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Abstract: To improve the combustion and emission characteristics of diesel engines, methanol-diesel
fuels with different mixing ratios (DM0, DM10, DM20, DM30, and DM40) were used to investigate
the effects of methanol addition on the combustion and emission of a four-stroke diesel engine in
terms of cylinder pressure, brake power, brake-specific fuel consumption, and nitrogen oxides, soot,
and carbon monoxide emissions. Firstly, an improved entire diesel engine model was developed
using AVL-BOOST software and validated by the experimental results. The results showed that
the increase of methanol content in the fuel mixture had a negative impact on the performance
characteristic of the diesel engine, but significantly improved the emission characteristic of the diesel
engine. With the methanol ratio in the mixed fuel increased to 10%, 20%, 30%, and 40%, the cylinder
pressure of the engine increased by 0.89%, 1.48%, 2.29%, and 3.17%, respectively. However, the power
decreased by 3.76%, 6.74%, 11.35%, and 15.45%, the torque decreased by 3.76%, 6.74%, 11.35%, and
15.45%, respectively, and the brake specific fuel consumption increased by 3.77%, 6.92%, 12.33%,
and 17.61%, respectively. In addition, with the methanol ratio in the mixed fuel increased to 10%,
20%, 30%, and 40%, the carbon monoxide emission decreased by 21.32%, 39.04%, 49.81%, and 56.59%
and the soot emission decreased by 0.25%, 8.69%, 16.81%, and 25.28%, respectively. Therefore, the
addition of methanol to the fuel can improve the combustion and emission characteristics of the
engine.

Keywords: methanol; diesel engine; diesel oxidation catalyst; AVL-BOOST; performance

1. Introduction

Diesel engines are widely used in passenger and cargo transportation and engineering
power because of their good economy [1] and reliability [2]. They make a significant
contribution to industrial development and economic progress. However, the combustion
of diesel engines emits many pollutants, including carbon monoxide (CO), hydrocarbons
(HC), nitrogen oxides (NOx), particulate matter (PM), etc. [3]. Thus, the pollutant gas
from diesel engines seriously pollutes the environment and seriously harms the public’s
health [4]. The two primary pollutants in a diesel engine are PM and NOx, and the rela-
tionship between them is a trade-off [5]. The single internal purification or aftertreatment
technology is challenging to reduce PM and NOx emissions [6]. Therefore, the exhaust
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gas aftertreatment system has become an integral part of diesel vehicles [7]. Only the
combination of internal purification technology and aftertreatment technology can meet
the increasingly stringent emission regulations [8]. Facing the problem of global environ-
mental degradation and the energy crisis, how to effectively reduce the emissions of diesel
engines and how to look for renewable fuels needs to be solved in the development of
society. Many researchers found that alcohol fuels and biodiesel played an essential role in
alleviating environmental pollution and energy crises. These alternative fuels can reduce
our dependence on fossil energy and reduce CO and HC emissions [9]. As an economical
alternative fuel with clean combustion characteristics, methanol is considered one of the
most promising alternatives to diesel fuel. Because of its high-octane number, methanol
can be used directly in spark-ignition engines [10]. Then, methanol has a higher heat of va-
porization value, which will produce a cooling effect when forming the mixture, resulting
in a decrease in inlet temperature. In addition, compared with other hydrocarbon fuels,
methanol has a higher oxygen content and laminar flame speed (LFS). Moreover, methanol
is easy to produce and can be made from renewable energy sources and fossil fuels, such
as natural gas and coal [11]. Therefore, mixing methanol with other hydrocarbons can
improve combustion efficiency and reduce combustion temperature.

In recent years, the application of methanol fuel in diesel engines has become a hot
topic of research for many researchers. Yao et al. [12] studied methanol-diesel compound
fuel (DMCC) and showed that DMCC reduced soot and NOx emissions, but increased HC
emissions. Berber [13] studied the effects of adding methanol to diesel fuel on the engine.
The results showed that the addition of methanol reduced engine performance by about
12–13%, but reduced CO2 and CO emissions. Zang et al. [14] used a modified KIVA-3V
program coupled with the CHEMKIN solver to simulate the combustion and emission of a
diesel/methanol dual fuel (DMDF) engine. The results showed that the ignition delay time
in the DMDF mode was longer than that in the diesel mode. Moreover, the soot and NOx
emissions were significantly reduced. In summary, methanol is considered a promising
alternative to conventional fuels due to its good combustion characteristics, sustainability,
and easy availability potential.

