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Abstract: This work studies how morphology (i.e., the shape of a structure) and topology (i.e., how
different structures are connected) influence wall adsorption and capillary condensation under tight
confinement. Numerical simulations based on classical density functional theory (cDFT) are run
for a wide variety of geometries using both hard-sphere and Lennard-Jones fluids. These cDFT
computations are compared to results obtained using the Minkowski functionals. It is found that
the Minkowski functionals can provide a good description of the behavior of Lennard-Jones fluids
down to small system sizes. In addition, through decomposition of the free energy, the Minkowski
functionals provide a good framework to better understand what are the dominant contributions
to the phase behavior of a system. Lastly, while studying the phase envelope shift as a function of
the Minkowski functionals it is found that topology has a different effect depending on whether the
phase transition under consideration is a continuous or a discrete (first-order) transition.

Keywords: capillary condensation; sorption; Lennard-Jones; porous materials; Minkowski function-
als; topology; phase behavior; tight confinement; cDFT

1. Introduction

Under tight confinement, a gas can form a condensed phase at a pressure below
the bulk vapor pressure. This phenomenon is known as capillary condensation and has
applications in many fields of science and engineering, including the storage of hydrogen
carriers [1–3], battery technology [4], hydrocarbon extraction from unconventional reser-
voirs [5], and carbon dioxide sequestration [6]. Capillary condensation can have a large
effect on transport properties, including effective diffusion coefficients [7], imbibition [8],
and mass flow rates [9], and it is reported in the literature that both morphology (i.e., the
shape of a structure) and topology (i.e., how different structures are connected) have a
strong effect on the sorption of both sub- and supercritical fluids [2,10,11]. For ordered
porous media, the relation between capillary condensation and geometry is well under-
stood [12]; however, in practice, many porous media are disordered rather than ordered. To
get a better understanding of capillary condensation in disordered porous media, simple
geometries like cylinders, slit pores, ink bottles, and spheres [13,14] have been studied
extensively. Unfortunately, topology is generally not considered in these model systems
and, because there is no well-defined geometrical parameter space, the results of these
studies are difficult to compare with each other. As a consequence, it is still not well
understood how phase transitions in porous media are affected by topology [14–19].

In this work, we study the effect of topology on capillary condensation and wall
adsorption under confinement (i.e., small pores) through the lens of the Minkowski func-
tionals. The aim is to develop a description of phase behavior under confinement that is
universally valid, independent of the details of the pore structure under consideration. The
Minkowski functionals are a concept from integral geometry which not only characterize
the morphology, but also the topology of spatial patterns [20]. They have been applied in
a wide array of research areas including astronomy [21,22], statistical physics [23], phase
behavior [24], granular materials [25,26], and porous media [27,28]. For a system in D
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dimensions, there are D + 1 Minkowski functionals and in the case of a two-dimensional
system, these functionals are related to the surface area, circumference, and signed curva-
ture (i.e., the Euler characteristic) of the system [29]. A central component of the Minkowski
functionals framework is Hadwiger’s theorem [30]. It states that in many cases, the free
energy of a system, or any other functional, can be expressed as a linear combination of
Minkowski functionals [30,31], thus decoupling the thermodynamical behavior of a system
from its morphology and topology. This has two important consequences: (i) Characteri-
zation and classification; when the assumptions of Hadwiger’s theorem are fulfilled, the
Minkowski functionals provide a complete spatial description of a physical system. This
means that they provide a finite well defined geometrical parameter space that allows for
the direct comparison of the results of different studies using different geometries. (ii) Scale
translation; as mentioned above, the Minkowski functionals allow for the separation of
the thermodynamics of a system from its geometry. This makes it possible to perform
a simulation of a small system with known Minkowski functionals, compute the linear
coefficients for various thermodynamic properties, and use these to derive the properties
of a much larger system with known Minkowski functionals. In addition, this also implies
that simple geometries can be used to represent complex geometries.

To study fluids under confinement, the Minkowski functionals have been used in
combination with both hard-sphere fluids [31] and more complex force fields in conjunction
with molecular dynamics [32]. Building on the work of König et al. [31], this study looks at
the efficacy of using the Minkowski functionals to describe the behavior of Lennard-Jones
fluids under confinement. A Lennard-Jones potential is more realistic than a hard-sphere
potential for many applications. However, the interaction length of a Lennard-Jones fluid is
much longer than the interaction length of a hard-sphere fluid and can become of the same
order as the pore size. This can result in the breakdown of Hadwiger’s theorem. Minkowski
functionals can be used in combination with experiments, theory, or simulations. In this
work, classical density functional theory (cDFT) is employed [33] to compute the free energy
and adsorption of a Lennard-Jones fluid for a wide variety of geometries. This simulation
technique is commonly used to study capillary condensation and wetting [34–37] and
can capture larger length scales than molecular dynamics simulations. The Minkowski
functionals are fitted to the cDFT results to study how well they can describe the complex
phase behavior of a Lennard-Jones fluid under tight confinement.

We find that Minkowski functionals can provide a good description of Lennard-Jones
fluids down to fairly small system sizes. In addition, it is found that topology has a different
effect on the phase envelope shift of a Lennard-Jones fluid under confinement depending
on whether the phase transition under consideration is a continuous or discrete (first-order)
transition. The reason behind this intriguing behavior is still under active investigation.

2. Theory
2.1. Minkowski Functionals

The Minkowski functionals are a concept from integral geometry. These functionals
characterize both the morphology and the topology of a spatial pattern [38,39]. For a D
dimensional space, there are D + 1 functionals. Considering a 2D system with a surface, X,
and a smooth boundary, δX, the following functionals can be defined:

M0(X) =
∫

δX
dA = A(X)

M1(X) =
1
2

∫
δX

dL = C(X)

M2(X) =
1
2

∫
δX

k(X)dL = K(X)

(1)

where A(X) is the total surface area, dA, a surface element, C(X), the total circumference,
dL a circumference element, K(X), the total signed curvature, and k(X) is the local signed
curvature [40]. Following the Gauss–Bonnet theorem, in the absence of geodesic curvature,
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the signed curvature is directly proportional to the Euler characteristic, χ, which is a
measure of connectivity/topology. Now consider a functional,M(X), which is additive:

M(X1 ∪ X2) =M(X1) +M(X2)−M(X1 ∩ X2), (2)

motion invariant:
M(gX) =M(X), (3)

and continuous:
M(Xn)→M(X) if: Xn → X for: n→ ∞. (4)

Then, following Hadwiger’s theorem [30], this functional,M(X), can be expressed as
a linear combination of Minkowski functionals, Mν(X), as follows:

M(X) =
d

∑
ν=0

cν Mν(X). (5)

Additivity implies that the functional of the domain consisting of both X1 and X2
is equal to the sum of the functionals of the individual domains X1 and X2, minus the
boundary. Motion invariance signifies that the value of the functional is independent of
the translation or rotation of the domain X. Lastly, continuity means that as a series of
domains Xn converges to domain X, the functional of the series Xn should converge to the
functional of X as well. An example of such a functional is the grand potential or Landau
free energy, Ω(µ, V, T), which is commonly used to study capillary condensation [41,42].
For a 2D system, the grand potential can thus be written as [20]:

Ω(X)

L
= −p(µ, T)A(X) + σ(µ, T)C(X) + κ(µ, T)K(X), (6)

where L is a unit length perpendicular to the 2D system, p(µ, T) is the average local
pressure, σ(µ, T) is the surface tension between the liquid and the wall, and κ(µ, T) is the
signed bending rigidity. The above expression for the grand potential demonstrates the
importance of Hadwiger’s theorem. The pressure, surface tension, and signed bending
rigidity are all only dependent on the chemical potential, µ, and the temperature, T. Thus,
the above equation shows how thermodynamics can be separated from morphology and
topology [31]. Once the grand potential is known, other thermodynamic properties can be
derived. This includes the excess free energy or surface tension [13,43]:

γ =
(Ω/L + pb A)

C

= (pb(µ, T)− p(µ, T))
A(X)

C(X)

+ σ(µ, T) + κ(µ, T)
K(X)

C(X)
, (7)

and, through Gibbs’ theorem, the excess adsorption:

−Γex =
1
C

∫
ρb − ρ(r) dA =

(
∂γ

∂µ

)
T,V

=
∂

∂µ
(pb − p(µ, T))

A(X)

C(X)

+
∂σ

∂µ
+

∂κ

∂µ

K(X)

C(X)
. (8)

In the above equations, pb is the bulk pressure and ρb is the bulk density. While it has
been suggested in the past that Gibbs’ theorem is not valid for some systems undergoing
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capillary condensation [34,41], later work found that Gibbs’ theorem is not violated when
using an arc length tracking algorithm [13,44].

