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Abstract: In this manuscript, a two-input two-output (TITO) control strategy for an exothermic
continuous chemical reactor is presented. The control tasks of the continuous chemical reactor are
related to temperature regulation by a standard proportional-integral (PI) controller. The selected set
point increases reactor productivity due to the temperature effect and prevents potential thermal
runaway, and the temperature increases until it reaches isothermal operating conditions. Then, an
optimal controller is activated to increase the mass reactor productivity. The optimal control strategy
is based on a Euler-Lagrange framework, in which the corresponding Lagrangian is based on the
model equations of the reactor, and the optimal controller is coupled with an uncertainty estimator
to infer the unknown terms required by the proposed controller. As a benchmark, a continuous
stirred tank reactor (CSTR) with a Van de Vusse chemical reaction is considered as an application
case study. Notably, the proposed methodology is generally applicable to any continuous stirred tank
reactor. The results of numerical experiments verify the satisfactory performance of the proposed
control strategy.

Keywords: exothermic chemical reactors; temperature stabilization; optimal control; optimal reac-
tor productivity

1. Introduction

The chemical reactor is widely regarded as the most important equipment in the
transformation industry since it houses chemical reactions that produce highly valuable
compounds or, conversely, degrade toxic pollutants. Given its significance, the design,
optimization, and control of chemical reactors have been an important focus for process
engineers. However, highly nonlinear behavior related to steady-state multiplicity, input
multiplicity, instabilities, and sustained oscillation, among other factors, presents diffi-
culties in the operation of these instruments [1–3]. Therefore, research on these topics
remains challenging for scientists and engineers. In particular, the control of continuous
chemical reactors has been studied for several years. One of the main control strategies
for these devices is related to temperature regulation; this is an important issue because
an appropriate temperature control strategy leads to the adequate yield of chemical prod-
ucts. Furthermore, the operation of an isotherm reactor is generally conditionally stable,
and temperature regulation is essential for process security to prevent hot points during
reactor operations [4]. Conventional proportional–integral–derivative (PID) controllers
are widely used because of their simple structures and tuning methods. Although these
devices are simple, they fail to perform well for nonlinear processes. The fundamental
requirement for these controllers is the use of a tuning algorithm to maintain the desired
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levels of outputs. In general, PID controllers are locally robust to parametric uncertainty
since their design is independent of the phenomenological model of the system, but they
are strongly dependent on tuning [5,6].

A feedback linearization controller for an exothermic reactor with a single reaction
is introduced in [7,8], but the corresponding design is based on the state-space model
of the reactors, which can be a significant drawback. However, this can be avoided by
employing observer-based uncertainty estimators, and stabilization by state feedback
has been proven effective for a well-defined domain [9,10]. Another control technique
applied to temperature regulation is input–output linearizing control, which aims to reduce
the original nonlinear control problem to a linear control problem under a differential
geometry framework, but technical difficulties may arise in constructing the required
diffeomorphisms [11,12]. Various solutions have been proposed to overcome the robustness
problem. In particular, an integral action has been added to the controller obtained from
input–output linearization to develop generic control. However, the main drawback of
this approach is the over-parameterization of the controller [13,14]. Thus, several control
strategies have been presented in the open literature, including linear and nonlinear back-
stepping control, mass concentration regulation controllers, etc. [15–18].

The necessity of high process performance has led to efforts to improve the operation of
reactors by optimizing operational trajectories, which include operation security, maximum
productivity, and optimal cost, among others, leading to the tracking trajectory control
problem, where optimal control designs have been successful. Model-based Hamiltonian
techniques have been applied to nonlinear systems as optimal control approaches. In such
cases, Hamiltonian equations must be developed, and then an adequate functional related
to the objective function and corresponding restrictions must be applied to obtain an
optimal controller for the required task. In this case, Pontryagin’s principle is applied to
determine the best possible control strategy under constraints for the state or input controls.
Although Lagrangian-based optimal control approaches have been studied as well, they
are mostly oriented to the control of mechanical systems [19].

Chemical processes frequently involve structured uncertainties and output distur-
bances. Some examples are variations in feed quality, uncertain initial and ambient condi-
tions, and uncertainty in model parameters [20,21]. Failing to account for uncertainties in
the optimal design may lead to a nonoptimal and potentially high-risk solution. Therefore,
methodologies that compensate for uncertainty in chemical processes are essential for
realizing a robust process [22–26].

