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Abstract: The fast exploration of a design space and identification of the best process conditions
facilitating the highest space-time yield are of great interest for manufacturers. To obtain this
information, depending on the design space, a large number of practical experiments must be
performed, analyzed, and evaluated. To reduce this experimental effort and increase the process
understanding, we evaluated a model-based design of experiments to rapidly identify the optimum
process conditions in a design space maximizing space-time yield. From a small initial dataset, hybrid
models were implemented and used as digital bioprocess twins, thus obtaining the recommended
optimal experiment. In cases where these optimum conditions were not covered by existing data,
the experiment was carried out and added to the initial data set, re-training the hybrid model. The
procedure was repeated until the model gained certainty about the best process conditions, i.e., no
new recommendations. To evaluate this workflow, we utilized different initial data sets and assessed
their respective performances. The fastest approach for optimizing the space-time yield in a three-
dimensional design space was found with five initial experiments. The digital twin gained certainty
after four recommendations, leading to a significantly reduced experimental effort compared to
other state-of-the-art approaches. This highlights the benefits of in silico design space exploration
for accelerating knowledge-based bioprocess development, and reducing the number of hands-on
experiments, time, energy, and raw materials.

Keywords: Escherichia coli; hybrid modeling; machine learning; model-assisted DoE; quality by
design; upstream bioprocessing

1. Introduction

For the production of biopharmaceuticals, it is of high importance to guarantee a
specified product quality for patient safety. Raw materials, process deviations, and un-
recognized faults may result in altered quality, and finally in batch rejection [1]. Process
characterization in the biopharmaceutical industry has long been known and emphasized
by the authorities, thus, processes must be closely monitored and well understood to ensure
robust and uniform product quality. The most prominent guidance is the process analytical
technology (PAT) guide by the US federal drug administration (FDA). Additionally, the
quality by design (QbD) initiative [2] greatly emphasizes process understanding during
the development of a bioprocess to guarantee a stable and uniform product quality output
and fewer rejected batches [3]. To achieve these objectives, the statistical design of experi-
ments (DoE) and advanced online monitoring are highlighted. The herein experimentally
investigated design space is built by different combinations of critical process parameters
(CPP) and critical material attributes (CMA), which affect the target parameters and the
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critical quality attributes (CQA) [4]. For such a design space exploration, different DoEs
can be applied, e.g., full factorial, fractional factorial, Box–Behnken, Doehlert, and hyper-
cubes, differing in the number of required experiments and the amount of information
generated [5]. Besides the increased process understanding, for process optimization of the
target molecule, it is still important to quickly find the best CPP combination in the design
space, at which the production process will be performed, e.g., biomass, product titer, or
space-time yield [6]. Such DoE studies are combined with process modeling to generate
added value and further accelerate these tasks [7].

The most common techniques for bioprocess modeling are data-driven (black box)
and mechanistic (white box) approaches, each with their own characteristics, advantages,
and disadvantages [8]. Since the parameters in data-driven models do not have a physical
meaning, no further process knowledge is needed, enabling a fast and easy implementation
of these model types. Currently, various regression algorithms are available and commonly
used, e.g., partial least squares, random forests, support vector machines, artificial neural
networks (ANN) [9], and many more. However, such models are based on correlation
and do not mandatorily imply causality, which can lead to inaccurate or even incorrect
model predictions and conclusions. Contrarily, mechanistic models are based on theoret-
ical considerations, i.e., the parameters have a physical meaning, and therefore ensure
causality. Since these model predictions follow a purely mechanistic trend, temporary
process deviations and unknown CPP impacts are not considered, which also interferes
with the model performance and accuracy. To exploit the advantages of each individual
model structure, a combined approach can be considered, called hybrid modeling (grey
box) [10]. Since both models can complement each other in this combined structure, more
precise predictions are anticipated. Such a hybrid model can be built in a parallel or serial
structure, e.g., first, the data-driven part estimates parameters used in the mechanistic part,
which otherwise would have to be assumed. Thereby, it is possible to also incorporate
the CPP’s impact into the hybrid model, which significantly strengthens the explanatory
power of the model [11]. Additionally, to have assurance about the model performance
and the risk of model mispredictions, typically cross-validation is performed to reduce
variance, avoid overfitting, and investigate how the model performs when applied to new
data [12]. A similar approach with a higher degree of freedom for creating the final model
is model averaging from a leave-one-batch-out cross-validation, i.e., several developed
models are averaged to improve the model stability and accuracy [13]. Even though this
hybrid modeling approach has been the state-of-the-art in other industries for many years,
due to the higher complexity of biological processes, it has only gained interest during the
last few years [14]. Even though hybrid modeling is increasingly adopted for downstream
applications [15–17], the response surface modeling of process endpoints is still more
commonly applied [18], and the full potential of hybrid process modeling applications in
bioprocessing has not yet been realized.