In addition to the excess adsorption, one can also compute the effect of confinement
on the phase envelope [43]:

∆p(µ, T) = σ′lg(µ, T)
C(X)

A(X)
+ κ′lg(µ, T)

K(X)

A(X)
, (9)

with:

σ′lg(µ, T) = σsg(µ, T)− σsl(µ, T), (10)

κ′lg(µ, T) = κsg(µ, T)− κsl(µ, T), (11)

where σsg(µ, T) and σsl(µ, T) are the solid-gas and solid-liquid surface energies, respec-
tively, and κsg(µ, T) and κsl(µ, T) are the solid-gas and solid-liquid bending rigidities. The
above equation is a generalization of the Kelvin equation, and an equation of the same form
can be derived for the temperature shift [45]. Two points should be noted about the above
equation: (i) due to diverging density fluctuations, a mean field approach is not expected
to fully capture the correct scaling at the critical point [46], and (ii) the correlation length
that measures the range of density fluctuations at the critical point also diverges, resulting
in a potential violation of Hadwiger’s theorem. When the characteristic interaction length
scale becomes of the same order as the system size it is no longer additive. However, while
these points need to be investigated further, the above equation should give a good first
approximation of how phase behavior is affected by topology.

3. Methods
3.1. Density Functional Theory

The Minkowski functionals can be used with either experiments, theory, or simu-
lations. In this work, classical density functional theory (cDFT) is used to compute the
coefficients in front of the Minkowski functionals. DFT is a mean field approach that was
first developed for quantum mechanics [47] but was later adapted to describe classical
mechanical systems [33] as well. This mean field approach has the advantage of giving
a description of the physics at the nanoscopic molecular level while scaling up to the
mesoscopic level at which capillary condensation occurs.

The two basic assumptions of density functional theory are (i) the Hohenberg-Kohn
variational principle, which states that there is a functional of the ground state free energy
which can be fully recovered from the ground-state one-particle density distribution, and
(ii) the Gibbs’ inequality, which states that any particle density distribution that is not
the ground state will have a higher free energy than the ground state free energy [47].
Formulated in the grand canonical (µ,V,T) ensemble, at the most basic level this means
that classical DFT solves the following minimization problem:

δΩ
δρ(r)

= 0, (12)

where Ω is the grand potential or Landau free energy, ρ is the density, and δ is the Fréchet
(functional) derivative [48]. To solve the above equation, we use the cDFT solver Tramonto,
which is developed at the Sandia National Laboratories [13,44,48–50]. This code uses
perturbation theory where the grand potential is split up as:

Ω = Fid + Fhs + Fp −
∫

drρ(r)[V(r)− µ], (13)
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where Fid is the ideal contribution, Fhs is the hard-sphere contribution, and Fp is the
perturbation contribution. V(r) is the external potential resulting from (pore) walls acting
on the fluid. The individual contributions are given by the following integrals:

Fid = β−1
∫

drρ(r)
{

ln
[
Λ3ρ(r)

]
− 1
}

(14)

Fhs =
∫

drΦ{ρ̄γ(r)} (15)

Fp =
1
2

∫
dr
∫

r′ρ(r)ρ
(
r′
)
Up
(
|r− r′|

)
. (16)

In the above equations, β−1 = kBT, with kB the Boltzmann constant, and T the
temperature, Λ is the thermal de Broglie wavelength, Φ is the excess free energy density
which is a function of ρ̄γ, a set of weighted non-local densities, and Up is an interaction
potential. This potential is based on the Weeks-Chandler-Anderson approach [51], which
splits an interaction potential as Up(r) = u(rmin) for r < rmin and Up(r) = u(r) for r ≥ rmin.
The potential u(r) is a cut and shifted Lennard-Jones potential with u(r) = uLJ(r)− uLJ(rc),
where:

uLJ(r) = 4εff

[(σff
r

)12
−
(σff

r

)6
]

, (17)

and rc = σff. Here εff is the depth of the potential well and σff is the finite distance at which
the potential is zero. In this work, the Fundamental Measure Theory (FMT) is used with
the White Bear functional [52]. The weighted non-local densities are:

ρ̄γ(r) =
∫

dr′ρ
(
r′
)
w(γ)

(
|r− r′|

)
, (18)

with the weight functions:

w(3)(r) = θ(r− R), (19)

w(2)(r) = 4πRw(1)(r) = 4πR2w(0)(r)
= δ(r− R), and (20)

w(V2)(r) = 4πRw(V1)(r) = (1/r)δ(r− R). (21)

The excess free energy density is given by Φ = Φs + Φv with:

Φs = −ρ̄0 ln (1− ρ̄3) +
ρ̄1ρ̄2

1− ρ̄3
, and (22)

Φv = − ρ̄V1 · ρ̄V2

1− ρ̄3
+

1
36πρ̄2

3(1− ρ̄3)2
×(

ρ̄2 −
ρ̄V2 · ρ̄V2

ρ̄2

)3(
ρ̄3 + (1− ρ̄3)

2 ln (1− ρ̄3)
)

. (23)

The last term that needs to be defined is the external potential, V(r), which is de-
fined as:

V(r) = ρs

∫
drsvLJ(|r− rs|)− vLJ(rc), (24)

where the integral is taken over all elements assigned to the (pore) wall. The potential
vLJ(r) is the same as the Lennard-Jones potential defined in Equation (17), but with εff
replaced with εsf and σff replaced with σsf. More details about the discretization of the
above equations, their numerical implementation, and how to solve them in parallel can
be found in the literature [13,44,48–50]. Phase transitions are tracked using the pseudo arc
length continuation algorithm of Keller [44,53] which has been implemented in the LOCA
software library [54].
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3.2. Geometries

As mentioned in the introduction, the Minkowski functionals framework allows for
the separation of thermodynamics and geometry. Therefore, one can study a problem
using simple geometries and extrapolate the results to complex geometries with known
Minkowski functionals. Figure 1 shows these various 2D geometries and topologies. Along
the vertical axis, the various shapes show cross-sections of pores with different radii, rp.
Along the horizontal axis rods with radius rr = 1.0 (≈0.36 nm) are placed inside the
pores to modify the Euler characteristic χ. While these specific pores may or may not
be found in nature or technology, they represent any material with a similar topology.
Materials with a negative Euler characteristic are common in nature [55,56]. A negative
Euler characteristic indicates that the pore space is multiple times connected. The various
2D Minkowski functionals associated with the surface area, circumference, and signed
curvature, respectively, can be computed with the following set of equations:

A = π r2
p − nrπ r2

r , (25)

C = π rp + nrπ rr, (26)

K = π − nrπ , (27)

where nr is the number of rods inside the pore. As mentioned in Section 2.1, for the
Minkowski functionals to accurately capture the physics of capillary condensation, the
conditions in Hadwiger’s theorem need to be met. Considering that for very small pores
the characteristic interaction length between molecules becomes of the same order as the
pore size, the additivity constraint (Equation (2)) is expected to break down first. In the
literature it is reported that an error of about 1% is found when the system size becomes of
the order of ≈10σff, where σff is the characteristic length scale of the interaction potential
between molecules [31]. For the pores in gray in Figure 1 the minimum distance between
the walls of the pore and/or the rods inside the pore is smaller than this distance, and
Hadwiger’s theorem is expected to break down. Another potential source of error is that
Hadwiger’s theorem applies to convex geometries while the pores are concave.

rp = 1.0
rp = 2.5

rp = 5.0

rp = 7.5

rp = 10.0

rp = 15.0

rp = 25.0

χ = 1 χ = 0 χ = −1 χ = −2 χ = −3 χ = −4 χ = −5

Figure 1. The various 2D geometries and topologies used in the simulations. Along the vertical axis, the various shapes
show the cross-section of pores (i.e., disks) with different radii, rp. Along the horizontal axis, rods (i.e., small disks) with
radius rp = 1.0 (≈0.36 nm) are placed inside the pores to modify the Euler characteristic, χ. The open-pore space is colored
white and gray. The pores in gray are simulation cases where the distance between walls of either the pores or the rods are
smaller than ≈10σff, which is the distance at which Hadwiger’s theorem starts to break down [31].
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3.3. Simulation Parameters

Existing literature has focused on the behavior of hard-sphere fluids [31] and TraPPE
force fields [32]. In this work, classical density functional theory (cDFT) simulations
have been performed for a Lennard-Jones fluid. The combination of a Lennard-Jones
potential with cDFT allows for more complex behavior than a hard-sphere potential, while
also reducing the need for computational resources compared to the TraPPE force fields
combined with molecular dynamics simulations.