To compensate for uncertainty, a probabilistic approach based on the polynomial
chaos expansion (PCE) was proposed by [27]. PCE is used to calculate an approximation of
the expected values and variances, such as the first two statistical moments of the objective
function and nonlinear inequality constraints. A similar approach is presented in [28],
which also used PCE to optimize biological networks under model parameter uncertainty.
Additionally, in [29], a multi-model approach was applied to manage uncertainties for
the optimization of semi-batch processes; in this method, multiple worst-case parameter
scenarios are selected based on a heuristic approach, but the corresponding real-time
implementation is complex due to the large algorithms and the control effort. Another
approach that is increasing in popularity is the application of the unscented transformation
(UT) for optimization under uncertainty. The UT is a method for the approximation
of the statistical moments of nonlinearly transformed probability distributions in the
context of nonlinear filtering [30]. For implementation purposes, the UT shares similarities
with certain numerical integration techniques, such as cubature rules, which are well
known in the numerical integration literature. Cubature rules are used to approximate
multi-dimensional integrals and have been applied for optimization under uncertainty
(see [31,32]).

However, the above procedures can lead to complex control structures, often with
high computing requirements. Heuristic optimization is another control approach, which
does not usually involve assumptions about the problem to be optimized. The heuristic
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approach can search large spaces of candidate solutions to identify optimal or near-optimal
solutions at a reasonable computational cost, but it is unable to guarantee either feasibility
or optimization, and, in many cases, it does not indicate how close a certain feasible solution
is to the optimum [33–35]. A wide range of direct search methods have been developed
from heuristic optimization, such as genetic algorithms, evolutionary programming, differ-
ential evolution, genetic programming, evolutionary strategy, particle swarm optimization,
and artificial bee colonies [36,37]; however, a theoretical analysis of convergence is not
available, which is a major shortcoming [16,38]. A variety of approaches considering
uncertainties in the optimization of chemical processes have been reported in the open
literature [39,40].

Therefore, this work proposes a method to increase reactor productivity by employ-
ing standard temperature regulation with an appropriate set point via a PI controller.
The proposed method increases reactor productivity via thermal effects until reaching
an isothermal operating condition. After that, an optimal control law is applied in the
Euler–Lagrange framework, in which the corresponding Lagrangian is based on the state
equations of the reactor. This allows the construction of a controller for optimal reactor
productivity as an objective function. However, this controller is based on the kinetic reac-
tion rate, which is unavailable. To overcome this drawback, a reduced-order uncertainty
estimator is coupled with the proposed optimal controller. The proposed method results
in the satisfactory operating performance of the reactor and increases the corresponding
productivity of the desired chemical product.

2. Mathematical Model of a Continuous Stirred Tank Reactor(CSTR)

In general, let us consider an exothermic CSTR model. According to mass and energy
conservation principles, the reactor model represents the following system:

ẋ1 = ER(x1, x2) + (x1,in − x1)uc (1)

ẋ2 = θ(x2,in − x2) + ∆HT R(x1, x2) + γ(uT − x2) (2)

where x1 ∈ Rn denotes the concentration vector of the chemical species; x2 ∈ R is
the reactor temperature; E ∈ Rn×m denotes the stoichiometric matrix; R(x1, x2) :=
R1(x1)R2(x2) ∈ Rn represents the vector of reaction rates, with R1(x1) := diag(R1,i(x1) ∈
Rm×m) and R2(x2) ∈ Rm; ∆H ∈ Rm defines the vector of reaction enthalpies; the positive
defined real scalar uc := F/V denotes the quotient between the inlet flow F and reactor
volume V; γ represents the heat transfer coefficient; and uT is the coolant temperature (the
manipulable control variable). The system (1)–(2) is a standard model that satisfies general
conditions for the design of controllers for chemical reactors (see, for instance, the classical
contribution by [41]).

As an application case study, let us consider the following chemical pathway from the
Van de Vusse reaction [42]:

A
k1→ B

k2→ C (3)

2A
k3→ D (4)

This chemical reaction pathway contains series and parallel reactions. The above
chemical reactions are considered elemental chemical reactions, that is, those that occur in a
single stage, where the order of the reaction coincides with the corresponding stoichiometric
coefficient of the chemical reaction, as is assumed for the Van de Vusse kinetic model [43].

From the above, a continuous stirred tank reactor mathematical model can be con-
structed via the mass conservation principle under the following assumptions: the reacting
mixture is perfectly mixed to avoid temperature and concentration gradients; the reacting
mixture volume remains constant; the inlet mass flow is equal to the outlet mass flow;
and physical properties such as mixture density, heat capacity, transport coefficients, inlet
concentration, and inlet temperature to the reactor are constant. In addition, the cooling
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jacket temperature is assumed to be the same as the temperature control input, and the
mass input flow to the reactor is considered to be the same as the other control input.