In addition, aftertreatment technology is also one of the most effective ways to reduce
pollutant emissions. Today, the leading diesel engine exhaust emission aftertreatment
technologies include [15]: diesel oxide catalysts (DOCs) to reduce hydrocarbons and
carbon monoxide, diesel particulate filters (DPFs) to reduce particulate matter emission,
and selective catalytic reduction (SCR) to reduce nitrogen oxides emission, etc. However,
most aftertreatment systems produce exhaust back pressure (EBP) [16], affecting engine
performance, as will be detailed in the results and discussion. In the aftertreatment
technology of diesel engine exhaust, a DOC is installed in the diesel engine’s exhaust
pipe, which is the first step of the whole aftertreatment of the diesel engine. A DOC has
a honeycomb monolith shape with high cell density (large surface area) [17] and suitable
catalytic material loading such as Pt [18] and/or Pd [19]. The DOC oxidizes CO [20],
HC [21], and the organic fraction of diesel particles to harmless water and CO2. In addition,
it also oxidizes nitric oxide (NO) to nitrogen dioxide (NO2) [22]. It promotes continuous
regeneration of downstream diesel particulate filters and improves the conversion efficiency
of NOx via selective catalytic reduction at low temperatures [23].

Engine combustion is a complex and variable physicochemical process. To improve
combustion efficiency and reduce the cost of diesel engines [24], numerical methods are
often used as an alternative [25]. They are widely used as tools for improvement and
alternatives in the process of engine design with limited resources [26]. The designer
only needs to select an appropriate model and input the diesel engine parameters [27].
Then the designer can make a preliminary demonstration and simulation of the model.
This is because modeling and simulation software provides a platform with a design [28].
For example, Lan et al. [29] developed an AMESim model to analyze the amount of fuel
injected into a diesel fuel system. Nikzadfar et al. [30] also investigated the contribution of
different operating parameters on the heat release rate (HRR) and emission performance by
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using a neural network. Yang et al. [31] studied the effects of fuel composition on the HRR
and found that the HRR greatly affected the ability to perform partial fuel stratification
strategies.

Typically, the zero-dimensional and double zone combustion simulation models of
diesel engines are investigated by using GT-Power and AVL-BOOST software, respectively.
Yu et al. [32] developed an improved heat transfer model using AVL-BOOST software to
study diesel engine combustion and emission characteristics. The results showed that,
compared with the Woschni 1978 model, the prediction accuracy of the improved model
was higher. Tan et al. [33] established a new heat transfer model using a modular method in
AVL-BOOST software to study the effects of swirl and boiling heat transfer on performance
enhancement and emission reduction of a medium diesel engine fueled with biodiesel.
The results showed that boiling heat transfer occurs, especially in the high-temperature
area, and the improved model was reliable and accurate. The one-dimensional models are
simpler, faster, and include more detailed physical models. In general, more advanced
models such as combustion, heat transfer, and pollutant formation processes should be
used to simulate and improve the accuracy of the calculations. However, as an excellent
alternative to fossil energy sources, methanol is characterized by low pollutant emissions
and high thermal efficiency. Therefore, it is crucial to study the effects of methanol on
engine combustion and emission characteristics.

As previously described, methanol-diesel fuels have significant advantages in physic-
ochemical properties and combustion characteristics. Therefore, in-depth theoretical and
experimental studies are needed when methanol-diesel fuels are widely used in engines
due to their efficient combustion. In this paper, an improved entire diesel engine model
was developed in AVL BOOST software. To evaluate the practicality of methanol-diesel
fuel, different fuel mixture ratios (DM0, DM10, DM20, DM30, and DM40) were used to
simulate the cylinder combustion process in a diesel engine. Experiments were performed
on a four-cylinder, four-stroke diesel engine, and the improved model was validated under
different engine conditions. Finally, the effects of using different methanol-diesel mixture
ratios as fuel on the combustion and emission characteristics of the diesel engines were
also investigated and compared.

2. Methods and Model Validation

AVL BOOST software(v2016) is an engine process simulation software that complies
with engine industry standards. The models accurately simulate the combustion processes
of gasoline, diesel, and dual-fuel engines. To simplify the simulation process, the intake and
exhaust are considered as the ideal gases. The main mathematical models are as follows.

2.1. An Improved Entire Diesel Engine Simulation Model
2.1.1. Intake and Exhaust Pipe Model

In engine simulation, the flows in intake and exhaust pipes are unstable, so the intake
and exhaust pipes model can be calculated using the finite volume method. The specific
calculation process can be expressed as follows [34]:

dm
dt

= ∑
f ront

.
m (1)

d(me)
dt

= p
dV
dt

+ ∑
f ront
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where m is the mass of the volume considered, g; ∑
f ront

means to sum on the boundary;
.

m is

the mass flow through the boundary, g/h; p is the pressure, Pa; V is the volume, m3; H is the
total enthalpy (H = e + p/ρ), J; ρ is the density, g/m3; e is the total internal energy (internal
energy plus kinetic energy), J; hg is the convective heat transfer coefficient, J/(m2s◦C); A is
the cross-flow area, m2; Tgas is the gas temperature, K; Twall is the wall temperature, K; u
is the velocity at the boundary of the volume, m/s; f is the surface friction coefficient; D
is the equivalent diameter, m; Cp is the head loss coefficient; dp is the pressure difference
acting across dx, Pa; and dx is the thickness of the element in the direction of the flow near
the boundary, m.

