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Abstract: Protic ionic liquids have been regarded as promising materials to capture CO2, because they
can be easily synthesized with an attractive capacity. In this work, we studied the CO2 absorption
mechanism by protic ionic liquids (ILs) composed of diamino protic cations and azolide anions.
Results of 1H nuclear magnetic resonance (NMR), 13C NMR, 2-D NMR and fourier-transform infrared
(FTIR) spectroscopy tests indicated that CO2 reacted with the cations rather than with the anions.
The possible reaction pathway between CO2 and azolide-based protic ILs is proposed, in which
CO2 reacts with the primary amine group generated from the deprotonation of the cation by the
azolide anion.
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1. Introduction

In recent decades, the amount of carbon dioxide (CO2) accumulated in the air has
reached unbelievable levels, which is viewed as the main contributor to global warming,
causing severe environmental problems, such as the rising atmospheric temperature, in-
tense heat waves and drought. The vast majority of atmospheric CO2 is mainly emitted
from industrial activities by burning fossil fuels (coal and oil) to produce electricity [1]. An
urgent demand to curb the atmospheric CO2 concentration to avoid climate disaster has
driven industry and the scientific community to explore efficient CO2 capture technologies.
A current, popular method used for CO2 capture in industry is the amine-based scrub-
bing process, which mainly utilizes an aqueous solution of alkanolamine to chemically
absorb CO2 [2]. However, amine-based sorption systems have several drawbacks, such as
high solvent volatility and equipment corrosion and a high energy penalty of absorbent
regeneration [3]. Developing new and efficient sorption systems capable of addressing the
above-mentioned drawbacks is one of the main challenges in the field of carbon capture
and storage.

During the past decade, ionic liquids have been widely studied for CO2 capture
because of their attractive properties [4], such as negligible vapor pressure, high thermal
stability, and tunable structures [5,6]. Among the ILs used for CO2 absorption, aprotic
ILs [7–9], such as azolide-based [10] and hydroxypyridine-based ILs [11], exhibit high CO2
capacity. However, tedious procedures are needed to synthesize these aprotic ILs, resulting
in high costs. Recently, protic ILs [12–14] have been investigated to capture CO2 because
they can be easily prepared and exhibit promising capacity.

In a recent article, Oncsik and co-authors reported on CO2 capture by diamino protic
ionic liquids (DPILs) formed by N,N-dimethylethylenediamine (DMEDA) with azoles,
including imidazole (Im), 1,2,4-triazole (Tz) and pyrazole (Py). These DPILs showed a high
gravimetric absorption capacity for CO2 [15]. The authors also investigated CO2 absorption
mechanisms of these DPILs. On the basis of NMR and FTIR results, they believed that CO2
reacted with anions, forming carbamate species, and CO2 did not react with the diamino
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cations. However, in contrast, we found that CO2 reacted with the cations rather than with
the azolide anions when CO2 was captured by these DPILs (Scheme 1). The details are
presented in the following sections.

Scheme 1. The reaction between [DMEDAH] [Im] and CO2.

2. Results and Discussion

Primarily, the CO2 capacities of the protic ILs were investigated. [DMEDAH] [Py],
[DMEDAH] [Im] and [DMEDAH] [Tz] could capture 0.231(0.82), 0.216 (0.77) and 0.190
(0.68) g CO2/g IL at 22 ◦C and 1.0 atm, respectively. The values in parentheses are the
molar absorption capacities of ILs (mol CO2/ mol IL). The capacities of these ILs were close
to the values reported by Oncsik et al. (Table S1), suggesting that the protic ILs used in our
study were successfully prepared. The absorption capacity of DMEDA was determined by
using the DMEDA solution in sulfolane (30 wt.%). One mole of DMEDA could capture
0.90 mole of CO2 at 1.0 atm and 22 ◦C. Moreover, the structure of the IL was further studied
using NMR spectra. As shown in Figure 1A, the hydrogen peak of –NH3 (H-4) can be
clearly identified in the 1H NMR spectra of [DMEDAH] [Im], and there was no N–H peak
of imidazole in the spectra. The –NH2 peak of DMEDA was also completely missing from
the 1H NMR spectra of [DMEDAH] [Im]. The 1H NMR results again suggested that the IL
[DMEDAH] [Im] was successfully obtained.