Therefore, the mass and energy balance equations are as follows:

• Mass balance equations:
dCA
dt

=
uc

V
(CAin − CA)− k1CA − k3C2

A (5)

dCB
dt

= −uc

V
CB + k1CA − k2CB (6)

dCC
dt

= −uc

V
CC + k2CB (7)

dCD
dt

= −uc

V
CD +

1
2

k3C2
A (8)

• Energy balance equation:

dT
dt

=
uc

V
(Tin − T) +

∆HT
ρCp

+
UA

VρCp
(uT − T) (9)

In (5)–(9), ki and ∆HT are defined as

ki(T) = ki0exp
(
− Ei

RT

)
, for i = 1, 2, 3 (10)

∆HT = ∆h1k1CA + ∆h2k2CB + ∆h3k3C2
A (11)

The corresponding nomenclature and parameter values are included in Table 1 [44].

Table 1. Reactor parameters.

Description Parameter Value Units

Heat transfer area A 0.215 m2

Temperature initial condition T0 387.05 K
Heat transfer coefficient U 67.2 kJ·min−1m−2K−1

Heat capacity Cp 3.01 kJ·kg−1 K−1

Nominal cooling jacket tem-
perature uT 125 ◦C

Reacting mixture density ρ 934.2 kg·m3

Reactor volume V 0.01 m−1

Concentration initial condi-
tions

CA0
CB0
CC0
CD0

2.1
0
0
0

kmol ·m−3

kmol ·m−3

kmol ·m−3

kmol ·m−3

Pre-exponential kinetic fac-
tors

k10
k20
k30

2.145× 1010

2.145× 1010

1.5072× 108

min−1

min−1

min−1

Activation energies
E1/R
E2/R
E3/R

9758.3
9758.3
8560

K
K
K

Reaction heat
∆h1
∆h2
∆h3

−4200
11000
41850

kJ · kmol−1

kJ · kmol−1

kJ · kmol−1

3. Control Strategy Design
3.1. PI Temperature Control

Most temperature controllers in industrial chemistry are classical PI controllers [41].
There are many reasons for this, including their proven operating performance and the
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fact that their operation is well understood by technicians, industrial operators, and main-
tenance personnel. Furthermore, the fact that a properly designed and well-tuned PID
controller achieves control objectives makes it attractive for many applications. The general
structure of PI controllers is defined by the following well-known equation:

u = kp
(
x(t)− xsp

)
+ ki

∫ t

0

(
x(σ)− xsp

)
dσ (12)

Studies on the design and analysis of PI controllers for the stabilization and regulation
of CSTR reactors are abundant in the literature, which includes numerous successful
applications [41,45,46].

3.2. Optimal Control Design

The general framework of optimal control designs relies on the calculus of vari-
ations, which is involved in the trajectory optimization problem, where a functional
F (`(·)) : Rq → R is a scalar, namely, the cost index, cost function, or performance
index, which is minimizing or maximizing. The corresponding objective can be attained by
solving the well-known Euler–Lagrange equation [47]:

∂`

∂x1
− d

dx2

(
∂`

∂ẋ1

)
= 0 (13)

The term ` denotes the Lagrangian of the system under study.
In general, the cost functional F (`(·)) can be represented as follows:

F (`(·)) = Ω
(

x f , t f

)
+
∫ t f

t0

`(t, x, u)dt (14)

where Ω
(

x f , t f

)
is an algebraic term to be minimized (or maximized) in final conditions,

subject to the following constraints:

• The state equation:

ẋ :=
dx
dt

= f (x) + g(x) u (15)

• The terminal constraints:

Ω
(

x f , t f

)
= 0 (16)

• The initial conditions:
x(t0) = x0 (17)

In Equation (15), x ∈ Rn is the state vector; f (x) : Rn → Rn is a nonlinear function,
where f (x) ⊂ Σ ∈ C∞ and Σ is a compact set; g(x) is a smooth and invertible bounded
function; and u ∈ Rm, with m ≤ n, is the exogenous control input.

Next, consider the following functional form:

P(x, ẋ, u) =
∫ T

0
`(x, ẋ, u)dt (18)

The problem is to minimize the functional (18); therefore,

δP(x, ẋ, u) =
∫ T

0
δ`(x, ẋ, u)dt (19)

Here, the differential of the Lagrangian ` is

δ`(x, ẋ, u) =
∂`

∂x
δx +

∂`

∂ẋ
δẋ +

∂`

∂u
δu (20)
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Equation (20) is substituted into Equation (19):

δP(x, ẋ, u) =
∫ T

0

(
∂`

∂x
δx +

∂`

∂ẋ
δẋ +

∂`

∂u
δu
)

dt (21)

The first term in Equation (20) is represented by

∂`

∂x
δx =

∂`

∂x
δx

δu
δu

=
∂`

∂x
δu
u′

(22)

where u′ is defined as
δu
δx

:= u′ (23)

