 sym
{

ε1GT
ij

}
+ Q1 + Q2 + Q3 + β11 + α11 ∗ ∗

AT
τiP̂i −

(
1− .

τ(t)
)
Q1 + θ11 + r22 ∗

ET
i P̂i 0 0

+ Λ̃1

Λ6 = diag
{
−sym

{
X
}}

3×3

Λ7 = diag
{

HX + ε2XT − I
}

3×3

and
υT

ij =
[

ε1Gij − ε1I + P̂i 0 0
]

Proof of Theorem 2. Without the general lost, condition (41) can be rewritten as follows:

Φ + ΨT
1 XΨ2 + ΨT

2 XTΨ1 < 0 (46)

where

X =

[
ε1I1×1 0

0 diag
{

X
}

3×3

]

Ψ1 =

[
−I Gij 01×6 0 0
0 0 03×6 −diag{I}3×3 diag{H}3×3

]

Ψ2 =

[
I I 01×6 0 0
0 0 03×6 diag{I}3×3 diag{−ε2I}3×3

]

Φ =


0 ∗ ∗ ∗ ∗
P̂i Λ4 ∗ ∗ ∗
0 Λ2 Λ3 ∗ ∗
0 Λ5 0 0 ∗
0 0 0 −I Λ9



Λ4 =

 Q1 + Q2 + Q3 + β11 + α11 ∗ ∗
AT

τiP̂i −
(
1− .

τ(t)
)
Q1 + θ11 + r22 ∗

ET
i

∧
Pi 0 0

+ Λ̃1

and

Λ9 =

 R ∗ ∗
0 P̂i ∗
0 0 R


In this paper, the orthogonal matrices for Ψ1 and Ψ2 are respectively chosen as:

ΨT
1⊥ =

 GT
ij I 0 0 0

0 0 I6×6 0 0
0 0 03×6 diag{H}3×3 diag{I}3×3
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and

ΨT
2⊥ =

 −I I 0 0 0
0 0 I6×6 0 0
0 0 03×6 diag{ε2I}3×3 diag{I}3×3


Based on Lemma 2, ΨT

1⊥ and ΨT
2⊥, the following inequalities are also held form (46).

ΨT
1⊥ΦΨ1⊥ =

 Θ1 ∗ ∗
Λ2 Λ3 ∗

diag{H}3×3 ×Λ5 0 −sym{diag{H}}3×3 + Λ9

 < 0 (47)

and

ΨT
2⊥ΦΨ2⊥ =

 Θ2 ∗ ∗
Λ2 Λ3 ∗

diag{Iε2}3×3 ×Λ5 0 −diag{2Iε2}3×3 + Λ9

 < 0 (48)

where

Θ1 =


sym

{
GT

ijP̂i

}
+ Q1 + Q2 + Q3 + β11 + α11 ∗ ∗

AT
τiP̂i −

(
1− .

τ(t)
)
Q1 + θ11 + r22 ∗

ET
i

∧
Pi 0 0

+ Λ̃1

and

Θ2 =

 −2ε1P̂i + Q1 + Q2 + Q3 + β11 + α11 ∗ ∗
AT

τiP̂i −
(
1− .

τ(t)
)
Q1 + θ11 + r22 ∗

ET
i

∧
Pi 0 0

+ Λ̃1

Furthermore, inequality (47) can be rewritten as follows:

ΨT
1⊥ΦΨ1⊥ =

[
K ∗
JL −sym{J}+ M

]
< 0 (49)

where K =

[
Θ1 ∗
Λ2 Λ3

]
, J = diag{H}3×3, M = Λ9 and L =

[
Λ5 0

]
.

According to Lemma 3 and (49), the following inequality is also hold.

K + LTML < 0 (50)

Through the arrangement, one can infer that the inequality (50) is equal to the condi-
tion (14). Thus, if condition (41) holds, then condition (17) is also satisfied. Moreover, the
closed-loop system (6) is asymptotically stable in the mean square subject to passivity. The
proof of Theorem 2 is complete. �

Remark 2. According to τ(t) and
.
τ(t), the conditions in Theorem 2 are not in the strict LMI

form. Based on Remark 1, the convex optimization algorithm is employed to find the feasible
solutions to simultaneously satisfying four cases. However, that may increase the complexity of the
number of conditions. On the other hand, one can find the conservative solutions for conditions in
theorems through setting the terms as dM − τ(t) and τ(t)− dm into dM − dm, and 1− .

τ(t) into
1− µ2, respectively. Although the terms provide conservative solutions, the number of LMIs can be
reduced from 4r2 + 4 to r2 + 4 such that the proposed design method is easily used to design the
controller (5).

Remark 3. The parameters ε1 and ε2 and matrices H and X are introduced in Theorem 2 based
on Lemmas 2 and 3. Moreover, the number of variables in Theorem 2 is 28 + 2r. Although the
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huge number of variables increases the freedom of searching for feasible solutions, it also brings
computational complexity.