Table 1 shows the parameters used in the cDFT simulations. Because it is a commonly
used model system [57–59], the Lennard-Jones fluid is parameterized as Nitrogen in
Vycor glass. The parameters are the same as those used by Ravikovitch et al. [60] and
Ustinov et al. [35] and are very similar to the parameters used by Gelb & Gubbins [61] in
their grand canonical Monte Carlo simulations of nitrogen in Vycor glass. Figure 2 shows a
comparison between cDFT simulations and experiments [62] for the adsorption isotherm of
N2 in a SiO2 slit pore with a width of L/σff = 500. The results confirm that the parameters
listed in Table 1 are a reasonable choice. With more advanced models for the interaction
between N2 and SiO2, a better match can be obtained between cDFT simulations and
experiments [35,60]. However, the choice of the same potential for particle-particle and
wall-particle keeps the system simple and the results easier to interpret. The computations
are performed in the grand canonical (µ, V, T) ensemble and the relation between the
chemical potential and pressure is obtained from a bulk cDFT simulation. Since the pore
space is in equilibrium with the bulk, both the temperature and chemical potential are
constant throughout the system [63].

0 0.2 0.4 0.6 0.8 1

0

2

4

p/p0

α
s

Jaroniec et al. [58]
DFT

Figure 2. Comparison between experiments [62] and the cDFT simulations for the adsorption
isotherm of N2 in a SiO2 slit pore with a width of L = 500σff. The chosen wall potential does not fully
capture the interactions between N2 and SiO2, but the results show a good match. This confirms that
the used parameters shown in Table 1 are a reasonable choice.

Table 1. cDFT parameters of N2 and SiO2 [60]. The number density for SiO2 is ρs = 66.15 nm−3 [35].
Fluid-fluid interactions are truncated at 5σff. The simulations are performed at 77.3 K.

εff/kB σff dHS εsf/kB σsf
[K] [nm] [nm] [K] [nm]

N2 94.45 0.3575 0.3575 147.3 0.317

3.4. Minkowski Coefficients

To compute the Minkowski coefficients, p(µ, T), the local pressure, σ(µ, T), the surface
tension between the liquid and the wall, and κ(µ, T) the signed bending rigidity, for a
given temperature, T, and chemical potential µ, one needs to know the grand potential
and Minkowski functionals for three different geometries. To improve accuracy, cDFT
simulations are performed for all geometries shown in Figure 1 and one set of coefficients
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is computed by performing a least-squares fit to all the simulation data. Any simulation
technique or theory that computes free energy can thus be used in combination with the
Minkowski functionals. For experiments, the excess adsorption can be measured instead.

4. Results

In this section, the results for the Lennard-Jones fluid cDFT simulations are presented,
and how these results can be described using the Minkowski functionals. All the parameters
have been made dimensionless with kbT and σff. An overview of the various dimensionless
variables is shown in Table 2.

Table 2. An overview of the dimensionless variables used in the results section. “ ˆ ” denotes the
dimensional equivalent of a dimensionless variable. In addition, kb is the Boltzmann constant,
σff = 0.3575 nm, T = 77.3 K, and L is one dimensionless unit length.

Description Symbol Dimensionless Definition

Distance length ˆlength/σff

Density ρ ρ̂σ3
ff

Grand potential Ω/L Ω̂ σff/L̂ kbT
Excess adsorption Γ/L Γ̂σff/L̂
Chemical potential µ µ̂/kbT
Pressure p p̂σ3

ff/kbT
Surface tension σ σ̂σ2

ff/kbT
Bending rigidity κ κ̂σff/kbT
Pseudo pressure p′ p̂′ σ2

ff/kbT
Pseudo surface tension σ′ σ̂′ σ7/4

ff /kbT

Figure 3 shows some typical results of our cDFT simulations; it shows the 2D dimen-
sionless free energy Ω/L as a function of the dimensionless chemical potential, µ, for χ = 1.
For a pore with radius rp = 25 (≈9 nm) three different regimes can be identified. Initially,
when the chemical potential is very low, the pore is completely empty. At about µ ≈ −10
(≈−0.067 eV) a phase transition can be observed, which marks the onset of gas adsorption
on the pore wall. Eventually, at about µ ≈ −6 (≈−0.040 eV) another phase transition can
be observed, which is the capillary condensation phase transition. Consistently with the
literature, the capillary condensation phase transition in this 2D system is a first-order
phase transition [46]. It is marked by a van der Waals loop in the grand potential and a
jump in the excess adsorption as function of the chemical potential [45].

The three different regimes are also identified in the literature [13,46]. The two phase
transitions are shown in more detail in Figure 3a–d. In Figure 3a the derivative of the free
energy changes continuously, suggesting that the adsorption of gas on the pore wall is a
continuous phase transition. Figure 3d shows the matching divergence of the derivative
of the excess adsorption. In Figure 3b the derivative of the free energy changes abruptly,
indicating a discrete (first-order) phase transition. Figure 3d shows the matching jump in
the excess adsorption. Consistently with the literature, as the pore radius becomes smaller
the phase behavior changes [64]. For pores smaller than rp = 7.5 (≈2.7 nm) the discrete
phase transition can no longer be observed and becomes continuous instead.
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−16 −14 −12 −10 −8 −6 −4
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×103
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/
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r = 1.0 r = 5.0 r = 10.0 r = 25.0

r = 2.5 r = 7.5 r = 15.0

−5.6 −5.55 −5.5

5

10

15

20 (c)

µ

Γ
/
L

−9.75 −9.25 −8.75
0

1

2

3 (d)

µ

∂
(Γ

/
L
)/
∂
µ

−9.75 −8.75

0

−0.1

−0.2

×102

(a)

−5.6 −5.5

−5.5

−5

×102

(b)

Figure 3. Dimensionless 2D grand potential, Ω/L, as a function of the dimensionless chemical
potential, µ, for a Lennard-Jones fluid. Only the cDFT simulation results when χ = 1 are shown.
Inset (a) shows the continuous phase transition which marks the onset of gas adsorption onto the
wall. Panel (d) shows the corresponding diverging derivative of the excess adsorption. Inset (b)
shows the discrete (first-order) capillary condensation phase transition. Panel (c) shows the matching
jump in the dimensionless excess adsorption.

The continuous and discrete phase transitions are now further analyzed using Equa-
tion (9), which describes the phase envelope shift as a function of the Minkowski functionals.
By only selecting geometries with K(X) = 0, one can evaluate the coefficient σ′lg. Figure 4
shows the dimensionless pressure difference between the continuous phase transition
associated with adsorption of gas onto a wall in the bulk and inside a pore times the surface
area Minkowski functional, ∆pw · A(X), for K(X) = 0 [46]. This pressure difference can
be predicted well by the function: fw(C3/4) = Ωlg + σ′lgC3/4, where the coefficients are:

Ωlg = −8.3× 10−3 ± 0.1× 10−3 and σ′lg = 1.538× 10−3 ± 0.008× 10−3. The discrepancy
between the power of 3/4 and the theoretical prediction of 1 shows how, due to the small
system size, Hadwiger’s additivity assumption starts to break down. Excluded volume
effects keeping molecules away from the wall could be another potential source of error.