2.1.2. Cylinder Model

The combustion and heat transfer processes of the cylinder follow certain rules. The
basic equations of the working process of the cylinder are as follows:

(1) Energy conservation equation:

dU = dW + ∑ dQi + ∑
j

hj·dmj (5)

where U is the internal energy of the system, J; W is the mechanical work acting on the
piston, J; Qi is the heat exchanged through the boundary of the system, J; hj is the specific
enthalpy, J; and hj·dmj is the energy that mass dmj brings into or brings out of the system, J.

(2) Mass conservation equation:

dm
dθ

=
dmA
dθ

+
dmB
dθ

+
dmC
dθ

(6)

where m is the mass of fuel in the cylinder, g; mA is the mass of air flowing into the cylinder,
g; mB is the mass of exhaust gas leaving the cylinder, g; mC is the instantaneous mass of
fuel injected into the cylinder, g; and θ is the crank angle, ◦.

In addition, if the cycle injection quantity of the diesel engine is gh, the fuel percentage
in the cylinder is X = mc/gh. Thus, Equation (6) can be transformed as follows:

dm
dθ

=
dmA
dθ

+
dmB
dθ

+ gh·
dX
dθ

(7)

(3) Equation of state of an ideal gas:

pV = mRT (8)

where p is the pressure of gas in the cylinder, Pa; V is the volume of gas in the cylinder, m3;
R is the gas constant; and T is the temperature of the gas in the cylinder, K.

2.1.3. Combustion Model

AVL-BOOST software provides multiple combustion models to simulate the com-
bustion process under different conditions, including the Vibe combustion heat release
model, FRACTAL combustion heat release model, AVL MCC combustion heat release
model, etc. In this paper, the combustion of a diesel engine is simulated using the AVL
MCC combustion model. This model is used to calculate the combustion process of a
direct injection diesel engine. It can predict the combustion heat release rate and NOx
emission based on the amount of fuel injected in the cylinder and the turbulent kinetic
energy formed by the fuel injection.

The MCC combustion model also considers the development of premixed combustion
and diffusion combustion. The total combustion heat release rate is expressed as:

dQtotal
dθ

=
dQPMC

dθ
+

dQMCC
dθ

(9)
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where Qtotal is the combustion heat release rate, J/deg; QPMC is the total heat release rate of
premixed combustion, J; QMCC is the total heat release rate of diffusion combustion, J; and
θ is the crank angle, ◦.

The total heat release rate for diffusion combustion is expressed as:

dQMCC
dθ

= Ccomb ·
(

mF −
QMCC
LCV

)
·
(

woxygen,available

)CEGR · CRate ·
√

k
3
√

V
(10)

The actual heat release rate of premixed combustion is expressed as:(
dQPMC
QPMC

)
dθ

=
6.908
∆θc

· (ms + 1) ·
(

θ − θtd
∆θc

)ms

· exp

[
−6.908 ·

(
θ − θtd

∆θc

)(ms+1)
]

(11)

where Ccomb is the combustion constant; mF is the mass of fuel injected, kg; LCV is the
combustion low calorific value, kJ/(kg); woxygen, available is the mass fraction of oxygen in
the mixture at the time of fuel injection, %; CEGR is the EGR influence constant; CRate is the
mixing rate constant; k is the local turbulent flow energy density, m2/s2; V is the cylinder
volume, m3; ms is the shape parameter; ∆θc is the crank angle difference, ◦; and θtd is the
start of combustion angle, ◦.

2.1.4. Heat Transfer Model

The heat transfer in the cylinder of the diesel engine is a highly complex process.
Woschni1978 is mainly used to calculate the second-rate heat exchange coefficient in the
high-pressure cycle cylinder of the engine full-load operating cylinder. In contrast, the
modified woschni1990 heat transfer model is mainly used to simulate part load heat
transfer more accurately. A heat transfer model based on the Woschni model (Hohenberg
heat transmission model) is used in this study, and the form of the equation is simpler:

αw = 130Va
−0.06 · p0.8

c · T−0.4
c · (cm + 1.4)0.8 (12)

where αw is the isothermal exchange coefficient; Va is the volume of the actual cylinder,
mm3; pc is the pressure in the cylinder, MPa; Tc is the temperature in the cylinder, K; and
cm is the average piston speed, m/s.

2.1.5. Turbocharging Mathematical Model

In this paper, the full model calculation mode is used. It can be used to simulate
turbocharger performance, such as speed, efficiency, and air discharge.

