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Abstract: Diabetes mellitus (DM), as a chronic disease caused by insulin deficiency or using obstacles,
is gradually becoming a principal worldwide health problem. Pueraria lobata is one of the traditional
Chinese medicinal and edible plants, playing roles in improving the cardiovascular system, lowering
blood sugar, anti-inflammation, anti-oxidation, and so on. Studies on the hypoglycemic effects of
Pueraria lobata were also frequently reported. To determine the active ingredients and related targets
of Pueraria lobata for DM, 256 metabolites were identified by LC/MS non targeted metabonomics,
and 19 active ingredients interacting with 51 DM-related targets were screened. The results showed
that puerarin, quercetin, genistein, daidzein, and other active ingredients in Pueraria lobata could
participate in the AGE-RAGE signaling pathway, insulin resistance, HIF-1 signaling pathway, FoxO
signaling pathway, and MAPK signaling pathway by acting on VEGFA, INS, INSR, IL-6, TNF and
AKT1, and may regulate type 2 diabetes, inflammation, atherosis and diabetes complications, such as
diabetic retinopathy, diabetic nephropathy, and diabetic cardiomyopathy.
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1. Introduction

Diabetes mellitus (DM), including type 1, type 2, and gestational diabetes, is a chronic
and metabolic disease with long-term hyperglycemia and complex pathogenesis, influ-
enced by interactions of multiple factors such as genetics, environment, age, and sex.
According to the official website of the International Diabetes Federation, the global preva-
lence of diabetes among adults aged 20–79 years was 463 million, which means one out
of eleven had diabetes in 2019, and that number is expected to rise to 578 million by
2030. Seriously, China had been the top country for the number of adults with diabetes
(data from: IDF Diabetes Atlas Globally, 9th ed., 2019). The sixth large-scale diabetes
epidemiological survey in China showed a trend of gradual increase in prevalence rates
from 2007 to 2017, reaching 12.8% in 2017. The proportion of pre-diabetes was as high
as 35.2%, and nearly half of Chinese people had abnormal blood sugar levels. No matter
the therapeutic methods, the propaganda on the prevention of diabetes leaves a lot to
be desired [1]. Therefore, traditional Chinese medicine (TCM) with low cost and stable
efficacy has become a complementary and alternative medicine for treating DM [2,3].

Recently, old-line natural plants which are defined as medicine and food, sharing the
same origin, have gradually played a significant role in medical care due to low toxicity
and side effects, wide material access, and perfect curative effects. The dried roots of
Leguminosae Kudzu, and Pueraria lobata are widely distributed in China and approved as
both food and medicine on the list by the National Health Bureau [4,5]. According to the
Dictionary of Chinese Medicine, Pueraria lobata and Pueraria thomsonii are the sources of
authentic medicinal products. Pueraria lobata is sweet and pungent in taste and cool in
nature [6]. It has been documented in Shen Nong Ben Cao Jing (206 BC–24 AD, Western
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Dynasty) and has the functions of relieving fever, generating body fluid, and treating
DM, classified as Xiao Ke syndrome in TCM. Contemporary pharmacological research
has indicated that the main ingredients such as isoflavones, steroids, and terpenoids have
positive effects on analgesia, regulating blood pressure and sugar, anti-alcoholism, anti-
tumor, and so on. Research shows that isoflavones in the extracts of Pueraria as puerarin
can reduce blood glucose in STZ induced diabetic mice with the expression of insulin [7].
Besides, puerarin may be used to treat diabetic nephropathy, a common complication of
diabetes, by inhibiting a majority of growth factors, blocking protein glycosylation, and
reducing the accumulation of extracellular matrix (ECM) in the kidneys [8–10]. Besides,
studies on the main ingredients and pharmacology of Pueraria lobata have been conducted
for a certain period, but the underlying mechanism of the active ingredients interfering
with diabetes has not yet been clarified.