Figure 1. Spectra of 1H (A) and 13C (B) NMR of [DMEDAH] [Im] with and without CO2; DMSO-d6

was used as an external solvent.
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In order to study the absorption mechanism, we investigated the 1H NMR and 13 C
NMR spectra of [DMEDAH] [Im] before and after CO2 absorption. As shown in Figure 1A,
there were several new peaks (H-1′, H-3′, and H-c’) in the 1H NMR spectrum after CO2
absorption. H-c’ (11.6 ppm) was the N–H hydrogen on the imidazole ring (Figure S1).
Additionally, four new peaks (C-1′, C-2′, C-3′, and C-4′) can be observed in the 13 C NMR
spectrum after CO2 absorption. C-4′ (161.9 ppm) was the peak of carbamate carbon [16,17].
The new peaks in the 1H NMR (H-1′, H-2′, and H-3′) (Figure S2A) and 13 C NMR (C-1′,
C-2′, C-3′, and C-4′) (Figure S2B) spectra after CO2 absorption were more obvious when
deuterium oxide (D2O) was used as the internal solvent to record the NMR spectra.

It would be difficult to explain these new peaks if CO2 only reacted with the anion
[Im]−; thus, the 1H-13C Heteronuclear Singular Quantum Correlation (HSQC) spectra
(Figure 2) and 1H-13C Heteronuclear Multiple Bond Correlation (HMBC) spectra (Figure 3)
of [DMEDAH] [Im] after CO2 absorption were studied in order to identify these new peaks.
As can be seen in Figure 2A, H-1′was attached to C-1′, H-2′ was attached to C-2′, and H-3′

was attached to C-3′. As shown in Figure 3A, H-3′ correlated with C-4′ and C-2′, and H-2′

correlated with C-1′ and C-3′. The correlation between H-3′ and C-4′ indicated that CO2
was attached to the primary nitrogen in the cation. Furthermore, there were no correlations
between C-4′ and the hydrogen (H-a’or H-b’) on the imidazole ring (Figure 3B), indicating
that CO2 did not react with the anion to form carbamate species. The similar new peaks
can also be found in the NMR spectra of [DMEDAH] [Py] (Figure S3) and [DMEDAH] [Tz]
(Figure S4) after CO2 absorption. In the 1H-13C HMBC spectra of [DMEDAH] [Py] (Figure
S5) and [DMEDAH] [Tz] (Figure S6) after CO2 absorption, correlation between H-3′ and
C-4′ can also be observed, which again suggested that CO2 was attached to the cation.

Figure 2. The 1H-13C HSQC spectra of [DMEDAH] [Im] after CO2 capture (A,B); D2O was used as
the internal solvent to record the spectra.

In order to further confirm the mechanism, the FTIR spectra of [DMEDAH] [Im] with
and without CO2 were investigated. As can be seen in Figure 4, a new peak at 1676 cm−1,
attributed to the C=O stretching of the carbamate, could be identified after CO2 absorption.
However, the C=O stretching peak of the carbamate formed by the reaction between [Im]−
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and CO2 was near 1700 cm−1 [18,19]. Therefore, the peak at 1676 cm−1 implied that CO2
was attached to the amino group in the cation and not attached to the anion [Im]−. The
N–H band related to [DMEDAH]+ at 1584 cm−1 shifted to 1575 cm−1 after CO2 absorption.
The stretching vibration of N–COO− could be observed at 1310 cm−1 after the reaction,
which was different from the N–COO− stretching band (~1293 cm−1) of the carbamate
formed by the anion [Im]− and CO2 [18]. These results again confirmed the interaction
between CO2 and the [DMEDAH]+. Furthermore, we also studied the FTIR spectra of
DMEDA solution (30 wt.%) in sulfolane (Sulf) before and after CO2 uptake. As shown in
Figure 5, an obvious peak at 1679 cm−1 can be observed after CO2 uptake, which was the
C=O stretching peak of the carbamate formed by CO2 and the amnio group of the DMEDA,
indicating that the peak at 1676 cm−1 of the [DMEDAH] [Im] + CO2 system was from the
DMEDA-based carbamate. These FTIR results again indicated that CO2 reacted with the
cation rather than the anion of [DMEDAH] [Im].