The parameters of the compressor are measured in a particular atmospheric state, and
the compressor operates in different environments, which are affected by the inlet air state.
In actual use, similar parameters are used to draw the compressor characteristic curve. The
reduced parameters are as follows:

Reduced flow rate:
.

mcor =

.
m
√

T0,in/Tstd

p0,in/pstd
(13)

Reduced speed:

ncor =
nT√

T0,in/Tstd
(14)

where
.

m is the mass flow rate, kg/s; T0, in is the inlet gas temperature of the compressor,
K; Tstd is the atmospheric temperature under standard conditions, K; P0, in is the inlet gas
pressure of the compressor, Pa; pstd is the atmospheric pressure under standard conditions,
Pa; and nT is the compressor speed, r/min.
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2.1.6. Emission Model

The Pattas and Hafner equation [35] is combined with the Zeldovich mechanism for
mathematical modeling of NOx generation rates in AVL-BOOST, as described below:

rNO = CPostProcMult · CKineticMult · (2, 0) · (1− αNO
2) · ( r1

1 + α·AK1
+

r4

1 + AK2
) (15)

with,

αNO =
CNO,act

CNO,equ
· 1

CKineticMult
(16)

AK1 =
r1

r2+r3
(17)

AK2 =
r4

r5+r6
(18)

where rNO is the reaction rate of NOx, mole/cm3; CPostProcMult is the post-processing multi-
plier of NOx; CKineticMult is the kinetic multiplier of NOx; Ci is the molar concentration of
NOx, mole/cm3; and ri is the reaction rate of the Zeldovich mechanism, mole/cm3. The
equation provided by Onorati et al. [36] is used for modeling CO formation:

rCO = CConst · (s1 + s2) · (1− αCO) (19)

with,
αCO =

cCO,act

cCO,equ
(20)

where rCO is the reaction rate of CO, mole/cm3; Cconst is the concentrations under equilib-
rium conditions of CO, mole/cm3; si is the reaction rate based on the model, mole/cm3;
and ci is the molar concentration of CO, mole/cm3. The equations provided by Schubiger
et al. [37] are used for modeling soot formation:

dms, f

dt
= As, f ·

dm f b,di f f

dt
· ( pa

pre f
)

n1 · e
Es, f

Rm ·Ts (21)

dms,o

dt
= As,o ·

1
τchar

· (msoot)
n2 · (

pO2

pO2 ,re f
)

n3
· e

Es,o
Rm ·Ts (22)

where dms,f/dt is the soot formation rate, kg/s; As,f is the parameter soot formation;
dmfb,diff/dt is the combustion rate of diffusion combustion, kg/s; pa is the pressure actual,
Pa; pref is the pressure reference, Pa; Es,f is the activation energy formation, J/mol; Rm is the
gas constant, KJ/Kmol·K; Ts is the temperature, K; dms,o/dt is the oxidation rate, kg/s; As,o
is the parameter soot oxidation; τchar is the mixing term; msoot is the actual soot mass, kg;
po2 is the partial pressure oxygen actual, Pa; po2,ref is the partial pressure oxygen reference,
Pa; Es,o is the activation energy oxidation, J/mol; and n1, n2, n3 are the model constants.

Moreover, the complex phenomenological model for the prediction of HC formation
developed by AVL-BOOST is employed for modeling unburned hydrocarbons [38].

2.2. Simulation Model Establishment of an Entire Diesel Engine

To study the combustion and emission characteristics of the improved diesel engine,
a one-dimensional simulation model of the diesel engine is established under the AVL-
BOOST environment. Figure 1 shows the layout of the entire diesel engine. The main
parameters are set out in Table 1. During the exhaust stroke, the exhaust is exhausted, and
a small portion flows into the turbine intake. The turbine drives the turbo compressor,
which delivers the compressed air to the cooler. However, most of the exhaust gases are
purified by aftertreatment systems (DOC, DPF, and SCR) and released directly into the air.
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Figure 1. Simulation model of the entire diesel engine.

Table 1. Key parameters for diesel engines.

Performance Index Unit Value

Cylinder diameter mm 190
Number of cylinders - 4

Rate speed r/min 4000
Peak pressure MPa 12
Rated power kW 220

Mean effective pressure MPa 2.05
Compression ratio - 14

2.3. Fuel Properties

In the paper, four different methanol-diesel fuels (10%, 20%, 30%, and 40% methanol
by volume) were investigated, where 10% methanol addition mixtures with 90% diesel
by volume, 20% methanol addition mixtures with 80% diesel by volume, 30% methanol
addition mixtures with 70% diesel by volume, 40% methanol addition mixtures with 60%
diesel by volume, and pure diesel (DM0) were defined as DM10, DM20, DM30, and DM40,
respectively. The detailed fuel physical properties are shown in Table 2 [39]. Moreover,
according to ASTM D240 and ASTM D445, the kinematic viscosity and lower calorific were
measured, respectively. Table 3 shows the list of measurements, the measurement range,
and the accuracy.

Table 2. Main physical and chemical properties of diesel and methanol.