Compared with traditional methods, network pharmacology, including molecular
dynamics, docking technology, and data analysis via computer, has been widely applied
in the investigations of natural products with the characteristic of being multi-targeting
for the treatment of human diseases [11]. In this present study, we attempted to screen
the active ingredients and constructed the compound–target–disease networks through
the system pharmacology and LC/MS metabolomics, to infer the potential mechanism of
Pueraria lobata for treating DM. Detailed procedures of this study can be seen in Figure 1.
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2. Materials and Methods
2.1. Raw Materials of Pueraria lobata Preparing

The roots of Pueraria lobata were purchased from Bozhou, Anhui Province, China,
in 2020, and the roots of the healthy plants picked in autumn were washed, dried, and
ground to a fine powder in an electric grinder in the School of Life Sciences, Jiangsu
University, Jiangsu Province, China. The 30 mg accurately weighted Pueraria lobata powder
was transferred to a 1.5 mL Eppendorf tube. Two small steel balls were added to the tube,
20 µL internal standard (0.3 mg/mL, 2-chloro-L-phenylalanine, dissolved in methanol) and
1 mL extraction solvent with methanol/water (7/3, v/v) were added to the tube, and then
stored at−80 ◦C for 2 min, ground at 60 Hz for 2 min, ultrasonicated for 30 min, and finally
placed at −20 ◦C for 20 min. Samples were centrifuged at 13,000 rpm, at 4 ◦C for 10 min.
The supernatant of 300 µL was dried and then redissolved with 400 µL methanol/water
(1/4, v/v), and then vortexed for 30 s and stored at 4 ◦C for 2 min. The extract was
centrifuged at 13,000 rpm, 4 ◦C for 10 min. 150 µL supernatants were collected using
crystal syringes, filtered through 0.22 µm microfilters, and transferred to LC vials. The rest
of the vials were stored at −80 ◦C until LC/MS analysis, and all chemicals and reagents
were analytical or HPLC grade (gradient grade).
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2.2. Liquid Chromatography-Mass Spectrometry Experiments

The derivatized samples were analyzed on a Dionex Ultimate 3000 RS UHPLC system
fitted with a Q-Exactive quadrupole-Orbitrap mass spectrometer, and equipped with a
heated electrospray ionization (ESI) source (Thermo Fisher Scientific, Waltham, MA, USA).
An ACQUITY UPLC BEH C18 column (2.1 × 100 mm, 1.7 µm) was employed in both
positive and negative modes. The binary gradient elution consisted of (A) water (containing
0.1% formic acid, v/v) and (B) methanol separated at the following gradient: 0.01 min,
5% B; 1.5 min, 5% B; 3 min, 30% B; 7 min, 60% B; 9 min, 90% B; 11 min, 100% B; 12 min, 100%
B; 12.1 min, 5% B; and 15 min, 5% B. The injection volume was 10 µL. The flow rate was
0.35 mL/min and the column temperature was 45 ◦C. The mass range was from Da 60 to
900. The resolution was set at 70,000 for the full scans, and 17,500 for HCD MS/MS scans.
The mass spectrometer operated as follows: spray voltage, 3500 V (+) and 3100 V (−);
sheath gas flow rate, 30 arbitrary units; auxiliary gas flow rate, 10 arbitrary units; capillary
temperature, 320 ◦C.

2.3. Chemical Ingredients Determination and Active Compounds Screening

The acquired raw data were preliminarily treated by the progenesis Q I v2.3 software
(Waters Corporation, Milford, CT, USA) based on the following parameters: precursor
tolerance 5 ppm; product tolerance 10 ppm; product ion threshold 5%. Metabolites were
identified by the public databases such as METLIN (http://metlin.scripps.edu/index.php,
accessed on 4 March 2020). The chemical ingredients obtained from LC/MS were input into
some public databases such as TCMSP (http://lsp.nwsuaf.edu.cn/tcmsp.php, accessed
on 4 March 2020), DrugBank (https://go.drugbank.com/, accessed on 4 March 2020),
GeneCards (https://www.genecards.org/, accessed on 4 March 2020), and Metascape
(https://metascape.org/, accessed on 4 March 2020), to screen the active ingredients that
interact with DM [12]. The ADME parameter-based virtual screening of the ingredients was
utilized to further identify anti-diabetic ingredients using oral bioavailability (OB > 30%)
and drug-likeness (DL > 0.18) as parameters [13,14].

2.4. Targets Prediction and Protein-Protein Interaction Network Construction

To identify the corresponding DM-targets of the active compounds of Pueraria lobata,
several approaches were used. First of all, the target proteins of the active ingredients
were selected, and duplicates removed based on TCSMP and Drugbank. Then, targets for
DM using RS (relevance score > 28) as specific criteria were screened with the DrugBank
Database. Finally, the common targets, both in ingredients and DM, were uploaded to
the STRING (http://string-db.org, accessed on 4 March 2020) online website to obtain
the information of protein–protein interactions (PPI). We selected confidence data > 0.7 to
ensure the reliability of the analysis. The acquired data were analyzed with Cytoscape 3.8.2
software (https://cytoscape.org/, accessed on 18 July 2021).