Figure 3. The 1H-13C HMBC spectra of [DMEDAH] [Im] after CO2 capture (A,B); D2O was used as
the internal solvent to record the spectra.

Figure 4. The FTIR spectra of [DMEDAH] [Im] before and after CO2 absorption.
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Figure 5. The FTIR spectra of DMEDA solution (30 wt.%) in sulfolane (Sulf) before and after CO2

absorption.

The possible reaction pathway between CO2 and [DMEDAH] [Im] is shown in
Scheme 2. At first, there was an acid–base reaction between the cation and the anion
in the ILs. The cation was deprotonated by the imidazolate anion, generating an amino
group. When the absorbent interacted with CO2, the final product was formed through
nucleophilic addition of the amino group to CO2 [20,21].

Scheme 2. The possible reaction pathway between CO2 and [DMEDAH] [Im].

3. Materials and Methods
3.1. Material and Characterizations

Imidazole (Im, 98%), 1,2,4-Triazole (Tz, 98%), Pyrazole (Pz, 98%) and N,N-
dimethylethylenediamine (DMEDA) (99%) were purchased from J&K Scientific Ltd. (Bei-
jing, China). CO2 (≥99.99%) was obtained from Beijing ZG Special Gases Sci. and Tech.
Co. Ltd. The 1H NMR (600 MHz) and 13C NMR(151 MHz) spectra were recorded on a
Bruker spectrometer with a 5 mm PABBO probe. A PerkinElmer Frontier spectrometer
was used to record the FTIR spectra of the samples in the range of 650–4000 cm−1 with
a resolution of 4 cm−1. Elemental analysis was conducted on Elemental Vario EL cube
(Frankfurt, Germany).

3.2. Synthesis of Ionic Liquids

DMEDA and azole (1:1, molar ratio) were mixed in a glass vial. Each mixture was
stirred at room temperature for 2 h to obtain a homogenous liquid.

Elemental analysis:
[DMEDAH] [Im]: found C 53.14%, H 10.02%, N 35.13%; estimated C 53.82%, H 10.32%,

N 35.86%.

3.3. CO2 Absorption

An ionic liquid (~1.0 g) was added to a glass tube with a diameter of 10 mm. The
tube was equipped with a rubber lid and two needles. One needle was a CO2 inlet, and
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the other one was a CO2 outlet. The glass tube was partially immersed in a water bath
(22 ± 0.2 ◦C). CO2 was bubbled into the IL through a needle at a flow rate of ~50 mL/min
for 60 min. The weight of the tube was measured every 10 min with an analytical balance
(±0.1 mg). The mass increase was attributed to the CO2 captured by the IL.

4. Conclusions

In summary, the CO2 absorption mechanism by the protic azolide ILs based on
DMEDA has carefully been studied through various NMR and FTIR experiments. The
results indicated that CO2 reacted with the cations rather than with the azolide anions. We
believe that the confirmation of the absorption mechanism is very important to the design
of protic ILs in the future for CO2 capture and utilization.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9061023/s1, Table S1: CO2 capacities by DPILs, Figure S1: 1H NMR spectra of imidazole in
DMSO-d6, Figure S2: 1H (A) and 13C (B) NMR spectra of [DMEDAH] [Im] after CO2 absorption; D2O
was used as the internal solvent to record the spectra, Figure S3: 1H (A) and 13C (B) NMR spectra
of [DMEDAH] [Py] before and after CO2 absorption; DMSO-D6 was used as the external solvent,
Figure S4: 1H (A) and 13C (B) NMR spectra of [DMEDAH] [Tz] before and after CO2 absorption;
DMSO-D6 was used as the external solvent, Figure S5: The 1H-13C HMBC spectra of [DMEDAH]
[Py] after CO2 capture; D2O was used as the internal solvent to record the spectra, Figure S6: The
1H-13C HMBC spectra of [DMEDAH] [Tz] after CO2 capture; D2O was used as the internal solvent
to record the spectra.
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