Following the description of Remark 2, the relaxed conditions in Theorem 2 with
four cases are solved via the convex optimization algorithm for discussing the stabilization
problem of the ship’s autopilot system in the following section. Moreover, a comparison is
also provided to discuss the conservatism of the proposed stability criterion.

4. Simulation Result

In this section, two cases are provided to demonstrate the effectiveness and appli-
cability of the proposed delay-dependent stability criterion. In Case 1, the stabilization
problem of the ship’s autopilot dynamic system [31] is discussed by Theorem 2. In Case 2,
some comparisons with the works of [25,26] are provided to discuss the conservatism of
Theorem 1 through searching the maximum value of time delay.

Case 1

Firstly, the interval time-varying delay, stochastic behaviors and external disturbance
are added to the autopilot dynamic system described by [31]. Thus, the considered ship’s
autopilot system is represented of follows:

dx1(t) = (cos(x3(t))x4(t)− sin(x3(t))x5(t))dt (51)

dx2(t) = (sin(x3(t))x4(t) + cos(x3(t))x5(t) + 0.3w(t))dt (52)

dx3(t) = (ςx6(t) + (1− ς)x6(t− τ(t)))dt (53)

dx4(t) = (−0.0358x1(t)− 0.0797x4(t) + 0.9215u1(t))dt
−(0.040x1(t) + 0.080x4(t))dβ(t)

(54)

dx5(t) = (−0.0208x2(t)− 0.0818x5(t)− 0.1224ςx6(t)− 0.1224(1− ς)x6(t− τ(t))
+0.7805u2(t) + 7.4562u3(t))dt

(55)

dx6(t) = (−0.0394x2(t)− 0.2254x5(t)− 0.2468ςx6(t)− 0.2468(1− ς)x6(t− τ(t))
+1.4811u2(t) + 7.4562u3(t))dt

(56)

where x1(t), x2(t), and x3(t), respectively, denote the earth-fixed positions (x, y) and yaw
angle ψ of the ship. x4(t), x5(t), and x6(t), respectively, denote the earth-fixed velocity and
yaw angular velocities, and (u1(t), u2(t), u3(t)) = (τ1, τ2, τ3) are the control inputs. w(t)
is added as a zero-mean white noise with a variance of one that is presented for the distur-
bance form sea wave affecting roll shifting. The time delay effect τ(t) = 1.4 + 0.2 sin(7t) is
added to reflect on the yaw angular velocity. It is assumed and caused by the hydraulic
transmission of rudder. In this simulation, ς = 0.8 is set to present the delay effect on
the system. Based on the modelling approach [1] and assuming x3 ∈ [−90◦, 90◦], the
following T-S fuzzy model can be presented for (51)–(56).

dx(t) =
3
∑

i=1
hi{(Aix(t) + Bu(t) + Aτx(t− τ(t)) + Ew(t))dt +

(
Ax(t) + Bu(t)

)
dβ
}

(57)

y(t) =
3
∑

i=1
hi{Cx(t) + Dw(t)} (58)

where

A1 =



0 0 0 1 −0.0349 0
0 0 0 0.0349 1 0
0 0 0 0 0 0.8

−0.0322 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.0979
0 −0.0394 0 0 −0.2254 −0.1974
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A2 =



0 0 0 0.0349 −1 0
0 0 0 1 0.0349 0
0 0 0 0 0 0.8

−0.0394 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.0979
0 −0.0394 0 0 −0.2254 −0.1974



A3 =



0 0 0 0.0349 1 0
0 0 0 −1 0.0349 0
0 0 0 0 0 0.8

−0.0322 0 0 −0.0797 0 0
0 −0.0208 0 0 −0.0818 −0.0979
0 −0.0394 0 0 −0.2254 −0.1974



A =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−0.04 0 0 −0.08 0 0

0 0 0 0 0 0
0 0 0 0 0 0



Aτ =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.2
0 0 0 0 0 0
0 0 0 0 0 −0.0245
0 0 0 0 0 −0.0494



B =



0 0 0
0 0 0
0 0 0

0.9215 0 0
0 0.7802 1.4811
0 1.4811 7.4562



B =



0 0 0
0 0 0
0 0 0

0.0085 0 0
0 0 0
0 0 0.8562


C =

[
0 1 0 0 0 0

]
D = 0.8

and
ET =

[
0 0.3 0 0 0 0

]
According to τ(t) = 1.4 + 0.2 sin(7t), the scalars µ1 = −1.4, µ2 = 1.4, dM = 1.6 and

dm = 1.2 are found. By choosing S1 = I, S2 = 0, and S3 = I, Definition 2 is reduced as
strictly input passivity focusing on the attenuation performance. Moreover, the scalars
ε1 = 1 and ε2 = 1 are given. The membership is constructed as Figure 1 according to
x3 ∈ [−90◦, 90◦]. Based on the given scalars and matrices, the following feedback gains
are found by using the convex optimization algorithm to solve Theorem 2.
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Figure 1. Membership function.