2.5. Gene Ontology (GO) and KEGG Enrichment Analysis of Targets

The Database for Annotation, Visualization, and Integrated Discovery (DAVID,
https://david.ncifcrf.gov/, accessed on 4 March 2020) v6.8 was used to analyze the GO
function and KEGG pathway enrichment of proteins.

3. Network Construction

After obtaining the interaction information of the active ingredient compounds, tar-
get proteins, and the pathways, the “Ingredient–Target” and “Drug–Ingredient–Target
Pathway” network was established by Cytoscape 3.8.2 software. Then, a hypothesized
schematic diagram of the target proteins involved in the pathways was drawn.

http://metlin.scripps.edu/index.php
http://lsp.nwsuaf.edu.cn/tcmsp.php
https://go.drugbank.com/
https://www.genecards.org/
https://metascape.org/
http://string-db.org
https://cytoscape.org/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
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4. Results
4.1. Chemical Metabolites of Pueraria lobata by LC/MS

To ensure the accuracy of the results, the sample of Pueraria lobata was analyzed
three times by LC/MS. The results showed strong signals, high peak capacity, and high
reproducibility. Two-hundred and fifty-six chemical metabolites were detected, containing
phenylpropanoids and polyketides such as formononetin, ononin, genistein, acacetin, and
benzenoids such as emodin, organic acids and derivatives, lipids and lipid-like molecules,
and so on. The base peak chromatogram of positive and negative ions and the composition
of the chemical metabolites are shown in the Supplementary Material Figure S1. The
specific information of the 256 chemical metabolites is set out in Supplementary Material
Table S1.

4.2. Active Ingredients from Pueraria lobata

Assessment of the ADME properties of active ingredients has become an impor-
tant process in modern drug discovery. In the present work, two ADME, including OB
and DL, were employed to screen the active ingredients of Pueraria lobata. Therefore,
12 out of 18 ingredients passed through the strict criteria: OB (>30%) and DL (>0.18), and
most of them exhibited strong pharmacological activities. For instance, formononetin
displayed significant hypoglycemic activity [15]; beta-sitosterol showed therapeutic effects
on DM, anti-oxidation, and reducing blood lipids [16], and quercetin played an impor-
tant role in treating obesity and DM [17,18]. In addition, the ononin, genistein, daidzein,
daidzin, and tangeritin were detected in the metabolites of Pueraria lobata by LC/MS, and
their certain pharmacological effects in anti-inflammatory, anti-diabetic and anti-tumor
aspects were reported [19–21]. For example, ononin displayed effects on LPS-induced
inflammatory response, which may be associated with NF-κB and MAPK pathways [22];
genistein showed the pharmacological effects on breast tumor, prostate tumor, atheroscle-
rosis, and DM [23–25]. Surprisingly, puerarin, the main active and characteristic marker
components for Pueraria lobata in Chinese Pharmacopoeia (The State Pharmacopoeia Com-
mission of China, 2020), exhibited low OB and DL. Nevertheless, puerarin had lipid-
and glucose-lowering effects in the treatment of obesity and DM [26–28], together with
anti-inflammation effects, and the improvement of cardiovascular problems [29–31]. In
summary, it was reasonable to believe that the 19 differentiated compounds could be listed
as potential effective pharmacological activities for Pueraria lobata (Table 1).

Table 1. Information of the active ingredients of Pueraria lobata.

MOL ID Name CAS No. Molecular
Formula OB% DL Structure

MOL001689 Acacetin 480-44-4 C16H12O5 34.97 0.24
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Table 1. Cont.

MOL ID Name CAS No. Molecular
Formula OB% DL Structure

MOL004328 naringenin 480-41-1 C15H12O5 59.29 0.21
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Table 1. Cont.

