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Abstract: Biopolymers are a promising alternative to petroleum-based plastic raw materials. They
are bio-based, non-toxic and degradable under environmental conditions. In addition to the ho-
mopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad
range of applications and are easier to process in comparison to PHB. The most prominent represen-
tative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
In this article, we show a new kinetic model that describes the PHBV production from fructose and
propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects
of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The
presented model is a valuable tool to improve the microbial PHBV production process. Due to the
coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has
the potential to predict the composition and the current yield of PHBV in the ongoing process.

Keywords: bioplastic; copolymerization; polyhydroxyalkanoate; kinetic modeling

1. Introduction

One suitable alternative to conventional petroleum-based plastics is that of the group
of polyhydroxyalkanoates (PHAs) [1,2]. These polyesters stand out because of their favor-
able processing properties, e.g., their melting behavior or different blending options [3].
Furthermore, these are produced microbially by many bacteria and some archaea using a
wide variety of non-fossil carbon sources [1]. There is a repertoire of possible and cheap
substrates, such as those of inexpensive sugars in waste streams from the manufacturing
industry (juice production, sugar cane processing), volatile fatty acids (VFAs) from biogas
plants and wastewater in sewage treatment plants and even CO2 [4–11]. In addition to the
diverse possibilities of microbially producing bio-based PHAs, this plastic raw material has
another important property: PHAs are degradable under environmental conditions [12].
However, from an economic point of view, the industrial production of PHAs is about
five times more expensive than the production of petroleum-based polymers [13]. In addi-
tion to an improved extraction and processing of the polymers, a large part of the costs
can be saved through optimized bioprocesses with increased PHA yield. This can be
achieved by the incorporation of the sophisticated experimental investigation of different
process modes or the optimization of substrates and feeding strategies with mathematical
modeling [2,14,15]. Furthermore, model approaches represent the basic component in the
development of advanced process control and intensification strategies [16,17].

In the research area of PHA production, a large number of models can be found
that greatly differ in terms of modeling approach and complexity. Due to the complexity
and variability of the bioprocess, there is no universal tool for predicting product yields
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regardless of the producing organism, bioreactor or process conditions such as temperature
or pH [18]. Some approaches appear promising due to their simplicity and are able
to reproduce the concentration curves in a qualitative manner, while they contain only
little metabolic information [19–21]. Other approaches take the metabolism into account,
however, due to their complexity, they can only be used to a limited extent for model-based
process control intensification and are difficult to transfer to other PHA producers [22–27].

Many of the modeling approaches focus on the microbial production of the best-
known representative from the group of PHAs: poly(3-hydroxybutyrate) (PHB). From an
industrial point of view, however, the experimentally well-investigated bio-co-polymer
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is more interesting, because of its
lower melting temperature, higher elongation-to-break values and higher biocompatibility
in comparison to PHB [28]. However, only a few model approaches already exist to
investigate microbial PHBV production [21,29]. PHBV is also the target product of the
present work. In order to develop a universal simulation tool, the mathematical model
must contain a balanced amount of metabolic information. Such a modeling approach is
rarely found in the literature: in [21], the description of the metabolism was reduced to
central points with respect to PHA production (e.g., acetyl-CoA production), which can be
found in many organisms in mixed cultures.

In the mathematical model presented here, we applied a time-dependent, kinetic
parameter for the formation of residual biomass from fructose and propionic acid in C.
necator, in order to map the dynamics of the present metabolic activity without detailed
metabolic information. As the researchers at the University of Antioquia (Colombia)
already have shown [30,31], the online measurement for the CO2 content in exhaust gas
serves as an excellent measure of the dynamic growth rate. Here, we also apply this
correlation and hence, the model is a suitable candidate for the online estimation of PHBV
product yields. In addition, it can be used to predict the polymer composition, since 3-
hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) amounts in the chains are considered
in the model. For the parameter adaption, two data sets from aerobic PHA production in
C. necator were used, and one experimental setup with only fructose as a carbon source
and the other with fructose and propionic acid as carbon sources. In the last part of this
manuscript, the model is used in a simulation study to investigate the influence of the feed
rate for the propionic acid and of constant CO2 in the exhaust gas on the bio-co-polymer
yield and the 3HV proportion in the polymer.