To find the value of κ′lg and to validate how well the function fw(C3/4) describes the
data, Figure 5 shows the pressure difference, ∆pw, times the surface area Minkowski func-
tional minus the function fw(C3/4), ∆pw · A(X)− fw(C3/4), as a function of the Minkowski
functional, K(X). The graph shows a collapse of the data and, as expected, a linear fit with:
gw(K) = κ′lgK(X), where κ′lg = 4.6× 10−4 ± 0.2× 10−4. The collapse of the data confirms
that the grand potential and thus the continuous pressure shift in the phase envelope
times the surface area Minkowski functional, ∆pw · A(X), is proportional to C3/4(X) and
is linearly dependent on the topology of the system K(X). In addition, the data shows that
the sensitivity of the pressure shift, ∆pw, to topology is about an order of magnitude smaller
than the sensitivity to the pseudo surface tension, σ′lg. The outlier, rp = 2.5 (≈0.9 nm),
χ = 1, confirms the breakdown of Hadwiger’s theorem for small pore sizes.
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Figure 4. Dimensionless pressure difference between the continuous phase transition associated
with adsorption of gas onto a wall in the bulk and inside a pore times the surface area Minkowski
functional, ∆pw · A(X), as function of circumference Minkowski functional, C(X). The Minkowski
functional for topology is zero in all the shown simulations, K(X) = 0. The curve fit is equal
to: fw(C3/4) = Ωlg + σ′lgC3/4, where the Minkowski functional C(X) only depends on rp. The

coefficients are: Ωlg = −8.3 × 10−3 ± 0.1 × 10−3 and σ′lg = 1.538 × 10−3 ± 0.008 × 10−3. In
dimensional form, from left to right the pressure differences are 1.8 kPa, 1.3 kPa, 1.0 kPa, 0.69 kPa,
and 0.40 kPa.
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Figure 5. Dimensionless pressure difference between the continuous phase transition associated
with adsorption of gas onto a wall in the bulk and inside a pore times the surface area Minkowski
functional minus the function from Figure 4, ∆pw · A(X)− fw(C3/4), as function of the Minkowski
functional, K(X). The graph shows a collapse of the data and a linear fit with: gw(K) = κ′lgK(X),

where κ′lg = 4.6× 10−4 ± 0.2× 10−4.



Processes 2021, 9, 1220 11 of 21

A similar analysis can be performed for the phase envelope shift of the discrete
capillary condensation phase transition. Figure 6 shows the pressure difference between
the capillary condensation pressure and the bulk phase transition pressure times the surface
area Minkowski functional, ∆p · A(X), as a function of pore radius, rp. Because the rod
size is constant across different simulations, the Minkowski functionals A(X) and C(X)
can be expressed as a function of only the pore radius rp for constant bending rigidity,
K(X). The Minkowski functional for topology is zero in all the cDFT simulations shown
in Figure 6, K(X) = 0. The curve fit is equal to: f (C3/4, A1/2) = Ωlg + σ′lgC3/4 + p′lg A1/2,
where the Minkowski functionals C(X) and A(X) only depend on rp. The coefficients are:
Ωlg = −0.4± 0.2, σ′lg = 0.12± 0.03, and p′lg = −0.04± 0.02.

5 10 15 20 25

0.5

1

rp

∆
p
·A

(X
)

DFT, K (X) = 0

f(C3/4, A1/2)

Figure 6. Dimensionless pressure difference between the capillary condensation pressure and bulk
phase transition pressure times the surface area Minkowski functional, ∆p · A(X), as a function of
pore radius, rp. The Minkowski functional for topology is zero in all the shown simulations, K(X) = 0.
The curve fit is equal to: f (C3/4, A1/2) = Ωlg + σ′lgC3/4 + p′lg A1/2, where the Minkowski functionals
C(X) and A(X) only depend on rp. The coefficients are Ωlg = −0.4± 0.2, σ′lg = 0.12± 0.03, and
p′lg = −0.04± 0.02. In dimensional form, from left to right the pressure differences are 97 kPa, 69 kPa,
49 kPa, 29 kPa, and 15 kPa.

To find the value of κ′lg and to validate the data fit shown in Figure 6, Figure 7
shows the pressure difference, ∆p, times the surface area Minkowski functional minus
the function from Figure 6, ∆p · A(X) − f (C3/4, A1/2), as a function of the Minkowski
functional, K(X). The graph shows a collapse of the data and, as predicted by theory, a
linear fit with: gw(K) = κ′lgK(X), where κ′lg = 4.6× 10−4 ± 0.2× 10−4. The collapse of
the data into one single line, confirms that the pressure difference times the surface area
Minkowski functional, ∆p · A(X), is proportional to C3/4(X), A1/2(X), and K(X). The
fitting parameters σ′lg and p′lg show that the difference between the capillary condensation
pressure and the bulk phase transition pressure is the most sensitive to changes in the
pseudo surface tension, σ′lg, and the pseudo pressure, p′lg. The sensitivity to topology
changes, represented by the parameter κ′lg, is much smaller. The outlier, rp = 10.0 (≈3.6 nm),
χ = −3, is a system where the topology change compared to, χ = 1, caused an additional
phase transition to occur.
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Figure 7. Dimensionless pressure difference between capillary condensation pressure and bulk phase
transition pressure times the surface area Minkowski functional minus the function from Figure 6,
∆p · A(X)− f (C3/4, A1/2), as a function of the Minkowski functional, K(X). The graph shows a
collapse of the data and a linear fit with: g(K) = κ′lgK(X), where κ′lg = −0.041± 0.002.

Surprisingly, Figures 5 and 7 show that the phase envelope shift dependence on
topology is different depending on whether the phase transition is a discrete first-order or
a continuous phase transition. In the case of gas adsorbing onto the pore wall, adding rods
to the system decreases the pressure shift in the phase envelope. In the case of the discrete
capillary condensation phase transition adding rods to a pore increases the pressure shift.
What is behind this behavior and what happens when the discrete capillary condensation
phase transition turns into a continuous phase transition at the critical pore radius is a
topic for further research. In addition, the physical meaning of the pseudo pressure and
the pseudo surface tension needs to be investigated further.

Like Figure 3, Figure 8 shows the dimensionless 2D grand potential, Ω/L, as a func-
tion of the dimensionless chemical potential, µ. Only the simulation results with Euler
characteristic, χ = 1, are shown. The different lines show the results of the cDFT simu-
lations while the symbols show the grand potential reconstructed from the Minkowski
functionals and one set of Minkowski functional coefficients: pressure, p(µ, T), surface
tension, σ(µ, T), bending rigidity, κ(µ, T), and the pseudo pressure and surface tension
terms p′(µ, T) and σ′(µ, T). The terms p′(µ, T)A1/2(X) and σ′(µ, T)C(X) are added to
the expansion of the grand potential based on the analysis of the phase behavior above.
Both these terms are in effect circumference (surface) terms. While for a pore with Euler
characteristic χ = 1, A1/2(X) ∝ C(X), these two contributions diverge for χ 6= 1. Adding
the term p′(µ, T)A1/2(X) to the expression for the grand potential significantly reduced
the error in the Minkowski functional fit compared to only having a contribution from the
circumference, C(X).
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Figure 8. Dimensionless 2D grand potential, Ω/L, as a function of the dimensionless chemical
potential, µ, for a Lennard-Jones fluid. Only the simulation results when χ = 1 are shown. The
different lines show the results of the cDFT simulations while the symbols show the grand potential
as reconstructed from the Minkowski functionals and one set of Minkowski functional coefficients:
pressure, p(µ, T), surface tension, σ(µ, T), bending rigidity, κ(µ, T), and the pseudo pressure and
surface tension terms p′(µ, T) and σ′(µ, T).