The high added value and the benefits of hybrid modeling for upstream bioprocessing
become tangible when considering three major aspects of progressing towards digital
biomanufacturing, i.e., delivering an increased process understanding, accelerating biopro-
cess development, and enabling advanced process control [19]. For all these components,
various tools with different levels of complexity can be considered. Herein, soft sensors
are frequently used, i.e., advanced online sensor systems such as spectrometry [20] or
spectroscopy [21] in combination with a software algorithm to estimate the variables of
interest in real-time, without any sampling and analytical time delay [22]. Depending on
the used model structure, such soft sensors can be descriptive or predictive. While the
descriptive model type can only be used to get estimated values up to the current time
point, predictive models can also predict future values with a degree of uncertainty and
therefore can additionally be used for process control [23]. Along with process models for
the variables of interest, model-based methods for the optimization of process parameters
such as the gained process information, the maximum amount of cells, or productivity
were also introduced [24]. A highly interesting concept for accelerating bioprocess devel-
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opment and optimization in combination with model-related DoE approaches is a digital
bioprocess twin [25,26]. Based on a minimal number of experiments, a hybrid model can
be developed and subsequently be applied as a digital bioprocess. This digital twin then
enables the simulation of further experiments, i.e., in silico exploration of the design space
to shed light on the process behavior, without any additional laboratory experiments. This
can be used to investigate the impact of the CPPs on the desired output, and thereby
recommend the best CPP combination that maximizes it. A validation experiment at the
recommended CPPs can be performed and compared to the simulation [27]. Subsequently,
this digital twin model can be re-trained with the new experimental data, improving its
performance by gaining a higher understanding of the process, and allowing it to explore a
potential new optimum [28]. Once the recommendation of the digital twin converges at the
process optimum, no new CPP combination will be proposed. Such model-based DoE and
process modeling to find the best CPP combination in a design space saves raw materials
and additionally operates more quickly and is cheaper compared to approaches in which
experiments are only performed in the laboratory [29].

To accelerate the design space exploration and thereby greatly decrease the time
needed to identify the optimum CPP combination for the variables of interest, we present a
digital bioprocess twin used for model-based DoE [30]. This digital twin simultaneously
delivers additional process understanding, while accelerating bioprocess development and
optimization by applying in silico simulations that only perform the recommended experi-
ments. We were particularly interested in determining the minimal number of required
experiments for developing an initial digital twin, recommending further experiments to
rapidly identify the best CPP combination in the design space. Such an iterative approach
towards digitalization leads to a reduced experimental effort and saves various propo-
sitions of economic value while tackling current shortcomings for the implementation
of such novel and promising tools [31]. Therefore, we present our structured workflow
using different initial data sets to reduce experimental effort, evaluate the results, and
additionally to investigate the applicability of an intensified DoE (iDoE) [32] for such a
model-based DoE, to rapidly find the best CPP combinations in a design space and obtain
the highest space-time yield.

2. Materials and Methods
2.1. Experimental Design

The experimental data set was derived from E. coli (HMS174 (DE3)) (Novagen, Ger-
many) fed-batch cultivations at 20 L scale. For the workflow and the evaluation, a design
space with three CPPs, each at three levels, was considered: the feed controlled specific
growth rate µ (0.10, 0.15, and 0.20 h−1), the cultivation temperature T (30, 34, and 37 ◦C),
and the induction strength I (0.2, 0.5, and 0.9 µmol IPTG g−1 cell dry mass), respectively.
The variables of interest to be modeled were the biomass concentration (g L−1) and the
space-time yield (g L−1 h−1) of the soluble fraction of the expressed protein, recombinant
human superoxide dismutase. The biomass was analytically measured by thermogravimet-
ric analysis [33] once before induction and then hourly, and the soluble product titer was
measured every 2 h from the time point of induction to the last sampling at the end of the
process by ELISA [34]. The fed-batch phase was carried out for four doubling times, and
induction of the cells took place after the first doubling time, i.e., product formation took
place for the remaining three doubling times. The values for the online measurements were
available every minute and included the pH (controlled by the addition of 12.5% NaOH),
off-gas (%), cultivation temperature (◦C), inlet air (slpm), dissolved oxygen (%), stirrer
speed (rpm), base consumption (L), accumulated feed (L), inducer (kg), and head pressure
(bar). More details about the applied exponential feeding strategy for the fed-batch phase,
the utilized E. coli strain, the expression vector system, the online monitoring, and the
offline measurements have already been presented elsewhere [35–37].

To receive meaningful information about the performance of the different digital twins
and model-based DoE approaches, the design space was completely characterized. Once
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by common static cultivations (one CPP combination per experiment, i.e., 27 cultivations
to cover all CPP combinations) and by iDoE cultivations (three CPP combinations per
experiment, i.e., nine cultivations covering all 27 CPP combinations).