F1 =

 −0.0396 −0.1497 −0.0001 0.2440 0.0426 −0.0001
0.3298 −0.1734 −0.0314 −0.1149 0.4528 −0.3282
−0.0655 0.0292 0.0159 0.0228 −0.1197 0.1072



F2 =

 −0.0332 0.1434 0.0000 0.2607 −0.0413 −0.0003
−0.3277 −0.1677 −0.0316 0.1142 0.4803 −0.3284
0.0651 0.0280 0.0160 −0.0226 −0.1253 0.1072


and

F3 =

 0.0952 0.0032 −0.0001 0.3487 0.0024 −0.0001
−0.0167 0.0741 −0.0318 0.0042 0.9111 −0.3286
0.0033 −0.0200 0.0160 −0.0008 −0.2108 0.1073


With the obtained gains, the PDC-based fuzzy controller is established as follows:

u(t) = −
3
∑

i=1
hi(x(t))Fix(t) (59)

With the chosen initial condition as x(t) =
[

10 10 60◦ 0 0 0
]
, the responses

of the system (51)–(56) driven by (59) are showed in Figures 2–7. According to S1 = I,
S2 = 0, S3 = I, and state responses, the following equation can be applied to check the
achievement of strictly input passivity.

E
{ ∫ tp

0 wT(t)w(t)dt

2
∫ tp

0 yT(t)w(t)dt

}
= 0.6483 (60)
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Figure 2. Response of state x1(t).

Figure 3. Response of state x2(t).
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Figure 4. Response of state x3(t).

Figure 5. Response of state x4(t).
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Figure 6. Response of state x5(t).

Figure 7. Response of state x6(t).

Because the value in (60) is smaller than one, the strict input passivity of the system
(51)–(56) driven by (59) is achieved by Definition 2. Referring to Figure 3, the poor transient
response and vibration in x2(t) are caused by external disturbance. Since the achievement
in (60), the effect of an external disturbance on the system (51)–(56) is constrained by (59).
Besides, the poor transient response in x6(t) is made by the consideration of τ(t). From
Figures 2–7, all states of the system (51)–(56) driven by (59) are converged to zero that
satisfy Definition 1. Based on the simulation results, this paper provides an effective and
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useful delay-dependent stability criterion to guarantee the asymptotical stability of T-S
fuzzy systems with multiplicative noise in the mean square.

Case 2

Referring to [25,26], some delay-dependent stability criteria have been proposed
for delayed T-S fuzzy systems. In the literature, the parameter-independent Lyapunov-
Krasovskii was applied to derive their sufficient conditions. To discuss the conservatism
of searching a maximum value of delay, Theorem 1 of this paper, Corollary 1 of [25], and
Theorem 1 of [26] are respectively applied to analyze the delay-dependent stability of the
following T-S fuzzy system.

.
x(t) =

2
∑

i=1
{Aix(t) + Aτix(t− τ(t))} (61)

where A1 =

[
−3.2 0.6

0 −2.1

]
, A2 =

[
−1 0
1 −3

]
, Aτ1 =

[
1 0.9
0 2

]
and

Aτ2 =

[
0.9 0
1 1.6

]
.

For convenience, dm = 0 and 0 ≤ .
τ(t) ≤ µ are set to seek the maximum value of dM

with different values of µ. Therefore, four cases considered by Theorem 1 can be reduced
to a single case as

(
τ(t) = dM,

.
τ(t) = µ

)
. By using Corollary 1 of [25], the maximum value

of dM with µ = 0.03 is 0.21. Applying Theorem 1 of [26], the maximum value as dM = 0.39
with µ = 0.03 · · · 0.9 can be found. Based on Theorem 1 of this paper, maximum values
are dM = 0.61 with µ = 0.03 and dM = 0.47 with µ = 0.1 · · · 1.1. The comparing results
are stated in Figure 8. From Figure 8, the criteria in [25,26] cannot allow the value of
µ ≥ 1. Moreover, the values of dM found by Theorem 1 of this paper are bigger than ones
found by the criteria of [25,26]. The above results mean that the number of the positive
definite matrix in the Lyapunov-Krasovskii function determines relaxation. Moreover, the
free-matrix inequality in Lemma 1 reduces the limitation as µ < 1. Thus, it is easy to find
that Theorem 1 of this paper provides a less conservative criterion than the one in [25,26]
in this case.

Figure 8. Comparison result.
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5. Conclusions

A delay-dependent stability criterion for nonlinear stochastic systems described by the
T-S fuzzy model with multiplicative noise was investigated in this paper. To avoid conser-
vatism during the derivative, the integral Lyapunov-Krasovskii function was proposed for
deriving some sufficient conditions. To deal with the delay term during the derivative, the
free-matrix inequality was employed to eliminate the limitation as

.
τ(t) < 1. Furthermore,

some lemmas were applied such that the sufficient conditions are in the strict LMI form.
Moreover, some slack matrices and scalars can be introduced to increase the freedom of
searching for feasible solutions. Based on the simulation results, the effectiveness and ap-
plicability of the proposed design method can be verified for guaranteeing the asymptotical
stability and passivity of nonlinear systems in the mean square. Furthermore, the reduced
conservatism of the proposed criterion was also discussed with the provided comparison.
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