The presented model approach is a suitable candidate for the development of a soft
sensor for the online prediction of the polymer yield and composition. This opens new
options to increase the flexibility, productivity and quality of the PHBV production process.
With further model extensions, e.g., by coupling to polymerization kinetics [32], it will be
possible to additionally estimate the chain length distribution during the process to obtain
more information about polymer properties.

2. Experimental Methods
2.1. Mircoorganism and Cultivation Conditions

C. necator (H16, DSM 428) obtained from DSMZ GmbH Braunschweig was used for
the fermentations. Bacteria were precultured in a shake flask with 10 vol% LB medium
(Carl Roth, Karlsruhe, Germany) at 30 ◦C and 150 rpm. After reaching an optical density
of 4 at 600 nm, the bacteria were transferred to an shake flask filled with 10 vol% of
M81 medium supplemented with 20 g/L fructose and 1.5 g/L ammonium chloride. The
recipe for the Medium 81 can be found in [23] or on the web page of the DSMZ. The M81
preculture was grown until an OD of 4.8 and used as an inoculum for the bioreactors.
The fermentations were performed in a DASGIP parallel bioreactor system (Eppendorf
AG, Juelich, Germany) with an inoculation OD of 0.4. During the experiments, the pH
was kept at 6.8 and the dissolved oxygen (DO) was 70%. The DO measurements were
performed with sensors from Mettler Toledo (Gießen, Germany). In the case of fructose as
a single carbon source, the pH-control was performed with 2 M H2SO4. During the reactor
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experiment with fructose and propionic acid, the pH was stabilized with 20 g/L solution
propionic acid as shown in [33]. The detection of the exhaust gas composition was done
with the GA4 module of the DASGIP parallel bioreactor system (Eppendorf AG, Juelich,
Germany). The initial conditions for the reactor experiments are shown in Table A1. All
bioreactor experiments were performed with M81 media at 30 ◦C.

2.2. Determination of Total Biomass

For the determination of total biomass (TBM), 1 ml culture broth was centrifuged for
10 min at 9600× g and 4 ◦C (VWR MicroStar 17R, Pennsylvania, PA, USA). In a second
step, the cell pellet was dried over night at 80 ◦C and weighted.

2.3. Enzyme Assay

By using enzymatic test kits (Kit No. 5390 and No. 10139106035, R-Biopharm AG,
Darmstadt, Germany) and following the manufacturer’s instructions, ammonium and
fructose concentrations were determined from the supernatant of the sample.

High-Pressure Liquid Chromatography

Concentrations of 3HB and 3HV were determined by applying the procedure pub-
lished in [34] using an Agilent 1100 high-performance liquid chromatography (HPLC).
For this, 1 mL of the culture broth was alkaline digested as reported in [35]. The samples
were filtered through a 0.25 µm nylon membrane and 10 µL were loaded on the reverse
phase column (Inertsil 100A ODS-3, 5 µm poresize, 250 × 4.6 mm, MZ-Analysentechnik
GmbH, Mainz, Germany) and isocratically eluted with 1 mL·min−1 at 60 ◦C with 92% low
concentrated H2SO4 (0.025% solution, Carl Roth, Karlsruhe, Germany) and 8% acetonitrile
(Carl Roth, Karlsruhe, Germany). The 3HB and 3HV concentrations in the polymer chains
of the samples were determined by using crotonic (Carl Roth, Karlsruhe, Germany) and
2-pentenoic acid standard samples (Sigma Aldrich, St. Louis, MO, USA), respectively.
In parallel, a PHBV sample (12% 3HV, Sigma-Aldrich /Merck, Darmstadt, Germany)
with known concentration must be measured to calculate the conversion yields YHB and
YHB [34]:

YHB = 2 · cCA
cHB

, (1)

YHV = 2 · cPA
cHV

. (2)

Here, the dilution ratio (D) is 2, cHB is the known HB and cHV the known 3HV
concentration of the PHBV test sample. Due to the standard measurement of crotonic
acid cCA and 2-pentenoic acid cPA, the conversion yields YHB and YHV can be determined,
respectively. Detection takes place with a photodiode-array detector (G7115A, Agilent,
Waldbronn, Germany) at 210 nm.