The intra-experimental CPP shifts in the intensified fed-batch fermentations were
performed after each theoretical cell doubling post-induction of the cells, with a temporar-
ily increased sampling interval, and executed by adjusting the setpoint value of the feed
controlled specific growth rate and cultivation temperature in the process control system.
Additionally, the feasibility of these shifts and the exclusion of a potential memory effect on
the cells is presented in detail elsewhere [38]. A list of all the performed experiments used
for comprehensive comparison is given in Appendix A.1 (Tables A1 and A2). Moreover, for
the static cultivations, the maximum experimental values of the variables to be modeled
are indicated. For the intensified cultivations, the maximum values were not conclusive,
due to the intra-experimental shifts and the resulting multiple characterized CPP combi-
nations, and therefore are not displayed. The two complete DoE and iDoE data sets are
presented extensively and available for download as supporting information for an earlier
publication [38].

2.2. Data Sets

For the initial hybrid model building and the model-based DoE, different initial data
sets were used, and the respective performances for identifying the best CPP combination,
obtaining the highest space-time yield were compared. These data sets were assembled
out of the presented static and intensified fed-batch fermentations:

1. Full factorial DoE: the fully characterized design space, used as a reference (N = 27)
2. Fractional factorial DoE: the center point and the eight corners of the design space

(N = 9)
3. Fractional factorial DoE: the center point and four corners of the design space (N = 5)
4. Fractional factorial DoE: the center point and two corners of the design space (N = 3)
5. Complete iDoE: all iDoE cultivations, covering the entire design space (N = 9)
6. Fractional iDoEs: one iDoE cultivation per induction level (N = 3, three different

assemblies)

2.3. Hybrid Model Development
2.3.1. Model Building

For initial model training, the different data sets were considered. To deal with the
small initial data sets, avoid loss of information, and provide a more robust basis for
the digital twin simulations, for each practically performed experiment, two additional
in silico experiments were generated, i.e., each performed experiment was available in
triplicate. For these in silico experiments, an appropriate level of analytical error was
considered as random noise for the biomass (up to 5%) and the soluble product titer (up to
10%). As model inputs, the cultivation temperature (◦C), the accumulated feed (L), and
the accumulated inducer (kg) were chosen to estimate the two response variables: the
biomass (g L−1) and the space-time yield (g L−1 h−1). Prior to model building, the input
variables were standardized using the z-score. To predict the response variables, a serial
hybrid model structure was implemented. The data-driven model, an ANN, embedded in
the hybrid model, and applying a Levenberg–Marquardt regularization algorithm, was
chosen to estimate the specific growth rate µ and the soluble product formation rate vp/x as
propagated predictions for the mechanistic part. The ANN consisted of three layers. The
nodes of the hidden layer used hyperbolic tangent transfer functions, while the output
layer used linear transfer functions. The values derived from the ANN were subsequently
used in the mechanistic model, as shown in Equations (1) and (2), where X is the biomass
concentration (g L−1), P is the soluble product titer (g L−1), Iy/n is the inducer switch
(zero for no induction or one for induction), and D is the dilution rate (h−1). Herein, D
is used as the comprehensive term to describe the ratio between the flow of all volume
additions into the reactor (L h−1), i.e., substrate feed, inductor feed and base, and the
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overall reactor volume (L), which comprises the initial volume and all the added volumes.
Consequently, in Equation (3), the space-time yield (STY) was calculated with the soluble
product titer (g L−1) divided by the current utilization time of the bioreactor (h). This
Bioreactor Utilization Time comprised the duration of the sterilization in place, inoculum,
batch, harvest, cleaning, and the respective feed time.

dX
dt

= u·X − D·X (1)

dP
dt

= vp/x·X·Iy/n − D·P (2)

STY =
P

Bioreactor Utilization Time
(3)

2.3.2. Model Validation

For validation of the model performance, leave-one-batch-out cross-validation was
performed, i.e., the initial model was built on all but one experiment, and the parameters
were optimized by applying them to the experiment left out. Once no further improvement
was observed, the model training stopped. To find the optimal setting to fit the experi-
mental data, the number of neurons and hidden layers were varied. While the number
of neurons was individually adapted for each data set, a single hidden layer delivered
the best performance in all cases with respect to the normalized root mean square error
(NRMSE) in Equation (4), where y is the analytical value, ŷ is the estimated counterpart for
each sampling point (t), ȳ is the mean of the analytical values, and N the total number of
observations.

NRMSE [%] =

√
1
N ·∑ (y(t) − ŷ(t))

2

y
·100 (4)

2.3.3. Model Averaging

To assess the risk of model misprediction, averaging of the individual models was
performed. This averaging of the estimations from multiple models represents a robust
way to deal with model uncertainties. This approach allows selecting a single model from
each of the cross-validations. Depending on the initial data set, the averaged hybrid models
consisted of three to five individual models. To validate this averaged model performance
and its uncertainty, the NRMSE was taken into account, along with its standard deviation
(SD) (Equation (5)) and the prediction interval (PI) (Equation (6)), where ŷaverage is the
estimation of the averaged model, ŷmodel is the estimation of the respective model, i the
index of these models, and n is the number of observations for each time point.