Performance Index Diesel Methanol

Latent heat of gasification (KJ/kg) 260 1162.2
Auto-ignition temperature (◦C) 250 463

Low calorific value (MJ/kg) 42.5 20.1
Cetane number 51 3.8

Stoichiometric air fuel ratio 14.3 6.5
Kinematic viscosity (40◦C) (mm2/s) 2.72 0.58
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Table 3. Lists of measurements, the measuring range, and accuracy.

Measurements Measuring Range Accuracy Uncertainty (%)

Cylinder pressure 1–25 MPa ±10 kPa ±0.5
Exhaust gas temperature 0–1000 ◦C ±1 ◦C ±0.25

Brake power - 0.03 kW ±0.03
HC emission 0–20,000 ppm ±10 ppm ±0.11

NOx emission 0–5000 ppm ±10 ppm ±0.53
Soot emission 0–9 FSN ±0.1FSN ±2.8

BSFC - ±5 g/kW h ±1.5
CO emission 0–10%vol ±0.03% ±0.32

Air flow mass 0–33.3 kg/min ±1% ±0.5
Fuel flow measurement 0.5–100 L/h ±0.04 L/h ±0.5

2.4. Model Validation

After using AVL-BOOST software to build the simulation model, the experimental
validation results need to be verified if the improved model is applied to the simulation.
The experiment was carried out, and the schematics of the experimental device are shown
in Figure 2. A fuel consumption meter (FCMM-2) was used to measure brake-specific fuel
consumption (BSFC). A combustion analyzer (AVL DEWE-2010CA) was used to monitor
the diesel engine combustion. A Horiba MEXA (7100 DEGR) was used as an exhaust
gas analyzer to measure nitrogen oxides, unburned hydrocarbons, carbon monoxide, and
oxygen percentages. A smoke opacimeter (DiSmoke 4000) was used to detect the engine
soot emission from the engine tailpipe. An ECU control system was used to control the
electronically-controlled diesel engine. A hydraulic dynamometer was used for measuring
the diesel engine load. In addition, the temperature, flow, and pressure were measured
using suitable sensors.
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Figure 3. Comparison of cylinder pressure and HRR under different fuel mixing ratios. 

3. Results and Discussion 
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characteristics were studied in terms of cylinder pressure, cylinder temperature, 
brake-specific fuel consumption (BSFC), brake power, brake thermal efficiency (BTE), 
soot emission, NOx emission, CO emission, HC emission, and so on. In addition, the ac-
tual air-fuel ratio of pure diesel (DM0) was 14.355, that of 90% diesel and 10% methanol 
(DM10) was 13.755, that of 80% diesel and 20% methanol (DM20) was 12.941, that of 70% 
diesel and 30% methanol (DM30) was 12.127, and that of 60% diesel and 40% methanol 
(DM40) was 11.313. 

Figure 2. Schematic diagram of the experimental device.

In order to verify the model, a four-cylinder, four-stroke engine was employed to
carry out the experiment. The engine was numerically simulated using methanol-diesel
(DM0, DM10, DM20, DM30, and DM40) as the engine fuel. The DM0 fuel and DM10 fuel
(10% methanol addition mixtures with 90% diesel by volume) were employed to verify
the model. Figure 3 shows the cylinder pressure (see Figure 3a) and heat release rate
(HRR) (see Figure 3b) under different fuel mixing ratios (DM0, DM10). The results showed
that the simulation results of cylinder pressure and ignition time were consistent with the
experimental results. The simulation results were in good agreement with the experimental
results, which verified the correctness of the model. Therefore, the improved model can
accurately predict the combustion characteristic of the engine.
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3. Results and Discussion

The simulation experiment was carried out at the speed of 1000–4000 rpm. The effects
of different ratios of methanol-diesel mixtures on engine performance and emission charac-
teristics were studied in terms of cylinder pressure, cylinder temperature, brake-specific
fuel consumption (BSFC), brake power, brake thermal efficiency (BTE), soot emission, NOx
emission, CO emission, HC emission, and so on. In addition, the actual air-fuel ratio of pure
diesel (DM0) was 14.355, that of 90% diesel and 10% methanol (DM10) was 13.755, that of
80% diesel and 20% methanol (DM20) was 12.941, that of 70% diesel and 30% methanol
(DM30) was 12.127, and that of 60% diesel and 40% methanol (DM40) was 11.313.

3.1. The Engine Combustion Characteristic

Figure 4a–d shows the effect of methanol-diesel mixture with different ratios on engine
in-cylinder pressure at different speeds. It can be seen that with the increase of the ratio
of methanol, the maximum combustion pressure of the diesel engine increases gradually.
The results show that the maximum cylinder pressure for DM10, DM20, DM30, and DM40
mixes is higher than that of pure diesel DM0. For example, when the engine speed was
4000 rpm, the cylinder pressure increases by 0.89%, 1.48%, 2.29%, and 3.17% when the
ratio of methanol in the fuel mixture increased to 10%, 20%, 30%, and 40%, respectively.
In addition, the ignition delay of DM40 is delayed by about 3 ◦CA compared with DM0.
This is due to the lower cetane number and high latent heat of vaporization of methanol
increasing the ignition delay, thereby increasing the maximum combustion pressure. In
addition, methanol burns faster than diesel. Therefore, the addition of methanol can
increase the cylinder pressure.