3. Kinetic Modeling Approach

The description of the formation and degradation in the microbial PHA production
is an important building block for the complete production process. There are already a
number of model candidates for the formation of PHB [18,20,23,36] that can accurately
reflect the development of the homopolymer concentration over time. Compared to the
homopolymer PHB, the copolymer PHBV has significantly improved processing prop-
erties. However, so far, only simple kinetic approaches for the formation of PHBV were
developed [21]. Furthermore, the model from Špoljarić and colleagues was developed for
the conversion of fatty acid methyl esters (FAMES) from biofuel to PHBV using lumped
metabolic pathways [19]. The model presented here describes the formation and degra-
dation of 3HB and 3HV in the polymer chains using fructose and propionate, two carbon
sources that frequently occur in inexpensive residues or can be produced from them, e.g., by
using waste streams from juice, cheese and paper production. In our model approach, de-
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tailed metabolic reaction pathways were not taken into account to keep the model structure
as simple as possible.
The following assumptions were made for the model:

• A simple mass-action kinetic is assumed for the dynamics of the substrates;
• Propionate has an inhibiting effect and decelerates the growth of bacteria [33];
• The conversion of PHA into enzymatically active biomass (residual) is not affected by

external propionic acid concentrations, as this is an internal process;
• C. necator begins to produce PHA already before nitrogen is depleted [18]. This be-

havior is considered in the model via an inhibitory term with nitrogen by a Michaelis–
Menten kinetics approach (see Equation (3), term inh2);

• Steric effects in the granules prevent the further production of PHA after reaching a
total amount of 89 % of the total biomass (TBM, Pt,max) [36,37].

In the following, a set of ordinary differential equations for the dynamics of the system
with fructose and propionic acid as substrates and residual biomass, 3HB and 3HV in
the polymer chains as products is described. The dynamic state equation for the fructose
concentration is given as

dc f ru

dt
=− k1 · bCO2(t) · cres · c f ru · cn · inh1

− k4 · cres · c f ru · inh2 · inh3

− k7 · bCO2(t) · c f ru · cres

− D · c f ru

(3)

with:

inh1 = max
(

0, 1 − cp
cp,inh

)
, inh2 = max

(
0, 1 − cn

cn+cn,sw

)
, inh3 = max

(
0, 1 − Pt

Pt,max

)
.

Fructose can be metabolized for biomass production with the rate parameter k1, the ac-
cumulation of 3HB in the polymer with k4 or the conversion to CO2 with k7. The growth of
biomass through fructose is controlled by the activity coefficient bCO2(t) based on the CO2
ratio in the exhaust gas and inhibited by the concentration of propionate with the term
inh1. At a concentration of 1.5 g/L propionic acid (cp,inh), the substrate uptake for biomass
is completely inhibited [33]. Since CO2 in the exhaust gas is often defined as a proportion
of the gas composition, we chose the relative CO2 proportion to describe the metabolic
activity bCO2(t) as follows:

bCO2(t) =
CO2,out(t)

CO2,in
. (4)

The metabolic activity is described by the quotient of CO2,out in the exhaust gas and
CO2,in in the fresh inlet air. Since C. necator is a PHA producer of group 2 according
to Novak et al. [18], the build-up of 3HB from fructose begins when there is still a small
amount of ammonium in the medium. This effect is modeled by the term inh2. As described
in [36], steric effects at high polymer concentrations inhibit the conversion of substrates
to PHA (term inh3). According to literature values [1], the maximum achievable amount
Pt,max is 0.89 (89 % of the total biomass).