MOL ID Name CAS No. Molecular
Formula OB% DL Structure

MOL004631 7,8,4′-
Trihydroxyisoflavone 75187-63-2 C15H10O5 20.67 0.22
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4.3. Target Proteins of Pueraria lobata

Experimental approaches which are usually used for searching the targets of drugs are
considered time-consuming and as overspending. In this work, a macroscopic approach
was applied to identify the target proteins for the effective ingredients of Pueraria lobata.
A total of 318 targets of 19 effective ingredients of Pueraria lobata were searched by using
TCMSP. Meanwhile, 219 target proteins for DM which passed through specific criteria,
RS (relevance score > 28), were screened based on the DrugBank Database. Finally, 51 DM-
related targets common to both targets of 19 effective ingredients and DM were determined
(Table 2). The PPI network construction of these targets and their interactions were demon-
strated by using STRING (Figure 2). The results included 51 nodes and 309 edges, of which
nodes represented the target proteins and the edges represented the interactions between
the proteins. Furthermore, the larger the degree was, the stronger the relationship between
the proteins corresponding to the node in this network. Thus, it was indicated that the
target proteins played a key role in the whole interaction network, which is the important
target protein. IL6, AKT1, VEGFA, TNF, FN1, STAT3, TP53, CCl2, and IL1B were the top
10 proteins with degree values in the protein network interaction map. The statistical bar
chart of proteins with a degree value greater than 12 is shown in Supplementary Material
Figure S2.
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Table 2. Information of the DM-targets of Pueraria lobata.

Uniport Gene Target Protein

P27487 DPP4 Dipeptidyl Peptidase 4
P07550 ADRB2 Adrenoceptor Beta 2
P04637 TP53 Cellular tumor antigen p53
P29474 NOS3 Nitric Oxide Synthase 3
P31749 AKT1 AKT Serine/Threonine Kinase 1
P01130 LDLR Low Density Lipoprotein Receptor
P00441 SOD1 Superoxide Dismutase 1
P04040 CAT Catalase
P37231 PPARG Peroxisome Proliferator Activated Receptor Gamma
P55157 MTTP Microsomal Triglyceride Transfer Protein
P04114 APOB Apolipoprotein B
Q07869 PPARA Peroxisome Proliferator Activated Receptor Alpha
Q15848 ADIPOQ Adiponectin, C1Q And Collagen Domain Containing
P18031 PTPN1 Protein Tyrosine Phosphatase Non-Receptor Type 1
P15121 AKR1B1 Aldo-Keto Reductase Family 1 Member B
P15692 VEGFA Vascular Endothelial Growth Factor A
P01100 FOS Proto-oncogene c-Fos
P08253 MMP2 Matrix Metallopeptidase 2
P22301 IL10 Interleukin 10
P01375 TNF Tumor Necrosis Factor
P05231 IL6 Interleukin 6
P42224 STAT1 Signal Transducer and Activator Of Transcription 1
P05362 ICAM1 Intercellular Adhesion Molecule 1
P01584 IL1B Interleukin 1 Beta
P13500 CCL2 C-C Motif Chemokine Ligand 2
P19320 VCAM1 Vascular Cell Adhesion Molecule 1
P10145 CXCL8 C-X-C Motif Chemokine Ligand 8
P05771 PRKCB Protein Kinase C Beta
P05121 SERPINE1 Plasminogen activator inhibitor 1
P14672 SLC2A4 Solute Carrier Family 2 Member 4
P06213 INSR Insulin Receptor
P02741 CRP C-Reactive Protein
P17936 IGFBP3 Insulin Like Growth Factor Binding Protein 3
P01344 IGF2 Insulin Like Growth Factor 2
P27169 PON1 Paraoxonase 1
P17948 FLT1 Fms Related Receptor Tyrosine Kinase 1
P11166 SLC2A1 Solute Carrier Family 2 Member 1
P08069 IGF1R Insulin Like Growth Factor 1 Receptor
P04179 SOD2 Superoxide Dismutase 2
P01241 GH1 Growth Hormone 1
P08833 IGFBP1 Insulin Like Growth Factor Binding Protein 1
P10912 GHR Growth Hormone Receptor
P40763 STAT3 Signal Transducer and Activator of Transcription 3
P02751 FN1 Fibronectin 1
Q13315 ATM ATM Serine/Threonine Kinase
P01308 INS Insulin
P02647 APOA1 Apolipoprotein A1
P35557 GCK Glucokinase
Q14654 KCNJ11 ATP-sensitive inward rectifier potassium channel 11
P30556 AGTR1 Angiotensin II Receptor Type 1
P48357 LEPR Leptin Receptor

4.4. Go Enrichment Analysis and KEGG Classification of Target Proteins

Analysis of interaction network regulation of 51 targets was performed by DAVID.
The top 15 significantly enriched terms in Cellular Component, Biological Process, and
Molecular Function categories (p < 0.05, p-values were corrected using the Benjamin–
Hochberg procedure) were listed in Figure 3. It was interesting to find these huge quantities
of targets that interacted with a variety of Biological Process terms such as response to