Figure 5a–d shows the effect of methanol-diesel mixtures with different ratios on the
engine in-cylinder temperature at different speeds. It can be seen that with the increase of
the ratio of methanol in the mixed fuel, the overall temperature in the cylinder shows a
downward trend. When the engine speed is 2000 rpm, the maximum cylinder temperature
of DM0 is 1147.15 K, and the maximum cylinder temperatures of DM10, DM20, DM30,
and DM40 are 1150.26 K, 1153.18 K, 1156.17 K, and 1157.2 K, respectively. This is because
the high oxygen content of methanol promotes the combustion of fuel in the cylinder at
the early stage of combustion, which makes the cylinder temperature rise. However, the
cylinder temperature of DM0 is the highest in the later stage of combustion, followed by
DM10, DM20, DM30, and DM40. This is due to the calorific value of methanol being lower
than that of diesel, which generates less heat and makes the cylinder temperature lower.
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It can be seen from Figures 4 and 5 that the pure diesel model (with DOC, i.e., origin
curve) has only slight changes in both in-cylinder pressure and in-cylinder temperature
compared with the modified pure diesel model (with DOC + DPF + SCR, i.e., DM0 curve).
This is caused by exhaust back pressure. For example, at 3000 rpm, the origin curve is
smaller than the DM0 curve, as seen in Figures 4c and 5c, compared to the DM0 cylinder
pressure. The presence of the aftertreatment system makes the EBP increase and causes the
cylinder pressure to decrease. Similarly, the EBP becomes more extensive, and the gas is
not quickly exhausted, causing the cylinder temperature to increase.

3.2. The Engine Economic Characteristic
3.2.1. Engine Power and Torque

Figure 6 shows the effects of different ratios of methanol-diesel mixtures on the engine
power and torque at different speeds. The results show that the power and torque of the
engine decrease as the ratio of methanol in the methanol-diesel fuel mixture increases. In
addition, the larger the ratio of methanol, the greater the decrease in power and torque
performance. Compared with DM0, the power decreased by 1.07–3.76%, 2.49–6.74%,
4.34%–11.35%, and 6.44%–15.45% for DM10, DM20, DM30, and DM40 mixtures, respec-
tively, and the torque decreased by 1.08–3.76%, 2.49–6.74%, 4.34–11.35%, and 6.34–15.45%.
The reason is that the calorific value of the methanol-diesel mixture is lower than DM0. In
addition, methanol absorbs a large amount of heat during the vaporization process, which
reduces the in-cylinder temperature. Several researchers have also shown that the power
and torque performances of the engine decrease as the ratio of methanol increases [40,41].

Processes 2021, 9, x FOR PEER REVIEW 12 of 21 
 

 

2.49–6.74%, 4.34%–11.35%, and 6.44%–15.45% for DM10, DM20, DM30, and DM40 mix-
tures, respectively, and the torque decreased by 1.08–3.76%, 2.49–6.74%, 4.34–11.35%, and 
6.34–15.45%. The reason is that the calorific value of the methanol-diesel mixture is lower 
than DM0. In addition, methanol absorbs a large amount of heat during the vaporization 
process, which reduces the in-cylinder temperature. Several researchers have also shown 
that the power and torque performances of the engine decrease as the ratio of methanol 
increases [40,41]. 

1000 1500 2000 2500 3000 3500 4000
10

20

30

40

50

60

70

80

90

100

110

Po
w

er
(k

W
)

Engine_Speed(rpm)

 Origin
 DM0
 DM10
 DM20
 DM30
 DM40

0

20

40

60

80

100

120

140

160

180

200

To
rq

ue
(N

·m
)

 
Figure 6. Effects of different ratios of methanol-diesel mixtures on engine power and torque at 
different speeds. 

In addition, the improved model is compared with the original model (only DOC, 
i.e., origin curve). The results show that the increase of EBP in the origin curve decreases 
the engine power and torque compared with DM0, and the higher the engine speed, the 
greater the effects on power and torque. 

3.2.2. Brake Specific Fuel Consumption 
The brake specific fuel consumption (BSFC) is an important parameter to measure 

the engine performance characteristic [42,43]. The lower the fuel consumption rate, the 
better the economy. Figure 7 shows the effect of different ratios of methanol-diesel fuel 
mixtures on the BSFC at different speeds. It can be found that with the methanol ratio in 
the mixed fuel increased to 10%, 20%, 30%, and 40%, the brake specific fuel consumption 
increased by 3.77%, 6.92%, 12.33%, and 17.61%, respectively. Similarly, this result is con-
sistent with that of Hasan et al. [44]. This is because the calorific value of methanol (20.1 
MJ/kg) is much lower than that of diesel fuel (42.5 MJ/kg). When the ratio of methanol in 
the fuel increases, the overall calorific value of the fuel decreases, resulting in higher fuel 
consumption at the same operating conditions. 