SD(t) =

√
1

n − 1
·∑ (ŷaverage(t) − ŷmodel(i)(t)

)2 (5)

PI(t) = ŷaverage ± SD(t) (6)

Subsequently, the final averaged hybrid models were transferred to a digital twin
environment.

2.4. Digital Twin Application

The developed hybrid models were implemented as digital twins to simulate all
experiments in the given design space. Therefore, the accumulated feed, the inducer, and
the inducer switch were simulated according to the feeding strategy and process time
of the individual constant CPP levels, according to the desired design space boundaries.
Once the simulations were performed by the digital twin, a lookup table could be used
to individually evaluate the digital twin simulations. This lookup table provides the
options for investigating the simulations, i.e., find the minimum or maximum values for
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the response variables and their respective associated CPP combination along with the
process time duration. For this case study, the lookup table was used to find the optima
(maximum value) for the space-time yield in all simulated experiments, i.e., recommending
the CPPs to obtain this simulated value. To validate the derived recommendation of the
digital twin, a laboratory experiment with the respective settings was performed. The new
experiment was then added to the previous data set and the hybrid model was re-trained
including the new setup and its findings. This model-based DoE for optimizing the space-
time yield was repeated until the digital twin identified the best CPP combination and no
new CPP combination was recommended. The entire workflow of the model-based DoE is
presented in Figure 1. This workflow was carried out for all of the different initial data sets
presented before, to evaluate the possible minimum number of required experiments for
each case.

The hybrid model development, digital twin simulation, and model-based DoE were
accomplished in the Novasign GmbH (Vienna, Austria) hybrid modeling toolbox.
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Figure 1. Schematic workflow of optimizing the space-time yield using model-based DoE. Starting with an initial set of
experiments from a given design space (I), a hybrid model is developed (II) and transferred to a digital twin environment.
Based on the hybrid model, the digital twin simulates all experiments of the design space and recommends the best CPP
combination in the design space to obtain the maximum value of the variable of interest (space-time yield) (III). In the case
of a new CPP recommendation, the experiment is performed, added to the training data, and utilized to re-train the hybrid
model with the new process information (IV). Once no new CPP recommendation is obtained, the digital twin identifies the
best CPP combination to maximize the space-time yield and the optimization stops (V).

3. Results
3.1. Analytical Space-Time Yield Maxima in the Design Space

To confirm the simulated values and correctness of the CPP recommendation by
the digital twin, the space-time yield of each CPP combination was investigated. The
analytical maximum space-time yield of each cultivation is presented as a response surface
in Figure 2. For simpler visualization, the results are separated into the three levels of
induction strength.
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level: I = 0.2 (A), I = 0.5 (B), and I = 0.9 (C). The color indicates the values of the space-time yield from dark blue (lowest
value) to red (highest value).

The graphical investigation of the analytical space-time yield of each CPP combination
in Figure 2 reveals the local and global optima in the design space. While at induction level
I = 0.2, the local maximum was found at 0.0726 g L−1 h−1 (µ = 0.10 h−1 and T = 34 ◦C), and
the induction level I = 0.5 contained the global maximum at the center point (µ = 0.15 h−1,
T = 34 ◦C, and I = 0.5) with 0.0997 g L−1 h−1. The local maximum at induction level I = 0.9
resulted in 0.0915 g L−1 h−1 (µ = 0.10 h−1 and T = 34 ◦C). This visualization demonstrates
that a cultivation temperature of 34 ◦C seems to be highly favorable for product formation,
along with a trend towards slower specific growth rates.

3.2. Initial Training Data for the Model-Based DoE

The objective for this model-based DoE for parameter optimization was to quickly
identify the best CPP combination for the highest space-time yield in the design space. To
determine the minimum number of required experiments to develop meaningful hybrid
models, and applied as digital twins recommending the next experiments, different initial
data sets were utilized (Section 2.2 Data sets). These comprised either static or intensified
cultivations, as presented in Figure 3.

As presented in Figure 2 and Table A1, the best CPP combination in the design space
to maximize the space-time yield was obtained at the center point. However, there was
also a local maximum with a high space-time yield at the highest induction level, which is
assumed to be challenging not to become trapped in. For the design space investigation
and determination of this CPP combination, different approaches can be consulted, as
presented in Figure 3. First, experiments at each CPP combination were performed, char-
acterizing the entire space without comprehensive process modeling (Figure 3A). Using
this approach, the optimum in the design space was found, but this was paired with a
high experimental effort and therefore time and costs. This experimental effort can be
reduced by selecting a fractional factorial design and process modeling, i.e., only certain
CPP combinations are performed. For this comparison, three fractional factorial designs
were performed with the center point and the corners of the design space, either using
nine (Figure 3B), five (Figure 3C), or only three initial experiments to build the hybrid
model (Figure 3D). Since the iDoE concept proved to be suitable for accelerating the process
characterization, this approach was additionally considered. Therefore, a complete set of
iDoE experiments (Figure 3E) and three fractional iDoE approaches (Figure 3F–H) were
used. The initial experiments of these last seven approaches were used in combination with
process modeling to find the optimal CPP combination for obtaining the highest space-time
yield as fast as possible, and using the workflow presented in Figure 1.
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3.3. Digital Twin Simulations of the Model-Based DoE