The inhibitory steric effect is given as the ratio between overall HA concentration and
total biomass concentration:

Pt =
(chb + chv)

(chb + chv + cres)
. (5)

Finally, the dilution factor in the fed-batch process:

D =
Fin
V

, (6)

is the ratio of the feed flow rate Fin and reactor volume V.
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For the computational study, a volume balance is necessary:

dV
dt

= Fin. (7)

As for fructose, a state equation can be set up for propionate dynamics:

dcp

dt
=− k2 · bCO2(t) · cres · cp · cn · inh1

− (k5 + k6) · cres · cp · inh2 · inh3

− k8 · bCO2(t) · cp · cres

+ D ·
(
cp,in − cp

)
.

(8)

It describes the consumption of propionate for biomass with a rate coefficient k2, CO2
with k8 and 3HB production with k5. In addition to the generation of 3HB, propionate can
also be converted into 3HV (k8). In fed-batch mode, a propionate solution according to
Table A1 is fed to the system with the feed flow rate Fin.

For growth, organisms need ammonium. The state equation for the ammonium
dynamics is:

dcn

dt
=− cres · cn · bCO2(t) ·

(
k1 · c f ru + k2 · cp

)
· inh1

− k3 · cres · cn · (chb + chv)

− D · cn .

(9)

In addition to the ammonium uptake for biomass growth by consuming external
carbon sources (first term in Equation (9)), ammonium is needed to convert the biopolymer
to catalytically active biomass with the degradation rate parameter k3.

The dynamical behavior of residual (non-PHA, catalytically active) biomass is de-
scribed as follows:

dcres

dt
=cres · cn ·

[
inh1 ·

(
k1 · c f ru + k2 · cp

)
· bCO2 + k3 · (chb + chv)

]
− D · cres .

(10)

Residual biomass is produced through the consumption of external carbon sources
such as fructose and propionate and the conversion of 3HB and 3HV from the polymer
chains in the presence of ammonium.

The following ordinary differential equations (ODEs) account for the dynamics of the
monomers 3HB and 3HV in the polymer chains:

dchb
dt

=cres · inh2 · inh3 ·
(

k4 · c f ru + k5 · cp

)
− k3 · cres · cn · chb − D · chb .

(11)

dchv
dt

=k6 · cres · cp · inh2 · inh3

− k3 · cres · cn · chv − D · chv .
(12)

For the accumulation and breakdown of the biopolymer (3HB and 3HV), CO2 forma-
tion is negligible, since the metabolic reaction pathways produce only little CO2 compared
to the breakdown of sugars and organic acids into catalytically active components of the
total biomass.
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3.1. Numerical Solution
3.1.1. Interpolation for Volume, CO2,out and Feed Rate

For the simulation of the model, the temporal evolution of the CO2 amount in the
exhaust gas from reactor experiments is required. Since the online measurement often
fluctuates and does not provide a smooth curve, the data were interpolated to integrate
them into the ODE model. For this, a smoothing spline interpolation was carried out
with the MATLAB command csaps. For both experiments, different smoothing factors
were evaluated. A smoothing factor of 0.2 was selected for the experiment with fructose
as the only carbon source (data set 1), while the data from the reactor experiment with
fructose and propionic acid as carbon sources (data set 2) achieved a smooth and well-fitted
curve with a smoothing factor of 0.02. For the interpolation, the splines are evaluated at
the sampling points. The evaluation was carried out with the MATLAB command ppval.
The curves and online data are shown in Figure 1 for both data sets.

0 20 40
0

1

2

3

4

0 20 40
0

1

2

3

4

Figure 1. Exhaust CO2 for data set 1 (fructose as carbon source, left panel, +) and data set 2 (fructose
and propionic acid as carbon sources, right panel, +) and the interpolations (solid lines).

The feeding of the odd carbon source propionic acid was achieved by pH control.
If the pH increases, a certain amount of propionic acid with 20 g/L in the feed is added to
the bioreactor to stabilize the pH at 6.8. The pre-implemented PI controller of the DASGIP
parallel bioreactor system (Eppendorf AG, Jülich, Germany) was used for this purpose.
As for the activity factor, frequent fluctuations are observed because of the special pH-
dependent feeding strategy and thus the feed rate for propionic acid was interpolated and
evaluated in the same way as the CO2 amount in the exhaust gas (Figure 2). Here, a factor
of 0.02 delivered a smooth curve.