Figure 6. Effects of different ratios of methanol-diesel mixtures on engine power and torque at
different speeds.

In addition, the improved model is compared with the original model (only DOC,
i.e., origin curve). The results show that the increase of EBP in the origin curve decreases
the engine power and torque compared with DM0, and the higher the engine speed, the
greater the effects on power and torque.

3.2.2. Brake Specific Fuel Consumption

The brake specific fuel consumption (BSFC) is an important parameter to measure the
engine performance characteristic [42,43]. The lower the fuel consumption rate, the better
the economy. Figure 7 shows the effect of different ratios of methanol-diesel fuel mixtures
on the BSFC at different speeds. It can be found that with the methanol ratio in the mixed
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fuel increased to 10%, 20%, 30%, and 40%, the brake specific fuel consumption increased by
3.77%, 6.92%, 12.33%, and 17.61%, respectively. Similarly, this result is consistent with that
of Hasan et al. [44]. This is because the calorific value of methanol (20.1 MJ/kg) is much
lower than that of diesel fuel (42.5 MJ/kg). When the ratio of methanol in the fuel increases,
the overall calorific value of the fuel decreases, resulting in higher fuel consumption at the
same operating conditions.
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In addition, the origin curve compared with the DM0 curve can be seen in the Figure
7. It can be seen that the improved model fuel consumption is larger than the original
model. Moreover, the higher the speed is, the greater the fuel consumption is. The fuel
consumption increases from 0.58% to 6.07% when the speed increases from 1000 rmp to
4000 rmp. The reason is that with the rise of EBP, the exhaust gas from the upward piston
increases, and the exhaust gas in the cylinder rises, which is not conducive to in-cylinder
combustion. This finally leads to an increase in fuel consumption and the deterioration of
the engine economy.

3.2.3. Brake Thermal Efficiency

The brake thermal efficiency (BTE) values for different fuels are compared at different
speeds and shown in Figure 8. The following equation calculates the BTE:

BTE =
3600

BSFC · LCV
(23)

where LCV is the lower heating value of fuel, MJ/kg.
Figure 8 shows the effect of different ratios of methanol-diesel mixtures on the brake

thermal efficiency of the engine at different speeds. It can be seen that the BTE increases with
the increase of the ratio of methanol in the methanol-diesel mixture fuel. This is because
the high oxygen content of methanol itself can alleviate the local oxygen deficiency in
diesel engines during diffusion combustion. In addition, the micro-explosion phenomenon
occurs in methanol-diesel fuel mixtures [45]. The larger the ratio of methanol, the more
pronounced the micro-explosion phenomenon is, which improves the overall combustion
phenomenon and compensates for the reducing calorific value. The kinematic viscosity of
the mixture fuel is shown in Table 1. As a result, the BTE becomes larger.
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3.3. The Engine Emissions Characteristics
3.3.1. Soot Emission

Figure 9 shows the effect of different ratios of methanol-diesel mixtures on soot
emission at different speeds. It can be seen that the soot emission gradually increases
with the increase of engine speed. However, the soot emission gradually decreases when
the ratio of methanol in the fuel increases. For example, at 3000 rpm, with the methanol
ratio in the mixed fuel increased to 10%, 20%, 30%, and 40%, the soot emission decreased
by 0.25%, 8.69%, 16.81%, and 25.28%, respectively. When the engine speed increases, the
cycle time of each combustion process is shortened, and there is not enough time for soot
oxidation. Therefore, the soot emission increases with increasing engine speed. However,
with the increase of the methanol ratio, the oxygen content of the methanol improves the
combustion effect. The higher the ratio of methanol added, the better the oxidation of soot.
Zhang et al. [46] and Wei et al. [47] reached the same conclusion through research.
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3.3.2. NOx Emission

Figure 10 shows the effect of different ratios of methanol-diesel mixtures on NOx
emission at different speeds. It can be seen that NOx emission increases with the increase
of engine speed. In addition, it can be found that the rate of NOx generation decreases with
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the increase of methanol ratio. At the same operation time, the reduction of rate indicates
that the amount of NOx decreases. At high speeds, with the increase of methanol, the
decreased rate of NOx increases. Compared with pure diesel DM0, the NOx generation
rate of DM20, DM30, and DM40 methanol-diesel mixtures decreased by 1.65%, 4.90%, and
8.25%, respectively, at the rated speed of 4000 rpm, while DM10 increased by 1.18%. The
reason is that NOx is generated under the condition of high temperature and rich oxygen.
Because methanol is an oxygenated fuel, when the methanol concentration is low, the NOx
emission is promoted. However, as the concentration of methanol increases, the latent heat
of vaporization of methanol is greater than that of diesel fuel, which inhibits the generation
of NOx. In addition, the combustion rate of methanol is faster than that of diesel, which
shortens the combustion time and helps to inhibit NOx generation. Similar conclusions
were reached by Yao et al. [12].
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3.3.3. CO Emission