Out of all the presented initial data sets for the model-based DoE parameter optimiza-
tion, the fractional factorial DoE with five initial static cultivations performed best, i.e., the
fewest total experiments were needed by the digital twin to identify the CPP optimum
for the space-time yield. A graphical presentation of this model-based DoE is presented
in Figure 4. The step-by-step progression of the recommended experiments in the design
space along with the simulated values compared to the analytical values for each re-trained
digital twin are shown.

The model-based DoE quickly recommended the best CPP combination to obtain the
highest space-time yield (Figure 4A). The correct induction level was already found after
implementing the gained process knowledge from the first recommended experiment and
the correct cultivation temperature after the second re-training of the digital twin. Even
though the specific growth rate was the most difficult to properly assert, after two additional
cultivations the optimum in the design space was found, identifying the center point CPPs
as the optimum process conditions, which were already present in the initial training
data. This resulted in nine performed experiments instead of twenty-seven, highlighting
the advantages of knowledge-based bioprocess development. However, with this small
initial data set, the simulated biomass of the first recommended experiment (Figure 4B)
almost matched the analytical results, and the space-time yield was highly overestimated.
Likewise, high overestimations were observed for the second (Figure 4C) and the third
recommendation (Figure 4D). By adding these new recommended experiments to the
initial data set, the resulting retrained hybrid model iteratively gained knowledge about
the process for the next recommendation. Already, after only these three re-trainings, the
fourth simulation almost converged on the analytical values (Figure 4E). The digital twin
gained precision and certainty at the fifth and final recommendation (Figure 4F). Since this
recommended experiment had already been performed, the model-based DoE stopped,
i.e., the best CPP combination was identified, and the biomass and space-time yield of the
process were accurately simulated.
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With five initial static experiments, the digital twin simulated the biomass concen-
tration with an appropriate accuracy from the beginning, but highly overestimated the
experimental values of the space-time yield. By consecutively adding the four recom-
mended experiments, and extending the initial data set, precise simulations were obtained.
This fast convergence of the simulated space-time yield on the analytical values, along with
the SD, is displayed in Table 1.

Table 1. Progression of the model-based DoE until the optimum was found using five initial experiments.

Digital Twin
Conversion

CPP I
(µ)

CPP II
(T)

CPP III
(I)

Analytical Maximum
(g L−1 h−1)

Simulated Maximum
(g L−1 h−1)

1st recommendation 0.10 30 0.2 0.0185 (±0.0006) 0.1605 (±0.0185)
2nd recommendation 0.10 30 0.5 0.0696 (±0.0029) 0.1220 (±0.0058)
3rd recommendation 0.10 34 0.5 0.0820 (±0.0018) 0.1303 (±0.0040)
4th recommendation 0.20 34 0.5 0.0755 (±0.0032) 0.0848 (±0.0079)
5th recommendation 0.15 34 0.5 0.0976 (±0.0026) 0.0955 (±0.0186)

As seen in Table 1, the obtained recommendations of the digital twin, at which CPP
combination the next experiment should be performed, converged at the best CPP combina-
tion in the design space after five recommended experiments, i.e., no new recommendation
was derived. Moreover, a steep learning curve of the hybrid model was observed when the
new experiments were added for re-training the digital twin. While the simulated space-
time yield of the first recommended experiment, derived from the information gained from
the initial five experiments, resulted in an 8.68-fold deviation compared to the analytical
value, this factor quickly decreased after including the respective validation experiments
in the training data and subsequent re-training of the hybrid model. For example, the
simulation of the second recommendation already displayed a decreased deviation of
only 1.75-fold compared to the analytical value, while the third simulation was down to a
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1.59-fold deviation. The fourth simulation only displayed a deviation from the analytical
value by 1.12-fold, and the final simulation of the fifth recommendation was highly precise,
displaying a simulated maximum of 0.98-fold the analytical value. This demonstrates
that with only five initial experiments to start the model-based DoE, the hybrid model
promptly gained process knowledge and its digital twin was able to provide the best CPP
combination to obtain the highest space-time yield.

A complete quantitative and qualitative performance comparison of all the presented
approaches (Figure 3) is given in Table 2. Herein, the three different fractional iDoE
approaches are summarized.

Table 2. Performance summary of the model-based DoE approaches. Capital letters in brackets represent the DoE conditions
from Figure 3.