The corresponding dimensionless Minkowski functional coefficients as a function of
the dimensionless chemical potential, µ, are shown in Figure 9a. It can be observed that
the pressure coefficient is very similar to the bulk pressure, pb. All coefficients show a
large peak around µ ≈ −6 (≈−0.040 eV) and the range of these peaks extends from about
−150 to 150. Before these peaks occur, the surface tension and bending rigidity terms show
very similar behavior. To get a better understanding of the behavior of a Lennard-Jones
fluid under confinement, one can analyze how much individual Minkowski functionals
contribute to the grand potential. In Figure 9b, the value of the Minkowski functional
coefficients times their corresponding Minkowski functionals is shown for a pore with
radius, rp = 25 (≈9 nm), and an Euler characteristic of, χ = −5. This analysis suggests that
the adsorption of gas onto the pore wall is dominated by the surface tension and the pseudo
pressure. When capillary condensation occurs, the surface tension and pseudo pressure
contributions both become discontinuous and show large increases. Also, the contribution
from the pseudo surface tension contribution becomes significant. After the bulk phase
transition, the system becomes increasingly dominated by the pressure. The contribution
from topology is the third largest, after the surface tension and the pseudo pressure.
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Figure 9. (a) Dimensionless Minkowski functional coefficients: pressure, p(µ, T), surface tension,
σ(µ, T), bending rigidity, κ(µ, T), and the pseudo pressure and surface tension terms p′(µ, T) and
σ′(µ, T), as a function of the dimensionless chemical potential, µ. These are the values of the
coefficients that are used in Figure 8 to reconstruct the grand potential as a function of the chemical
potential. The pressure coefficient is very similar to the bulk pressure, pb. (b) Contribution of the
Minkowski functional coefficients to the grand potential as a function of the dimensionless chemical
potential for a pore size of rp = 25 (≈9 nm) and an Euler characteristic of χ = −5.

Figure 10 shows the average absolute relative error, < |εΩ| >, as a function of the
square root of the minimal characteristic length scale of the system,

√
lmin. The average

absolute relative error is defined as:

〈|εΩ|〉 =
〈∣∣∣∣ΩcDFT −ΩMink

ΩcDFT

∣∣∣∣〉
µ

, (28)

where ΩcDFT is the grand potential computed using cDFT, and ΩMink is the reconstruction
of the grand potential using the Minkowski functionals. The error is averaged with respect
to the chemical potential, µ. Due to the longer interaction length of the Lennard-Jones
potential compared to the hard-sphere potential and the more complex phase behavior, the
observed error is larger than the error reported in the literature where an error of 1% is
found when the system size becomes of the order of ≈10σff [31]. While the cut-off length of
the interaction potential is equal to 5σ in the cDFT simulations the Lennard-Jones potential
is almost zero at 2σ. One could therefore expect the error to be significantly less than 1% at
a system size of ≈50σff, which is indeed the case. This might be in part due to the addition
of the pseudo pressure and surface tension terms to the Minkowski functional expression
for the grand potential. For pores without rods, it can be observed that log (< |εΩ| >)
scales almost linearly with

√
lmin. However, this scaling does not hold for pores with rods.

Changing the topology of the system with rods does not have a large effect on the error,
< |εΩ| >, especially for smaller pores. The fact that, as shown above, the topology has a
smaller contribution to the grand potential than the various surface contributions could



Processes 2021, 9, 1220 15 of 21

partly explain this observation. The figure confirms the observation in Figure 8 that for
larger pores the fit of the Minkowski functional reconstruction of the grand potential is
much better than for smaller pores.
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Figure 10. Average absolute relative error < |εΩ| > as a function of the minimal characteristic length
scale of the system, lmin. In the case of a pore without rods, this distance is twice the radius. When
rods are present within the pore this is the smallest distance between the pore wall and a rod or
between two different rods.

The dimensionless 2D excess adsorption, Γ/L, as a function of the dimensionless
chemical potential, µ, for a Lennard-Jones fluid is shown in Figure 11. Again, only the
simulation results when χ = 1 are shown. The different lines show the results of the
cDFT simulations while the symbols show the grand potential as reconstructed from the
Minkowski functionals and one set of Minkowski functional coefficients: the derivatives of
pressure, ∂(p− pb)/∂µ, surface tension, ∂σ/∂µ, bending rigidity, ∂κ/∂µ, and the pseudo
pressure and surface tension terms ∂p′/∂µ and ∂σ′/∂µ with respect to the chemical poten-
tial. As is the case for the grand potential in Figure 8, different regimes can be identified in
Figure 11. For the pore size, rp = 25 (≈9 nm), the following regimes can be observed: (i)
at low chemical potential the pores are completely empty, (ii) starting at about µ ≈ −10
(≈−0.067 eV), a continuous phase transition can be observed and gas starts adsorbing on
the wall [46], (iii) at about µ ≈ −6 capillary condensation can be observed, and iv) around
µ ≈ −5 (≈−0.033 eV) the bulk phase transition occurs and the excess adsorption shows a
significant drop. The inset shows that for larger pores there is a very good match between
the cDFT computations and the Minkowski functional reconstructions. However, for the
smallest pores, the match is quite poor and neither the film adsorption stage nor capillary
condensation is captured well.
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Figure 11. Dimensionless 2D excess adsorption, Γ/L, as a function of the dimensionless chemical
potential, µ, for a Lennard-Jones fluid. Only the simulation results from Figure 1 when χ = 1
are shown. The different lines show the results of the cDFT simulations while the symbols show
the grand potential as reconstructed from the Minkowski functionals and one set of Minkowski
functional coefficients: the derivatives of pressure, ∂(p− pb)/∂µ, pressure per surface area, p′(µ, T),
surface tension, ∂σ/∂µ, bending rigidity, ∂κ/∂µ, and the pseudo pressure and surface tension terms
∂p′/∂µ and ∂σ′/∂µ with respect to the chemical potential.

The derivatives of the Minkowski functional coefficient with respect to the chemical
potential, µ, used to reconstruct the excess adsorption, can be observed in Figure 12a. This
plot confirms that the pressure term is very similar to the bulk pressure. The peaks at about
µ ≈ −10 (≈−0.067 eV) and µ ≈ −7 (≈−0.047 eV) are the locations of the continuous phase
transitions associated with layers of gas molecules adsorbing onto the pore wall. To be
able to analyze how the different terms contribute to the excess adsorption, in Figure 12b
the value of the Minkowski functional coefficients times their corresponding Minkowski
functionals is shown for a pore with radius rp = 25 (≈9 nm) and Euler characteristic of
χ = −5. Since these coefficients are derivatives of the coefficients used to reconstruct the
grand potential, they can be both positive and negative. The amount of gas adsorbed
onto the wall is dominated by the pseudo pressure and a negative contribution from
the surface tension. The pseudo surface tension only contributes during the continuous
phase transitions at about µ ≈ −10 (≈−0.067 eV) and µ ≈ −7 (≈−0.047 eV) . Capillary
condensation is characterized by a much larger contribution of the pseudo surface tension
and many discontinuities in all the different terms to accommodate the discontinuity of
a first-order phase transition. At this value of the Euler characteristic, topology does not
seem to contribute significantly to the excess adsorption.
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Figure 12. (a) Dimensionless Minkowski functional coefficients: the derivatives of pressure, ∂(p−
pb)/∂µ, pressure per surface area, p′(µ, T), surface tension, ∂σ/∂µ, bending rigidity, ∂κ/∂µ, and the
pseudo pressure and surface tension terms ∂p′/∂µ and ∂σ′/∂µ, with respect to the chemical potential.
These are the values of the coefficients that are used in Figure 11 to reconstruct the excess adsorption
as a function of the chemical potential. (b) Contribution of the Minkowski functional coefficients
to the excess adsorption for a pore with a radius of rp = 25 (≈9 nm) and an Euler characteristic of
χ = −5.

Figure 13 shows the average absolute relative error < |εΓ| > as a function of the
minimal characteristic length scale of the system, lmin. Because excess adsorption is a
derivative of the grand potential, the observed error is larger than in Figure 10. For pores
without rods, it can be observed that log (< |εΓ| >) scales almost linearly with lmin. Again,
this scaling does not hold for pores with rods. This is similar to what was observed in
Figure 10 which is probably at least partly caused by the limited contribution of topology
to the excess adsorption.