Furthermore, an interpolation of the volume was necessary for the fed-batch exper-
iment with fructose and propionic acid as carbon sources (data set 2). For this purpose,
a polynomial of order 10 was determined with the MATLAB command polyfit and evaluated
with polyval at the sampling times. As seen in Figure 3, volume reduction by sampling was
also taken into account. Hence, a decrease in volume was recorded despite an average feed
rate of approximately 20 mL/h between 15 and 25 h (see Figure 2). In the experiment with
fructose as the single carbon source, the reactor was operated in batch mode. Since it was
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assumed that the system was ideally mixed, the changes in concentration were only caused
by internal sinks and sources (no substrate was pumped in), and the volume reduction due
to sampling can be neglected in data set 1. All simulations, interpolations and evaluations
were carried out with MATLAB 2019b.

0 10 20 30 40
0

10

20

30

40

Figure 2. Experimental feed rate and polynomial for the propionic acid inlet of data set 2 (fructose
and propionic acid as carbon sources).

Figure 3. Experimental volume (small blue line) and polynomial (black curve) of data set 2 (fructose
and propionic acid as carbon sources).

3.1.2. Parameter Identification

For parameter identification, the following objective function was minimized:

ESS =
n

∑
i=1

(
xexp(ti)− xsim(ti)

max(xexp)

)2

. (13)

Here, the error between the simulated xsim and experimental data xexp at time point
ti is determined and weighted with the maximum value in the experimental data set.

The kinetic parameters were determined using the algorithm fmincon in MATLAB
2019b. The ODEs were numerically solved with the algorithm ode15s with a relative
tolerance of 10−9. To prevent a sub-optimal initial parameter set a multi-start approach
with N = 10,000 was applied. To further validate the resulting parameter set obtained by
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the local optimization strategy, the global optimization algorithm differential evolution
(DE) was selected [38]. The resulting set of parameters can be found in Table A1.

To prove the parameter identifiability, profile likelihoods are determined for the
parameter set [39]. Appendix B shows all profile likelihoods and the corresponding
likelihood-based confidence intervals. All profile likelihoods show a distinct minimum at
the estimated parameter set and thus all parameters and the model itself are (locally) iden-
tifiable. The confidence intervals are obtained by calculating the value of a χ2-distribution
with a confidence level α = 0.95 and one degree of freedom as proposed in [39].

4. Results
4.1. Identification Using Different Data Sets

The kinetic model was adapted to two data sets from bioreactor experiments with
a working volume of 1.2 L. In the first data set, fructose was the only carbon source that
was metabolized under aerobic conditions. The second data set was also obtained under
aerobic conditions with fructose and propionic acid as carbon sources. Here, propionic
acid was added via a pH-regulated feed as proposed by Kim and coworkers [33] aiming
for a constant pH value of 6.8. From the available data of these sets, the online data for
the CO2 content in the inflow and in the exhaust gas, the feed rate for the propionic acid
and the exact volume considering the sampling volume were used in the case of data set 2.
In the case of the data set 1, online data for the CO2 content in the inflow and in the exhaust
gas were also used, but a constant volume and a batch mode (Fin =0) were considered.
The CO2 content in the exhaust gas, the feed stream for the propionic acid and the reactor
volume were approximated as described in Section 3.1.1. The smoothed measurement data
were used for the model simulation. Furthermore, the concentrations for total biomass,
biopolymer, fructose and propionic acid were determined offline in both data sets (see
Section 2).

The dynamic behavior for the conversion of the substrates from data set 1 (only
fructose) can be reproduced well with the present model (solid lines, Figure 4a). The model
shows larger deviations for the substrates from data set 2 (fructose and propionic acid),
especially in the last time segment from 25 h (dashed lines, Figure 4b). On the one hand,
this is due to the approximation of the inflow rate for propionic acid (see Figure 2), and on
the other hand, the measurement of the propionic acid in the medium becomes more
difficult. It seems to be, that there are more and more apoptosis fragments, e.g., matrix,
RNA and proteins in the culture supernatant that disrupt the signal obtained by HPLC
(own experimental findings). These fragments could be avoided by elaborate sample
preparation before HPLC measurement, e.g., additional filtration, boiling procedures or
the supplementation of organic acids. Furthermore, the chromatographic peak consisting
of propionic acid can be be fractionated and separated from impurities by a second HPLC
run with an adjusted mobile phase.