Processes 2021, 9, 1245 8 of 14

peptide, response to insulin, regulation of small molecule metabolic process, and blood
vessel morphogenesis. In the Molecular Function category, the target proteins were mainly
involved in receptor-ligand activity, phosphatase binding, protease binding, and insulin-
like growth factor binding, while in the Cellular Component category, the target proteins
were classified into receptor complex, endoplasmic reticulum lumen, cytoplasmic vesicle
lumen, and plasma lipoprotein particles.
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KEGG pathway enrichment analysis was also performed by DAVID, and the top
25 pathways involving 51 target proteins were detected by BH-corrected p-values < 0.05
(Figure 4a). The results showed that these target proteins mainly participated in the AGE-
RAGE signaling pathway in diabetic complications, insulin resistance, HIF-1 signaling
pathway, FoxO signaling pathway, MAPK signaling pathway, and the PI3K-AKT signaling
pathway. The AGE-RAGE signaling pathway, which exhibited the highest number of
target connections, was an important segment in the occurrence of diabetic nephropathy,
involving a variety of targets such as NF-κB, VEGF, and TGF-β1 [32–34]; both the insulin
resistance and the HIF-1 signaling pathway were well-established heavily in insulin secre-
tion and glucose homeostasis [35]. Besides, the PI3K-AKT signaling pathway is sensitized,
and plays a key role in the regulation of glucose metabolism and the synthesis of glycogen
and protein when the insulin receptors bind to the insulin receptor substrate [36]. The key
targets and the major signaling pathway of the active ingredients of Pueraria lobata for DM
and its complications are described in Figure 4b.
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4.5. Network Construction and Analysis of DM-Related Ingredients

Recently, network pharmacology provides an effective tool for the study of TCM
pharmacology and exerts a systematic method to analyze the mechanism of action of
multi-target and multi-path drugs at the macro level. In this work, databases were mined
including TCMSP, Uniprot, and Drugbank; Cytoscape 3.8.2 was used to analyze the in-
teraction between 19 active ingredients, target proteins, and pathways. To decipher the
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visualization of the complex relationship of the effective compounds of Pueraria lobata and
their target proteins, a graph of the network was shown in Figure 5a. The results included a
total of 337 nodes and 703 edges, of which nodes represented the targets of the 19 effective
ingredients and the edges represented the interactions of the compounds and target pro-
teins. All of the targets interacting with the active ingredients were mapped onto the top
25 KEGG pathways, and the disease–compounds–targets pathways network construction
was generated. The result showed that puerarin, quercetin, genistein, daidzein, and other
active ingredients in Pueraria lobata could participate in the AGE-RAGE signaling pathway,
insulin resistance, HIF-1 signaling pathway, FoxO signaling pathway, and MAPK signaling
pathway by acting on VEGFA, INS, INSR, IL-6, TNF and AKT1 (Figure 5b).
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5. Discussion

DM can be defined as the syndrome of thirst elimination (the syndrome of Xiao Ke)
in TCM, which is usually associated with Qi deficiency (Qi and blood) and Yin deficiency
(body fluid). Thus, the “Gan” (sweet taste) Chinese Herbal Medicines are often used to
relieve the syndrome [37–39]. Through network and data analysis of TCM prescriptions
for DM, it is found that Chinese herbal medicines, characterized as tonifying Qi and
Yin, which activate blood circulation to dissipate blood stasis, clear heat, and promote
fluid are more commonly used. In terms of the application frequency, Radix Astragali,
Rhizoma Dioscoreae, Salviae Miltiorrhizae, Rehmanniae Radix, and Pueraria lobata are the most
commonly used of the TCM [40–42]. In our work, a complete system pharmacological
approach was successfully applied to elucidate the molecular mechanism of Pueraria lobata
in the intervention of DM. A total 19 active components and 51 corresponding DM-related
targets were screened and selected, which mainly participated in 25 KEGG signaling
pathways related to DM. Through systematic analysis, puerarin, quercetin, genistein, and
daidzein of Pueraria lobata could mainly stimulate a majority of the specific procedures such
as insulin secretion, improving insulin resistance, regulating the generation of glycogen
and inflammatory cytokines, and improving endocrine metabolism, to achieve the effect of
treating DM.