Initial Data Set Initial Experiments Recommended Experiments Total Experiments Optimum Found

full factorial DoE (A) 27 0 27 yes
fractional factorial DoE (B) 9 2 11 yes
fractional factorial DoE (C) 5 4 9 yes
fractional factorial DoE (D) 3 7 10 yes

complete iDoE (E) 9 2 11 no
fractional iDoEs (F–H) 3 1–4 4–7 no

Table 2 presents the quantitative effort and qualitative performance of each initial
data set. With respect to the total required time for each presented approach, only the
duration of the practical experiments (including pre- and post-processing) was taken into
account for the evaluation, since using our setup, an entire experiment takes approximately
one working week. However, the computational time for the hybrid model training and
subsequent re-training can be neglected, since it ranges between half an hour and three
hours, and depending highly on the performance of the utilized computer. While the
number of required experiments remains unchanged, the needed experimental time can
further be reduced by the utilization of multiple bioreactors or parallel bioreactor systems.

Since in the full factorial DoE all experiments are performed, comprehensive process
modeling is redundant to find the best CPP combination for the highest space-time yield
in the design space. By using this approach, the optimum was found, but paired with
the highest experimental effort. For the other initial data sets, model-based DoE was
applied to reduce the required number of experiments. For the fractional factorial DoEs,
the number of recommended experiments increased until the optimum was found when
decreasing the number of initial experiments. Herein, the fastest approach was the frac-
tional factorial DoE with five initial experiments and four validation experiments required,
i.e., only 9/27 experiments had to be performed. Moreover, in all cases, the optimum
was identified. However, in this case study, the utilization of initial iDoE cultivations
for model-based DoE did not lead to the identification of the best CPP combination in
the design space. Regardless of selecting the entire iDoE data set or varying fractional
iDoEs, the model-based DoE ended up at different locations in the design space than the
optimum CPP combination. Herein, the final recommendations by the digital twin were
all located at µ = 0.10, I = 0.9 and either 30 ◦C or 34 ◦C, indicating a model bias towards
slow specific growth rates and temperatures, apart from 37 ◦C, where a high value or
local maximum of the space-time yield is located. A more detailed progression of the
recommended experiments in the design space for each of the other six model-based DoEs
is shown in Appendix A.2, Figure A1 (excluding the full factorial DoE).

4. Discussion

The prominent emerging concept of model-based DoE for parameter optimization is
an interesting, and yet not completely explored, topic. To accelerate this identification of
optimum process conditions is of great interest for manufacturers, to reduce bioprocess
development timelines. Typically, by performing all experiments in a design space, these
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optimum process conditions can be found, but with high experimental effort. Herein, we
challenged this approach by investigating the minimum requirements for such a model-
based DoE workflow (Figure 1) to rapidly and properly discover the best CPP combinations
in a design space (Figure 2), utilizing varying numbers of initial experiments (Figure 3). We
demonstrated with our case study that the fastest approach to identifying the best process
conditions for the highest space-time yield was an initial fractional factorial DoE with five
static cultivations and four consecutively performed recommendations from the digital
twin (Figure 4 and Table 1). In case scientists are limited to certain time slots for further
experiments, the best x-recommendations from the digital twin can be used in the next
campaign to obtain the maximum learning, according to the experimental possibilities.
Interestingly, all model-based DoEs using initial iDoE cultivations failed to find the global
maximum in the design space (Table 2), and recommending an incorrect optimal CPP
combination after a few iterations (Figure A1). It has already been demonstrated that iDoE
is favorable for accelerating process characterization. Here, a trade-off between decreased
experimental effort and reduced process information can be accepted. This consideration
must be handled with care when iDoE is used for process optimization, i.e., an increased
model uncertainty due to decreased process information may result in divergent optima,
as was the case herein. To the best of our knowledge, this iDoE concept has not been well
investigated and little literature is available as a reference for microbial, and even less for
mammalian, systems. Additionally, several degrees of freedom are introduced by iDoE,
e.g., the number and duration of the intra-experimental CPP shifts, as well as how these
should be performed. Therefore, before reliably applying iDoE for such model-based DoE
approaches, more research should be performed on this subject.

Furthermore, the identification of optimum process conditions for the response to be
optimized in design spaces with a higher dimensionality, as in our case study (>3 CPPs),
could lead to new challenges, e.g., the occurrence of various local optima, which complicate
the accurate identification of the global optimum. The robustness and applicability of
digital twins to also perform reliably when confronted with this higher complexity must be
further investigated. Moreover, our findings demonstrate that bioprocess modeling is not
an all-in-one solution, eliminating all current limitations and obstacles; showing that it is
important to consider many potentially influencing factors [39].