Processes 2021, 9, 1220 18 of 21

0 10 20 30 40 50
10−3

10−2

10−1

100

lmin

<
|ε Γ

|>

r = 1.0, χ = 1 r = 10.0, χ = 0 r = 25.0, χ = 1

r = 2.5, χ = 1 r = 10.0, χ = −1 r = 25.0, χ = 0

r = 5.0, χ = 1 r = 10.0, χ = −2 r = 25.0, χ = −1

r = 5.0, χ = 0 r = 10.0, χ = −3 r = 25.0, χ = −2

r = 7.5, χ = 1 r = 15.0, χ = 1 r = 25.0, χ = −3

r = 7.5, χ = 0 r = 15.0, χ = 0 r = 25.0, χ = −4

r = 10.0, χ = 1 r = 15.0, χ = −1 r = 25.0, χ = −5

Figure 13. Average absolute relative error < |εΓ| > as a function of the minimal characteristic length
scale of the system, lmin. In the case of a pore without rods, this distance is twice the radius. When
rods are present within the pore this is the smallest distance between the pore wall and a rod or
between two different rods. Because the excess adsorption is a derivative of the grand potential, the
observed error is larger than Figure 10.

5. Discussion & Conclusions

The effect of morphology and topology on capillary condensation is studied in a
systematic manner using a Minkowski functional framework. Compared to a hard-sphere
fluid, a Lennard-Jones fluid has a much longer interaction length and phase behavior
becomes much more complex. This results in larger errors in both the grand potential and
the excess adsorption, which can be partly overcome by introducing additional terms in the
expansion of the grand potential. Analyzing the contributions of the various Minkowski
functional coefficients to the grand potential shows that wall adsorption is dominated
by a surface-tension and a pseudo-pressure term, which is proportional to A1/2. During
capillary condensation, a pseudo surface tension term proportional to C3/4 also gains in
importance and this regime is characterized by large discontinuities in the coefficients
which match the discontinuities caused by capillary condensation. A similar analysis
of the coefficients contributing to the excess adsorption shows the pseudo pressure as a
positively contributing term to the wall adsorption and the surface tension as a negatively
contributing term. During capillary condensation, the pseudo surface tension term becomes
significantly more important. For both the grand potential and the excess adsorption the
effect of topology is modest.

Last but not least, the effect of confinement on phase behavior is investigated. It is
found that pressure shift in the continuous phase transition describing adsorption on the
pore wall is proportional to C3/4(X) and K(X), which is close to what is predicted based
on Hadwiger’s theorem. However, the pressure for the discrete first-order phase transition
describing capillary condensation is proportional to C3/4(X), A1/2(X) and K(X), which
is a deviation from theory. In addition, the discrete first-order phase transition and the
continuous phase transition have the opposite dependence on topology. In the case of gas
adsorbing onto the pore wall, adding rods to the system decreases the pressure shift in the
phase envelope. In the case of the discrete capillary condensation phase transition adding
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rods to a pore increases the pressure shift. Whether this is a finding which holds in general
for continuous and discrete phase transitions has to be investigated further.

The Minkowski functionals provide a useful framework to study capillary condensa-
tion. The separation of geometry and thermodynamics allows for a method to systemati-
cally study the effect of surface area, circumference, and the Euler characteristic on phase
behavior. This provides many opportunities for future research. One of the many open
questions is whether the different effect that topology has on continuous versus discrete
phase transitions is also found for Lennard-Jones fluids in 3D instead of 2D systems, or
even for phase transitions in general. Another question is whether it is possible to use
the Minkowski functionals for upscaling. The usage of higher order terms breaks the
additivity assumption. However, it might be possible to overcome this limitation by using
the Minkowski functions, the Minkowski functionals as a function of a threshold value,
e.g., the pore size [29]. The idea is to perform a number of simulations on different small
geometries with known Minkowski functions and to compute the Minkowski function
coefficients for the excess adsorption. These coefficients are then used to predict the ex-
cess adsorption for a much larger experimental disordered porous medium with known
Minkowski functions. Other questions that remain to be answered are whether sorption
hysteresis can be described using the Minkowski functionals [65], and to study whether
the Minkowski functionals can be used for higher molecular weight molecules.

Author Contributions: Conceptualization, A.M.P.B. and H.A.T.; Data curation, A.M.P.B.; Formal
analysis, A.M.P.B.; Funding acquisition, H.A.T.; Investigation, A.M.P.B.; Methodology, A.M.P.B.;
Project administration, A.M.P.B. and H.A.T.; Resources, H.A.T.; Software, A.M.P.B.; Validation,
A.M.P.B. and H.A.T.; Visualization, A.M.P.B.; Writing—original draft, A.M.P.B.; Writing—review
& editing, A.M.P.B. and H.A.T. Both authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported as part of the Center for Mechanistic Control of Water-Hydrocarbon-
Rock Interactions in Unconventional and Tight Oil Formations (CMC-UF), an Energy Frontier Research
Center funded by the U.S. Department of Energy, Office of Science under DOE (BES) Award DE-
SC0019165.

Acknowledgments: The majority of the computing for this project was performed on the Mazama
cluster of the Center for Computational Earth & Environmental Science (CEES) at Stanford University.
The authors thank Stanford University and the Stanford Research Computing Center for providing
computational resources and support that contributed to these research results. Lastly, the authors
thank Steffen Berg, Martin Blunt, Jian Qin and Filip Simeski for many stimulating discussions
and feedback.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Berube, V.; Radtke, G.; Dresselhaus, M.; Chen, G. Size effects on the hydrogen storage properties of nanostructured metal

hydrides: A review. Int. J. Energy Res. 2007, 31, 637–663. [CrossRef]
2. He, L.; Melnichenko, Y.B.; Gallego, N.C.; Contescu, C.I.; Guo, J.; Bahadur, J. Investigation of morphology and hydrogen adsorption

capacity of disordered carbons. Carbon 2014, 80, 82–90. [CrossRef]
3. He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Hydrogen carriers. Nat. Rev. Mater. 2016, 1, 16059. [CrossRef]
4. Li, M.; Carter, R.; Douglas, A.; Oakes, L.; Pint, C.L. Sulfur vapor-infiltrated 3D carbon nanotube foam for binder-free high areal

capacity lithium–sulfur battery composite cathodes. ACS Nano 2017, 11, 4877–4884. [CrossRef]
5. Barsotti, E.; Tan, S.P.; Saraji, S.; Piri, M.; Chen, J.H. A review on capillary condensation in nanoporous media: Implications for

hydrocarbon recovery from tight reservoirs. Fuel 2016, 184, 344–361. [CrossRef]
6. Belmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Adsorption of CO2 from dry gases on MCM-41 silica at ambient temperature and

high pressure. 1: Pure CO2 adsorption. Chem. Eng. Sci. 2009, 64, 3721–3728. [CrossRef]
7. Yoshimoto, Y.; Hori, T.; Kinefuchi, I.; Takagi, S. Effect of capillary condensation on gas transport properties in porous media.

Phys. Rev. E 2017, 96, 043112. [CrossRef] [PubMed]
8. Vincent, O.; Marguet, B.; Stroock, A.D. Imbibition triggered by capillary condensation in nanopores. Langmuir 2017, 33, 1655–1661.