Long-term and persistent hyperglycemia increases the risk of cardiovascular, ocular,
renal, and neurological diseases in diabetic patients. Among the complications, diabetic
cardiomyopathy, diabetic nephropathy, and diabetic retinopathy are more common. The
AGE-RAGE signaling pathway is considered to be the important step in the occurrence
and development of diabetic nephropathy, and NF-kB, TGF β1, VEGF and MCP-1 are
considered to be the key factors involved in the pathway and play a direct or indirect
role [43–45]. Hypoxia-inducible factor HIF-1, including HIF-1α and HIF-1β, is an important
factor widely present in the cell hypoxia environment, which plays diverse roles in different
stages of diabetic nephropathy. In the early stage, HIF-1α can promote angiogenesis
and improve the microcirculation of renal blood vessels by regulating EGF and VEGF.
However, with the continuous progression of the disease, hyperglycemia inhibits the
production of HIF-1α and increases the expression of ET-1, which leads to renal fibrosis.
The protective effect of HIF-1 on the kidney is weakened, and the effect of cell apoptosis
becomes visible [46–48]. FoxO1, a fork-head box transcription factor in the FoxO family, can
cause oxidative stress, glucose and lipid metabolism disorders, inflammation, cell apoptosis,
and other changes in cardiac structure and metabolism, thus playing an important role
in the pathogenesis of diabetic cardiomyopathy [49,50]. VEGFA, a ligand of VEGFR2,
is the most widely studied factor related to diabetic retinopathy. In the late stage of
diabetic retinopathy, it can promote the proliferation of endothelial cells and participate
in the pathological growth of new blood vessels [51–53]. Finally, in our present study,
it was reasonable to believe that Pueraria lobata could improve the progression of diabetic
cardiomyopathy, nephropathy, and retinopathy by interfering in MAPK, AGE-RAGE, HIF-
1, and other signaling pathways through VEGFA, IL-6, MCP-1, FN, VCAM1, ICAM1, and
NOS3. These findings were helpful to provide a theoretical basis for the treatment of DM
and its complications with Pueraria lobata.

Among the signaling pathways associated with DM, insulin resistance plays an im-
portant role in the pathogenesis of DM. Insulin binding to the insulin receptor is the first
step of signal transduction, while the active IRS protein can recruit and activate a vari-
ety of signal transduction proteins, which mediates the signal transduction effects such
as IRS and IGF. Meanwhile, the PI3K signaling pathway exerts important effects on the
pathogenesis of DM and its complications. PI3K, a lipid kinase, which can be activated
by the regulatory subunit of PI3K (P85) binding to IRS, plays a key role in promoting the
production of PIP, PIP2, or phosphatidylinositol triphosphate (PIP3), which are consid-
ered to be the second messengers of insulin and other growth factors. Particularly, PIP3,
an important mediator of PI3K-dependent biological effects of insulin, directly binds to
downstream signaling molecules of PI3K and regulates a variety of signal transductions
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such as exposing phosphorylation sites, forming specific signal complex by promoting
the target molecules to gather to the cell membrane and regulating the catalytic activity.
Phosphoinositide 3-dependent kinase (PDK, both PDK1 and PDK2) and protein kinase
B (PKB) make up downstream PI3K signaling molecules. PKB is a key molecule in the
PI3K signaling pathway, and can be activated by the phosphorylation of PDK1 and PDK2.
Furthermore, PKB can participate in a lot of biological procession such as glycogen and
protein synthesis, inhibition of apoptosis, glucose transport, and mediate in the survival
pathway of β cells, which is closely related to the growth, proliferation, and apoptosis of β
cells [54,55]. The results of pathway enrichment in our study also indicated that Pueraria
lobata could play a key role in the occurrence of DM and its complications, by intervening
with the PI3K signal pathway and the insulin signal transduction pathway.

In conclusion, our study illuminated that the possible targets of the active ingredients
of Pueraria lobata intervened in the related signaling pathways for DM. Preliminarily,
we clarified the synergistic effects of ingredient-target-diabetes, which could provide
the material basis of anti-diabetic and anti-inflammatory effects of Pueraria lobata as a
hypoglycemic food.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9071245/s1, Figure S1: the base peak chromatogram of positive and negative ions and the
composition of the chemical metabolites, Figure S2: the common targets of ingredients and DM. The
statistical bar chart of proteins with degree values greater than 12, Table S1: a total of 256 chemical
ingredients of Pueraria lobata.
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