For instance, it is advisable for the initially used data set to introduce every CPP level
to the hybrid model training, i.e., the minimal fractional factorial DoE with three initial
cultivations in our case study. Otherwise, the hybrid model will be biased towards the
included CPP levels in the training data and potentially would not recommend the missing
setting, since the ability to correctly determine these causal relationships is lost. This bias
towards CPP levels should be considered when initially investigating a design space, for
which no prior process knowledge about process behavior and the responses is available,
i.e., the CPPs and the appropriate levels should be well-considered and not too far apart.
Hereby, the accidental generation of independent data sets, becoming missing and getting
trapped in local optima, can be avoided at the start. Since this case study mainly focused
on the practical application of digital twins, more detailed theoretical analysis should be
performed in future studies. However, it might be desirable to re-define the CPP levels
and look for new, more beneficial settings in the design space, e.g., with smaller intervals
of the cultivation temperatures simulated by the digital twin. However, if a digital twin
recommends an experiment next to the identified optimum CPP combination, but with a
0.5 ◦C decreased cultivation temperature and an increased space-time yield by 0.3%, the
execution of this cultivation should be critically questioned. Additionally, for some CPPs,
such simulated intervals are not always practically feasible, e.g., steps of 0.5 ◦C for the
cultivation temperature, which might be adjustable but difficult to precisely control. This
exemplary scenario demonstrates that such approaches must still be guided by human
knowledge, rather than completely trusting an algorithm.

Herein, it has been demonstrated that such digital solutions enable a new knowledge-
based perspective on bioprocess development and optimization, and to get more out of the
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available data. Even though several of these advantages have already been recognized and
discussed, much more research will be required to fully implement and exploit the potential
of digitalization in the biopharmaceutical industry [40]. For instance, an up-and-coming
area for future application of model-based DoE, hybrid modeling, and digital twins is
found in simulating new CPP combinations out of the design space, i.e., extrapolation
where appropriate. However, this again poses new challenges, such as how to validate this
new setting outside the design space, e.g., an additional smaller design space with the new
CPP combination as the center point could potentially be performed. Besides the validation
issue, the stability of the digital twin and the underlying hybrid model structure must
also be ensured. Additionally, if the mechanistic relationships are known and understood,
such digital twins could be used as a basis to initially simulate new bioprocesses with
similar product properties without prior experiments, e.g., product size and cytotoxicity
supporting platform approaches.

5. Conclusions

In silico design space exploration using a digital bioprocess twin increases the process
understanding for QbD; the impact of the CPPs on the variables of interest can rapidly be
investigated. The presented workflow enabled us to quickly find process optima in a design
space despite using only a small initial experimental setup. Moreover, this approach to
decreasing the number of required practical experiments for process optimization becomes
even more advantageous for larger design spaces. Even though, herein the dimensionality
and complexity increase, which will lead to new challenges, model-based DoE has the
potential to significantly lower the experimental effort; saving money, time, raw materials,
and other propositions of economic value for later stages.
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Appendix A

Appendix A.1 CPP Settings of All Experiments Used for Model-Based DoE

The design space, the herein investigated CPPs (and respective levels), and cultivation
approaches are introduced in the Materials and Methods section of the main manuscript.
A detailed list of all performed experiments of the comprehensive comparison for the
applicability of the model-based DoE workflow (Figure 1, main manuscript) is given
below. Table A1 provides information about the experiments performed with one CPP
combination, and Table A2 contains the intensified experiments (three CPP combinations
per cultivation) and the herein performed CPP shifts. For all static experiments, the
maximum experimental values of the variables modeled (biomass and space-time yield)
are provided for easier comparison. For the intensified experiments, these maximum
experimental values are not indicated, because these quantities are not meaningful due to
multiple characterized CPP combinations per experiment. The highest space-time yield in
the entire design space was obtained at CPP combination #14 (µ = 0.15 h−1, T = 34 ◦C, and
I = 0.5), reaching 0.0997 g L−1 h−1 in the performed cultivation. Subsequently, the different
initial data sets were evaluated in the model-based DoE (Figure 3, main manuscript),
considering the number of required recommendations by the digital twin until certainty
about the best CPP combination is gained.

Table A1. CPP combinations of the static experiments for the model-based DoE approach.

CPP
Combination

CPP 1
(µ)

CPP 2
(T)

CPP 3
(I)

Maximum
Biomass
(g L−1)

Maximum
Space-Time Yield

(g L−1 h−1)

1 30 0.2 33.18 0.0193
2 34 0.2 31.12 0.0726
3 37 0.2 30.31 0.0311
4 30 0.5 29.88 0.0733
5 0.10 34 0.5 23.96 0.0837
6 37 0.5 20.6 0.0621
7 30 0.9 26.07 0.0800
8 34 0.9 20.69 0.0915
9 37 0.9 18.23 0.0432

10 30 0.2 34.28 0.0264
11 34 0.2 32.09 0.0415
12 37 0.2 29.7 0.0430
13 30 0.5 31.74 0.0564
14 0.15 34 0.5 28.66 0.0997
15 37 0.5 24.06 0.0663
16 30 0.9 26.89 0.0564
17 34 0.9 25.17 0.0815
18 37 0.9 21.62 0.0485