The model for the case of fructose as a single substrate can reproduce the production
and depletion of total biomass and 3HB with sufficient accuracy (Figure 5a). The same
applies to the case with fructose and propionic acid as carbon sources (Figure 5b). In par-
ticular, the degradation of 3HB and 3HV in the polymer chains after an NH4Cl shot at
24 h can be mapped very well by the model. This property is important when working
with waste streams which also contain nitrogen sources and which are added during the
ongoing process in order to keep the carbon in excess. Since the model can reproduce the
product concentrations very well, it can further be used for a simulation study.
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(a) Data set 1 (fructose only)—substrates (b) Data set 2 (fructose + propionic acid)—substrates

Figure 4. Consumption of substrates for two feeding scenarios: (a) fructose as a single carbon
source without additional feeding (batch); (b) fructose and propionic acid as carbon sources with
pH-dependent propionic acid feeding.

(a) Data set 1 (fructose only) - products (b) Data set 2 (fructose + propionic acid) - Products

Figure 5. Production and degradation of polyhydroxyalkanoate (PHA) monomers (chb, chv) and
total biomass (cbio = cres + chb + chv).
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4.2. Computational Study

In the following, the identified model was used to investigate the maximum prod-
uct concentrations by applying different constant CO2 and propionic acid feed profiles.
A constant feed rate can easily be implemented on every bioreactor system with contin-
uous pumps. The constant CO2 in the exhaust gas represents a complex control task,
as CO2 is produced by the bacteria themselves (autogenous CO2). However, the research
work in [40] shows the feasibility of this control task which can also be used in future
validation experiments.

In the simulation study (Figure 6), a constant CO2 proportion in the exhaust gas and
a constant feed rate for propionate were assumed for the process time. The propionic
acid concentration in the feed was set to 20 g/L as in data set 2. Figure 6a shows the
maximum total 3HB and 3HV in the polymer chains Pt* as a function of CO2 in the exhaust
gas and the feed rate for propionic acid. The inhibitory area is clearly visible on the left
side. In this range, the propionic acid concentration in the medium becomes too high so
that growth is inhibited. In the case of increased CO2 values in the exhaust gas, the feed
rate can also be increased without triggering growth inhibition. This behavior can be
justified as follows: a higher exhaust gas value for CO2 produced by the microorganisms
(autogenous CO2) is triggered by an increased uptake of substrates from the medium.
In C. necator, the degradation of pentoses and hexoses takes place via the Entner–Doudoroff
(ED) pathway. Furthermore, the tricarboxylic acid cycle (TCA) is mainly responsible
for the generation of energy and precursor molecules for biomass synthesis from the
precursors of metabolic sugar degradation and organic acids. Both the ED pathway and
the TCA generate CO2 as a by-product, which can be found in the exhaust gas values of
the simulation study. With other words, increased autogenous CO2 in the exhaust gas
can be translated into stronger residual biomass growth with increased substrate uptake.
As a result, the growth inhibition with increased CO2 in the exhaust gas only occurs at
higher feeding rates for propionic acid. In addition to the beneficial effect of higher exhaust
CO2, the total biopolymer concentration decreases in the non-inhibitory area. This effect
occurs because the CO2 output is related to the higher residual biomass growth and hence,
the substrates were less translated into biopolymers.