Figure 11 shows the effect of different ratios of methanol-diesel mixtures on CO
emission at different speeds. It can be seen that the CO emission increases with the increase
of engine speed. However, it decreased with the increase of methanol ratio. For example,
at 4000 rpm, compared with DM0, the CO emission is decreased by 56.59%. At medium
and low speeds, CO emission is slightly higher than DM0. This is mainly due to the higher
latent heat of vaporization and higher auto-ignition temperature of methanol fuel, which
leads to incomplete combustion of the fuel. However, methanol is an oxygenated fuel, and
oxygen atoms play a significant role in combustion. At medium and high speed, a “micro
explosion” of the methanol-diesel mixture may occur, which is helpful to the atomization
of the mixture. As a result, CO emission tends to decrease with the increase of the methanol
ratio. These results are consistent with those of other researchers [48–50].
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3.3.4. HC Emission

Figure 12 shows the effect of different ratios of methanol-diesel mixtures on HC
emission at different speeds. It can be seen that the HC emission decreases with the
increase of engine speed. The higher the engine speed, the lower the emission. In addition,
it can be found that the HC emission increases with the increase of the methanol ratio. For
example, at 1000 rpm, compared with DM0, the HC emission of DM40 increases by 14.24%.
This is because the latent heat of vaporization of methanol can significantly reduce the
in-cylinder combustion temperature, which leads to an increase of the quench effect [51]
and an increase of unburned HC emission. However, with the increase of rotational speed
and the cylinder temperature, the latent heat of vaporization of methanol decreases and HC
emission decreases. These results were consistent with Wei et al. [52] when they studied
methanol mixed fuels.
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In addition, it is also compared with the model without improvement (DOC only,
black part in the Figure 12). Figures 9–12 clearly show that the DM0 curve is lower than
the origin curve regarding soot emission, NOx generation rate, CO emission, and HC
emission. This is due to the existence of a DPF + SCR system, which increases EBP and
leads to more residual exhaust gas in the cylinder and a higher temperature in the cylinder.
It is conducive to fuel atomization, evaporation, and cylinder combustion, reducing CO
emission, HC emission, NOx emission, and soot emission. Therefore, on the whole, the
improved model is more beneficial to improve the combustion and emission characteristics
of the engine.

4. Conclusions

Nowadays, with the rapid developments of the economy and industrial automation,
the shortage of resources (such as non-renewable energy, oil [53], and coal [54]) and
environmental pollution (air pollution [55] and human health [56]) are becoming more and
more serious [57]. How to effectively control energy shortage [58–63] and engine emission
reduction [64–74] are the main areas of interest for researchers today. In this paper, an
improved model was developed using AVL-BOOST software and employed to investigate
the effects of methanol-diesel with different methanol ratios (DM0, DM10, DM20, DM30,
and DM40) on engine combustion and emission characteristics at different speeds. The
main conclusions are as follows:

(1) The addition of methanol improves the combustion characteristic of the diesel engine.
More specifically, the addition of methanol makes the fuel mass in the premixing
period increase. Moreover, the addition of methanol accelerates the combustion rate of
the fuel mixture and shortens the combustion time. As a result, the cylinder pressure
is increased, and the cylinder temperature is decreased.

(2) The increase in BSFC is because as the methanol content increases, it increases the
engine delay period. Moreover, the low calorific value of methanol increases fuel
consumption and leads to poor engine economy. Likewise, the high oxygen content
of methanol causes the BTE to become larger.

(3) The addition of methanol decreases the emissions of soot, NOx, and CO. The high
oxygen content of methanol allows complete combustion of the fuel, which leads to
the decrease of soot and CO emissions. In addition, the latent heat of vaporization
of methanol is large, and the diffusion rate and combustion rate are more significant
than that of diesel, which shortens the combustion time and inhibits the generation of
NOx.

(4) The addition of methanol increases the HC emission. The decrease in the in-cylinder
combustion temperature increases the quenching effect and increases the HC emission.
However, due to the increase of EBP of the improved model, the HC emission is
decreased, and the CO, soot, and NOx emissions are decreased.

In general, the addition of methanol to the improved model (DOC + DPF + SCR)
can effectively improve the combustion and emission characteristics of the engine. It
should be emphasized that this strategy can be considered as a fundamental approach to
enhance environment-friendly aspects. For further study, the combustion and emission
characteristics of the methanol-diesel engine will be investigated in more depth using a
more accurate 3D computational fluid dynamics (CFD) model in future work.
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