19 30 0.2 34.51 0.0157
20 34 0.2 33.68 0.0227
21 37 0.2 32.93 0.0274
22 30 0.5 31.49 0.0418
23 0.20 34 0.5 30.97 0.0783
24 37 0.5 28.85 0.0578
25 30 0.9 29.14 0.0518
26 34 0.9 29.25 0.0818
27 37 0.9 23.98 0.0513
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Table A2. CPP combinations of the intensified experiments for the model-based DoE approach.

iDoE CPP
Combination

CPP 1
(µ)

CPP 2
(T)

CPP 3
(I) CPP Shift 1 CPP Shift 2

1 37 0.2 37 ◦C to 34 ◦C
0.10 h−1 to 0.20 h−1 0.20 h−1 to 0.10 h−1

2 0.10 30 0.5 30 ◦C to 34 ◦C 34 ◦C to 37 ◦C
0.10 h−1 to 0.20 h−1

3 34 0.9 34 ◦C to 37 ◦C 0.10 h−1 to 0.15 h−1

4 37 0.2 37 ◦C to 30 ◦C
0.15 h−1 to 0.10 h−1

30 ◦C to 34 ◦C
0.10 h−1 to 0.15 h−1

5 0.15 30 0.5 0.15 h−1 to 0.20 h−1 30 ◦C to 34 ◦C
6 34 0.5 34 ◦C to 37 ◦C 0.15 h−1 to 0.10 h−1

7 30 0.2 30 ◦C to 37 ◦C 37 ◦C to 30 ◦C
0.20 h−1 to 0.15 h−1

8 0.20 37 0.9 37 ◦C to 34 ◦C
0.20 h−1 to 0.15 h−1

34 ◦C to 30 ◦C
0.15 h−1 to 0.20 h−1

9 34 0.9 34 ◦C to 30 ◦C
0.20 h−1 to 0.15 h−1 0.15 h−1 to 0.10 h−1

Appendix A.2 Progression of the Recommended Experiments by Each Model-Based DoE Approach

Out of all presented initial data sets for the model-based DoE in Figure 3 (Results sec-
tion of the main manuscript), the fractional factorial DoE with five initial static experiments
proved to be the fastest for identifying the best CPP combination for the highest space-time
yield. This detailed progression until the optimum was found is presented in Figure 4 and
Table 1 (Results section of the main manuscript). For the other six data sets used for the
model-based DoE (excluding the full factorial DoE), Figure A1 presents an overview of
the respective progressions, including the initially performed experiments, as well as the
recommended experiments.

Besides the best performing model-based DoE with five initial static cultivations, the
two other initial fractional factorial DoEs also performed well. The approach with nine
initial static cultivations (Figure A1A) needed two recommendations, i.e., two further
experiments to gain certainty about the optimum CPP combination, resulting in a total
of 11/27 cultivations. Herein, the model quickly gained certainty about the correct induc-
tion level from the beginning, and after the second experiment also about the other two
CPP levels. The model-based DoE using three initial static cultivations performed seven
recommendations until the optimum was identified, i.e., 10/27 cultivations (Figure A1B).
Interestingly, here the induction level was also the first CPP to be correctly recommended
after two additional experiments, followed by the cultivation temperature and then the
specific growth rate. However, the complete iDoE as the basis for model-based DoE
(Figure A1C) did not identify the optimum, and after two recommendations by the digital
twin ended up recommending CPP combination #7 (µ = 0.10 h−1, T = 30 ◦C, and I = 0.9).
Moreover, the model-based DoE based on three different fractional iDoEs was also not
able to find the optimum CPP combination. Depending on the initially selected three iDoE
cultivations, it took one to four recommendations by the digital twin until these model-
based DoEs also recommended CPP combination #7 (Figure A1D,F) or CPP combination
#8 (µ = 0.10 h−1, T = 34 ◦C, and I = 0.9) (Figure A1E) as the best CPP combination for the
highest space-time yield.
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Figure A1. Step-by-step progressions of the recommended experiments by the model-based DoE,
using varying initial data sets. The initial experiments (blue circles and lines) and the respective
recommendations for the next experiment (orange dots), along with the temporal order (orange
arrows) are given. The fractional factorial DoE with nine (A) and three (B) initial static cultivations,
the complete iDoE (C), and the three fractional factorial iDoEs (D–F) are presented.

In conclusion, while every approach using static cultivations as a basis for model-
based DoE could identify the optimum CPP combination in the design space, all the iDoE
approaches failed to do so. However, it was already shown that the concept of iDoE is
advantageous for reducing the experimental effort for process characterization but, in
this particular case, it was not possible for model-based DoE to accurately identify the
static process conditions optimizing a certain process output. The recommended CPP
combinations by the model-based DoE with the initial iDoE cultivations were becoming
trapped at high values or local maxima and were highly biased towards the highest
induction level, slowest growth rate, and lower cultivation temperatures.
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