(a) Best total 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) concen-
tration

(b) Maximum possible 3HV concentration after 60 h

Figure 6. Simulation study with constant values for CO2 and Fin.
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The highest total biopolymer concentration of 12.5 g/L within 60 h simulation time
can be achieved without feeding propionic acid to the system and with a very low CO2
content in the exhaust gas. However, without an active feed rate, no 3HV will be produced
and the 3HV content is decisive for improved processing of copolymers compared to their
homopolymers. The maximum HV concentration in the polymer is shown in Figure 6b for
different constant autogenous CO2 and propionic acid feeding rates. Here, the inhibiting
region can be seen again due to a high propionate concentration in the medium. For a high
3HV concentration, our model predicts feed rates between 12 and 40 mL/h depending
on the CO2 in the exhaust. In general, less than 2.5 % CO2 in the exhaust gas leads to
higher 3HV concentrations. As our simulation results show, the feed rate for propionic
acid must be chosen very carefully because of their strong correlation with the CO2 value:
overly high feed rates at higher CO2 in the exhaust gas lead to less residual biomass
and a decreased 3HV concentration (see Figure A1). Further characteristic values of the
simulation study are shown in Figure A1 (e.g., residual biomass at the maximum total 3HB
and 3HV concentration, total monomer/total biomass ratio).

Three exemplary time courses for different production goals were illustrated in
Figure 7. In case A, the dynamic behavior to achieve a high total polymer concentra-
tion (3HB + 3HV) with the given initial conditions is shown. For this purpose, the feed rate
was set to 0 mL/h and the CO2 amount to 1 %. For case B, the same CO2 value as in case
A was applied together with a feed rate of 25 mL/h to show an example time course for
a high 3HV concentration. In addition to the two preferred fermentation results (cases A
and B, Figure 7), the inhibitory case was also shown (case C, Figure 7) by increasing the
feed rate to 105 mL/h.

(a) Substrates (b) Products

Figure 7. Three example cases of dynamical behavior applying constant exhaust CO2 and feed rate
for propionic acid (profile study 1). Legend: A, maximum total biopolymer concentration (chb + chv);
B, high 3HV concentration (chv); and C, inhibition caused by propionic acid (cp).

5. Concluding Remarks

In this manuscript, a model approach is presented which enables the integration of
online data for the estimation of the yield and the composition of the copolymer PHBV in
C. necator. Compared to other approaches, no genome-scale metabolic networks or reduced
variants are necessary [23,41], since it is a pure kinetic approach that describes changes
in the metabolism due to a CO2-dependent biomass production rate that changes over
time. Despite the lack of detailed metabolic information, our kinetic model can display
the data sets with fructose as a single substrate and fructose and propionate as substrate
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with high accuracy. The model approach has similar complexity as the models presented in
Koller et al. [36] and Dias et al. [21], whereby the metabolic activity that controls the biomass
growth can be described by the CO2 profile in the exhaust gas. Because of the compact
model structure and smart coupling to available online measurements the approach can
be applied as a soft sensor for the prediction of biomass, substrates, product yield and the
composition of the biopolymer (e.g., 3HV/3HB ratio). First steps in this direction where
already successfully applied for a vinasse-molasse PHA process [30,31]. In comparison to
the model approach used in [30,31], our more complex model represents an excellent basis
to predict 3HV and 3HB amounts in the polymer chains. In addition to the application
options during the process, CO2 profiles can be estimated in optimization studies with
predefined concentrations profiles for the substrates and products. As a first step, we
investigated in our simulation study the effect of constant CO2 fractions in the exhaust gas
and constant feed rates for propionic acid on biopolymer yield and composition. The lower
the feed rate was set and the less CO2 was in the exhaust gas, the more PHA was produced
but with less 3HV content in the polymer. A suitable feed rate for propionic acid input
was predicted to be between 12 and 40 mL/h in order to achieve high 3HV concentration
in the final co-biopolymer. Furthermore, the model approach can be used for the design
of observers and state estimators for the reconstruction of non-measurable states. A first
example in this direction was recently presented by Carius and coworkers [16]. Here,
an unscented Kalman filter and a moving horizon estimation based on a hybrid cybernetic
PHB model [23] was designed and evaluated.