[CrossRef] [PubMed]

http://doi.org/10.1002/er.1284
http://dx.doi.org/10.1016/j.carbon.2014.08.041
http://dx.doi.org/10.1038/natrevmats.2016.59
http://dx.doi.org/10.1021/acsnano.7b01437
http://dx.doi.org/10.1016/j.fuel.2016.06.123
http://dx.doi.org/10.1016/j.ces.2009.03.017
http://dx.doi.org/10.1103/PhysRevE.96.043112
http://www.ncbi.nlm.nih.gov/pubmed/29347560
http://dx.doi.org/10.1021/acs.langmuir.6b04534
http://www.ncbi.nlm.nih.gov/pubmed/28121445


Processes 2021, 9, 1220 20 of 21

9. Bui, B.T.; Liu, H.H.; Chen, J.; Tutuncu, A.N. Effect of capillary condensation on gas transport in shale: A pore-scale model study.
SPE J. 2016, 21, 601–612. [CrossRef]

10. Melnichenko, Y.B. Supercritical Fluids in Confined Geometries. In Small-Angle Scattering from Confined and Interfacial Fluids;
Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2016; pp. 251–309. [CrossRef]

11. Ghosh, K.; Krishnamurthy, C. Structural behavior of supercritical fluids under confinement. Phys. Rev. E 2018, 97, 012131.
[CrossRef] [PubMed]

12. Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The determination of pore volume and area distributions in porous substances. I.
Computations from nitrogen isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [CrossRef]

13. Douglas Frink, L.J.; Salinger, A.G. Rapid analysis of phase behavior with density functional theory. II. Capillary condensation in
disordered porous media. J. Chem. Phys. 2003, 118, 7466–7476. [CrossRef]

14. Coasne, B.; Galarneau, A.; Di Renzo, F.; Pellenq, R.J. Effect of morphological defects on gas adsorption in nanoporous silicas. J.
Phys. Chem. C 2007, 111, 15759–15770. [CrossRef]

15. Mason, G. The effect of pore space connectivity on the hysteresis of capillary condensation in adsorption—Desorption isotherms.
J. Colloid Interface Sci. 1982, 88, 36–46. [CrossRef]

16. Mason, G. Determination of the pore-size distributions and pore-space interconnectivity of Vycor porous glass from adsorption-
desorption hysteresis capillary condensation isotherms. Proc. R. Soc. Lond. A Math. Phys. Sci. 1988, 415, 453–486. [CrossRef]

17. Sarkisov, L.; Monson, P. Modeling of adsorption and desorption in pores of simple geometry using molecular dynamics. Langmuir
2001, 17, 7600–7604. [CrossRef]

18. Libby, B.; Monson, P. Adsorption/desorption hysteresis in inkbottle pores: A density functional theory and Monte Carlo
simulation study. Langmuir 2004, 20, 4289–4294. [CrossRef]

19. Coasne, B.; Galarneau, A.; Pellenq, R.J.; Di Renzo, F. Adsorption, intrusion and freezing in porous silica: The view from the
nanoscale. Chem. Soc. Rev. 2013, 42, 4141–4171. [CrossRef] [PubMed]

20. Mecke, K.R. Integral geometry in statistical physics. Int. J. Mod. Phys. B 1998, 12, 861–899. [CrossRef]
21. Bañados, M.; Teitelboim, C.; Zanelli, J. Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem. Phys.

Rev. Lett. 1994, 72, 957. [CrossRef] [PubMed]
22. Schmalzing, J.; Górski, K.M. Minkowski functionals used in the morphological analysis of cosmic microwave background

anisotropy maps. Mon. Not. R. Astron. Soc. 1998, 297, 355–365. [CrossRef]
23. Mecke, K.; Wagner, H. Euler characteristic and related measures for random geometric sets. J. Stat. Phys. 1991, 64, 843–850.

[CrossRef]
24. Mecke, K.R.; Sofonea, V. Morphology of spinodal decomposition. Phys. Rev. E 1997, 56, R3761. [CrossRef]
25. Scheel, M.; Seemann, R.; Brinkmann, M.; Di Michiel, M.; Sheppard, A.; Breidenbach, B.; Herminghaus, S. Morphological clues to

wet granular pile stability. Nat. Mater. 2008, 7, 189. [CrossRef]
26. Saadatfar, M.; Takeuchi, H.; Robins, V.; Francois, N.; Hiraoka, Y. Pore configuration landscape of granular crystallization. Nat.

Commun. 2017, 8, 15082. [CrossRef]
27. Vogel, H.J. Topological characterization of porous media. In Morphology of Condensed Matter; Springer: Berlin/Heidelberg,

Germany, 2002; pp. 75–92. [CrossRef]
28. Schlüter, S.; Berg, S.; Rücker, M.; Armstrong, R.; Vogel, H.J.; Hilfer, R.; Wildenschild, D. Pore-scale displacement mechanisms as a

source of hysteresis for two-phase flow in porous media. Water Resour. Res. 2016, 52, 2194–2205. [CrossRef]
29. Mecke, K.R. Additivity, convexity, and beyond: Applications of Minkowski Functionals in statistical physics. In Statistical Physics

and Spatial Statistics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2000; pp. 111–184. [CrossRef]
30. Hadwiger, H. Vorlesungen über Inhalt, Oberfläche und Isoperimetrie; Springer: Berlin, Germany, 1957; Volume 93. [CrossRef]
31. König, P.M.; Roth, R.; Mecke, K. Morphological thermodynamics of fluids: Shape dependence of free energies. Phys. Rev. Lett.

2004, 93, 160601. [CrossRef] [PubMed]
32. Simeski, F.; Boelens, A.M.; Ihme, M. Modeling Adsorption in Silica Pores via Minkowski Functionals and Molecular Electrostatic

Moments. Energies 2020, 13, 5976. [CrossRef]
33. Evans, R. The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, classical fluids.

Adv. Phys. 1979, 28, 143–200. [CrossRef]
34. Kierlik, E.; Monson, P.; Rosinberg, M.; Tarjus, G. Adsorption hysteresis and capillary condensation in disordered porous solids: A

density functional study. J. Phys. Condens. Matter 2002, 14, 9295. [CrossRef]
35. Ustinov, E.; Do, D.; Jaroniec, M. Adsorption of argon and nitrogen in cylindrical pores of MCM-41 materials: Application of

density functional theory. Appl. Surf. Sci. 2005, 252, 1013–1028. [CrossRef]
36. Neimark, A.V.; Lin, Y.; Ravikovitch, P.I.; Thommes, M. Quenched solid density functional theory and pore size analysis of

micro-mesoporous carbons. Carbon 2009, 47, 1617–1628. [CrossRef]
37. Yatsyshin, P.; Durán-Olivencia, M.; Kalliadasis, S. Microscopic aspects of wetting using classical density functional theory. J. Phys.

Condens. Matter 2018, 30, 274003. [CrossRef]
38. Minkowski, H. Volumen und Oberfläche. Math. Ann. 1903, 57, 447–495. [CrossRef]
39. Schneider, R. Convex Bodies: The Brunn–Minkowski Theory; Cambridge University Press: Cambridge, UK, 2013; Volume 151.

[CrossRef]

http://dx.doi.org/10.2118/179731-PA
http://dx.doi.org/10.1007/978-3-319-01104-2
http://dx.doi.org/10.1103/PhysRevE.97.012131
http://www.ncbi.nlm.nih.gov/pubmed/29448330
http://dx.doi.org/10.1021/ja01145a126
http://dx.doi.org/10.1063/1.1558314
http://dx.doi.org/10.1021/jp073678a
http://dx.doi.org/10.1016/0021-9797(82)90153-9
http://dx.doi.org/10.1098/rspa.1988.0023
http://dx.doi.org/10.1021/la015521u
http://dx.doi.org/10.1021/la036100a
http://dx.doi.org/10.1039/c2cs35384a
http://www.ncbi.nlm.nih.gov/pubmed/23348418
http://dx.doi.org/10.1142/S0217979298000491
http://dx.doi.org/10.1103/PhysRevLett.72.957
http://www.ncbi.nlm.nih.gov/pubmed/10056581
http://dx.doi.org/10.1046/j.1365-8711.1998.01467.x
http://dx.doi.org/10.1007/BF01048319
http://dx.doi.org/10.1103/PhysRevE.56.R3761
http://dx.doi.org/10.1038/nmat2117
http://dx.doi.org/10.1038/ncomms15082
http://dx.doi.org/10.1007/3-540-45782-8_3
http://dx.doi.org/10.1002/2015WR018254
http://dx.doi.org/10.1007/3-540-45043-2_6
http://dx.doi.org/10.1007/978-3-642-94702-5
http://dx.doi.org/10.1103/PhysRevLett.93.160601
http://www.ncbi.nlm.nih.gov/pubmed/15524965
http://dx.doi.org/10.3390/en13225976
http://dx.doi.org/10.1080/00018737900101365
http://dx.doi.org/10.1088/0953-8984/14/40/319
http://dx.doi.org/10.1016/j.apsusc.2005.01.122
http://dx.doi.org/10.1016/j.carbon.2009.01.050
http://dx.doi.org/10.1088/1361-648X/aac6fa
http://dx.doi.org/10.1007/BF01445180
http://dx.doi.org/10.1017/CBO9781139003858