Future work should focus on the design of model-based soft sensor approaches, since
this will enable the reliable online estimation of the PHBV content using measurements
of the exhaust gas online without the need for additional expensive hardware sensors.
Furthermore, the transferability of the kinetic model to other PHA producers must be
researched. Here, the focus should be on PHA producers, which are already producing
PHA under growth conditions, e.g., C. necator DSM 515, as the model was designed for
this group of bacteria. Furthermore, it should be checked whether a characteristic CO2
profile occurs during the accumulation of other copolymer building blocks, such as 4-
hydroxybutyrate. Finally, a control concept should be developed which is able to keep CO2
in the exhaust gas on a desired level over a longer period of time. The work of Shang and
colleagues [40] shows that it is in principle possible to control a process parameter that is
strongly influenced or caused by the bacteria. The CO2 amount in the exhaust gas was
adjusted in the work of Shang and coworkers in order to investigate the inhibitory effects
of CO2. Such an effect has not yet been taken into account in the model presented in this
manuscript, but should be considered in future model extensions.

Overall, our model approach provides the basis for a broad range of possible future
applications and will help make the production process of biopolymers more reliable and
less expensive.
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Appendix A. Additional Figures—Profile Study

(a)3HV/total biopolymer ratio at maximum total biopoly-
mer concentration after 60 h

(b)Residual biomass concentration at highest total
biopolymer concentration after 60 h

(c)Biopolymer concentration/total biomass ratio at maxi-
mum total biopolymer concentration after 60 h

(d)Time where the maximum biopolymer value occurs

Figure A1. Simulation study with constant values for CO2 and Fin—3HV content (a), residual
biomass (b), PHA/BTM ratio (c), time (d).

Figure A2. Reactor volume V, feed rate Fin, dilution rate D and CO2 in the exhaust for the three
example cases. Legend: A, maximum total biopolymer concentration; B, high 3HV concentration;
and C, inhibition caused by propionic acid.
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Appendix B. Parameter Identifiability
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Figure A3. Profile likelihood of k1. Horizontal dashed line represents the explained sum of squares
(ESS) value of the 95% confidence interval.
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Figure A4. Profile likelihood of k2. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A5. Profile likelihood of k3. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A6. Profile likelihood of k4. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A7. Profile likelihood of k5. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A8. Profile likelihood of k6. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A9. Profile likelihood of k7. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A10. Profile likelihood of k8. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Appendix C. Parameter Values and Initial Conditions

Table A1. Kinetic parameters, states and variables.

Parameter Unit Description Value

fitted

k1 (L2/(g2h)) consumption of fructose
and ammonium for growth 4.34 × 10−6

k2 (L2/(g2h)) consumption of propionic acid
and ammonium for growth 0.0048

k3 (L2/(g2h)) HA consumption 0.0713
k4 (L/(g h)) consumption of fructose

for 3HB accumulation 0.0563
k5 (L/(g h)) consumption of propionic acid

for 3HB accumulation 0.6803
k6 (L/(g h)) consumption of propionic acid

for 3HV accumulation 2.0208
k7 (L2/(g2h)) fructose consumption

for maintenance 3.4184 × 10−4

k8 (L2/(g2h)) propionic acid consumption
for maintenance 0.0125
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Table A1. Cont.

Parameter Unit Description Value

fixed

cp,inh (g/L) inhibitory propionic acid concentration 1.5 [33]
cn,sw (g/L) Michalis–Menten rate for ammonium 0.2
cp,in (g/L) propionic acid concentration in the feed 20
c f ru(0) (g/L) initial fructose concentration

data set 1/data set 2 21.96/21.75
cp(0) (g/L) initial propionic acid concentration

data set 1/data set 2 0/0.48
cn(0) (g/L) initial ammonium concentration

data set 1/data set 2 1.74/1.40
cres(0) (g/L) initial residual biomass concentration

data set 1/ data set 2 1.47 / 1.16
chb(0) (g/L) initial 3HB concentration

data set 1/ data set 2 0.03 / 0.03
chv(0) (g/L) initial 3HV concentration

data set 1/ data set 2 0 / 0.01
Pt (g/L) HA (3HB+3HV) concentration time dependent
CO2,out (%) exhaust CO2 measurement
CO2,in (%) inlet CO2 measurement
bCO2 (-) CO2 dependent metabolic activity time dependent
D (-) dilution rate time dependent
Fin (%) feed rate for propionic acid pH controlled [33]
Pt,max (g/L) maximum concentration of PHA 0.89 [37]
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