Processes 2021, 9, 1220 21 of 21

40. Legland, D.; Kiêu, K.; Devaux, M.F. Computation of Minkowski measures on 2D and 3D binary images. Image Anal. Stereol. 2011,
26, 83–92. [CrossRef]

41. Kierlik, E.; Monson, P.; Rosinberg, M.; Sarkisov, L.; Tarjus, G. Capillary condensation in disordered porous materials: Hysteresis
versus equilibrium behavior. Phys. Rev. Lett. 2001, 87, 055701. [CrossRef]

42. Ravikovitch, P.I.; Neimark, A.V. Density functional theory model of adsorption on amorphous and microporous silica materials.
Langmuir 2006, 22, 11171–11179. [CrossRef]

43. Mecke, K.; Arns, C. Fluids in porous media: A morphometric approach. J. Phys. Condens. Matter 2005, 17, S503. [CrossRef]
44. Salinger, A.G.; Douglas Frink, L.J. Rapid analysis of phase behavior with density functional theory. I. Novel numerical methods.

J. Chem. Phys. 2003, 118, 7457–7465. [CrossRef]
45. Evans, R.; Marini Bettolo Marconi, U. Phase equilibria and solvation forces for fluids confined between parallel walls. J. Chem.

Phys. 1987, 86, 7138–7148. [CrossRef]
46. Evans, R. Fluids adsorbed in narrow pores: Phase equilibria and structure. J. Phys. Condens. Matter 1990, 2, 8989. [CrossRef]
47. Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864. [CrossRef]
48. Heroux, M.A.; Salinger, A.G.; Frink, L.J. Parallel segregated Schur complement methods for fluid density functional theories.

SIAM J. Sci. Comput. 2007, 29, 2059–2077. [CrossRef]
49. Frink, L.J.D.; Salinger, A.G. Two-and three-dimensional nonlocal density functional theory for inhomogeneous fluids: I.

Algorithms and parallelization. J. Comput. Phys. 2000, 159, 407–424. [CrossRef]
50. Frink, L.J.D.; Salinger, A.G. Two-and three-dimensional nonlocal density functional theory for inhomogeneous fluids: II. Solvated

polymers as a benchmark problem. J. Comput. Phys. 2000, 159, 425–439. [CrossRef]
51. Weeks, J.D.; Chandler, D.; Andersen, H.C. Role of repulsive forces in determining the equilibrium structure of simple liquids. J.

Chem. Phys. 1971, 54, 5237–5247. [CrossRef]
52. Hansen-Goos, H.; Roth, R. Density functional theory for hard-sphere mixtures: The White Bear version mark II. J. Phys. Condens.

Matter 2006, 18, 8413. [CrossRef]
53. Keller, H.B. Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of Bifurcation Theory; Rabinowitz,

P., Ed.; Academic Press: New York, NY, USA, 1977; pp. 359–384.
54. Salinger, A.G.; Bou-Rabee, N.M.; Pawlowski, R.P.; Wilkes, E.D.; Burroughs, E.A.; Lehoucq, R.B.; Romero, L.A. LOCA 1.0 Library of

Continuation Algorithms: Theory and Implementation Manual; SAND2002-0396; Sandia National Laboratories: Albuquerque, NM,
USA, 2002.

55. Mecke, K.R.; Stoyan, D. Morphology of Condensed Matter: Physics and Geometry of Spatially Complex Systems; Lecture Notes in
Physics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2008; Volume 600. [CrossRef]

56. Scholz, C.; Wirner, F.; Götz, J.; Rüde, U.; Schröder-Turk, G.E.; Mecke, K.; Bechinger, C. Permeability of porous materials
determined from the Euler characteristic. Phys. Rev. Lett. 2012, 109, 264504. [CrossRef]

57. Brewer, D.; Champeney, D. Sorption of helium and nitrogen on Vycor porous glass. Proc. Phys. Soc. 1962, 79, 855. [CrossRef]
58. Levitz, P.; Ehret, G.; Sinha, S.; Drake, J. Porous Vycor glass: The microstructure as probed by electron microscopy, direct energy

transfer, small-angle scattering, and molecular adsorption. J. Chem. Phys. 1991, 95, 6151–6161. [CrossRef]
59. Boher, C.; Martin, I.; Lorente, S.; Frizon, F. Experimental investigation of gas diffusion through monomodal materials. Application

to geopolymers and Vycor® glasses. Microporous Mesoporous Mater. 2014, 184, 28–36. [CrossRef]
60. Ravikovitch, P.I.; Haller, G.L.; Neimark, A.V. Density functional theory model for calculating pore size distributions: Pore

structure of nanoporous catalysts. Adv. Colloid Interface Sci. 1998, 76, 203–226. [CrossRef]
61. Gelb, L.D.; Gubbins, K. Characterization of porous glasses: Simulation models, adsorption isotherms, and the Brunauer-Emmett-

Teller analysis method. Langmuir 1998, 14, 2097–2111. [CrossRef]
62. Jaroniec, M.; Kruk, M.; Olivier, J.P. Standard nitrogen adsorption data for characterization of nanoporous silicas. Langmuir 1999,

15, 5410–5413. [CrossRef]
63. Hamada, Y.; Koga, K.; Tanaka, H. Phase equilibria and interfacial tension of fluids confined in narrow pores. J. Chem. Phys. 2007,

127, 084908. [CrossRef]
64. Neimark, A.V.; Ravikovitch, P.I.; Vishnyakov, A. Bridging scales from molecular simulations to classical thermodynamics: Density

functional theory of capillary condensation in nanopores. J. Phys. Condens. Matter 2003, 15, 347. [CrossRef]
65. McClure, J.E.; Armstrong, R.T.; Berrill, M.A.; Schlüter, S.; Berg, S.; Gray, W.G.; Miller, C.T. Geometric state function for two-fluid

flow in porous media. Phys. Rev. Fluids 2018, 3, 084306. [CrossRef]

http://dx.doi.org/10.5566/ias.v26.p83-92
http://dx.doi.org/10.1103/PhysRevLett.87.055701
http://dx.doi.org/10.1021/la0616146
http://dx.doi.org/10.1088/0953-8984/17/9/014
http://dx.doi.org/10.1063/1.1558313
http://dx.doi.org/10.1063/1.452363
http://dx.doi.org/10.1088/0953-8984/2/46/001
http://dx.doi.org/10.1103/PhysRev.136.B864
http://dx.doi.org/10.1137/060661594
http://dx.doi.org/10.1006/jcph.2000.6454
http://dx.doi.org/10.1006/jcph.2000.6455
http://dx.doi.org/10.1063/1.1674820
http://dx.doi.org/10.1088/0953-8984/18/37/002
http://dx.doi.org/10.1007/3-540-45782-8
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1088/0370-1328/79/4/323
http://dx.doi.org/10.1063/1.461583
http://dx.doi.org/10.1016/j.micromeso.2013.09.039
http://dx.doi.org/10.1016/S0001-8686(98)00047-5
http://dx.doi.org/10.1021/la9710379
http://dx.doi.org/10.1021/la990136e
http://dx.doi.org/10.1063/1.2759926
http://dx.doi.org/10.1088/0953-8984/15/3/303
http://dx.doi.org/10.1103/PhysRevFluids.3.084306

	Introduction
	Theory
	Minkowski Functionals

	Methods
	Density Functional Theory
	Geometries
	Simulation Parameters
	Minkowski Coefficients

	Results
	Discussion & Conclusions
	References