The second term in Equation (20) is integrated by parts:

∫ T

0

∂`

∂ẋ
δẋdt =

∂`

∂ẋ
δx
∣∣∣∣T
0
−
∫ T

0

d
dt

(
∂`

∂ẋ

)
δx dt (24)

Next, let us consider the following nonlinear control affine dynamic system represen-
tation of Equation (15):

ẋ :=
dx
dt

= f (x) + a1u + p(ẋ, x, u) (25)

From Equation (25),
p(ẋ, x, u) = ẋ− f (x)− a1u (26)

Therefore, the corresponding functional and the Lagrangian for the system (18) are
defined as

P(x, ẋ, u) ≡ p(x, ẋ, u) (27)

and
`(x, ẋ, u) ≡ ẋ− f (x)− a1u (28)

Note that a useful characteristic of the Lagrangian in Equation (28) is the dependence
on the state Equation (25).

Therefore, from Equation (28),

∂`

∂x
= −d f (x)

dx
= − f ′(x) (29)

∂`

∂ẋ
= 1 (30)

∂`

∂u
= −a1 (31)

Then, ∫ T

0

d
dt

(
∂`

∂ẋ

)
δẋdt = 0 (32)

δP(x, ẋ, u)
δu

=
∫ T

0

(
− f ′

u′
− a1

)
dt (33)

The optimum productivity P(x, ẋ, u) is then determined by the following restriction:

δP(x, ẋ, u)
δu

= 0 (34)

From Equations (33) and (34), the following equality must hold:

− f ′

u′
− a1 = 0 (35)
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or equivalently,
a1u′ + f ′ = 0 (36)

By solving Equation (36),

u = −a−1
1

∫ x

x0

f ′(z)dz + u0 (37)

= −a−1
1 f (x)− u0 (38)

In (37), f (x0) = 0.
According to the above, the control law (38) is realizable only if the nonlinear term

f (x) is available. However, as is well known, nonlinear terms are challenging to model
accurately and serve as a significant source of parametric and/or structured uncertain-
ties [16,36–38].

Therefore, an alternative form of the controller (38) must be considered to avoid
this drawback.

If there are non-ideal conditions and uncertain terms, then the control approach in
Equation (38) cannot be realized. Thus, a strategy must be proposed to compensate for the
uncertain terms and obtain a realizable control design. For this purpose, an uncertainty
observer-based controller is considered.

3.3. Uncertainty Estimator Design

Let us consider the system (25) where the nonlinear term f (x) is unknown, which
is now viewed as a new unknown state variable. The extended dynamical system is
defined as

ẋ = f (x) + a1u + p(x, u) (39)

ḟ = g(x) (40)

coupled with a measured linear output, y = Cx.
In Equations (39) and (40), f (x) and g(x) are bounded unknown nonlinear terms.
Let us assume that the state variable can be measured online, i.e., y = x. This is a

typical assumption in chemical systems, where the mass concentrations can be regarded as
the output measurements. Therefore, the following reduced-order observer is applied to
estimate the unknown term f (x) [48,49].

˙̂f = −λ
(

f̂ − f
)

(41)

In (41), f̂ is the estimated value of f , and λ is the observer gain.
The corresponding output injection for this reduced-order observer is f , which is the

unknown term to be estimated. To circumvent this issue, the nonlinear term f is obtained
from Equation (39) as follows:

f (x) = ẋ− a1uc − p(x, uc) (42)

By substituting (42) into Equation (41) and considering the above assumption of y = x,
the following is obtained:

˙̂f = −λ
(

f̂ − ẏ− a1uc − p(y, uc)
)

(43)

With a change in the variable,

η = f̂ − λy (44)
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In consequence,
η̇ = ˙̂f − λẏ (45)

Finally, the reduced-order observer (41) can be expressed as

η̇ = −λ(η − a1uc − p(y, uc)) (46)

Note that the uncertainty estimator (46) contains only known variables and parameters,
where k is the observer gain.

From Equation (44), the uncertain term can be estimated by

f̂ = η + λy (47)

Finally, the designed optimal controller is

uc = −a−1
1 f̂ − u0 (48)

An important characteristic of the Lagrangian in (28) is that its inclusion in the corre-
sponding functional (Equation (27)) results in an analytic and explicit form of the corre-
sponding controller, which avoids the high computational effort required to numerically
calculate the controller system, which is a common issue in other optimization strategies.

Finally, the following closed-loop stability analysis is considered.
The closed-loop stability of the reactor is evaluated via zero-dynamic analysis. Let us

consider the following representation of Equation (39):

ẋ = f (x) + g(x)u →
{

ẋC = fC(x) + g(x)u
ẋD = fD(x) + g(x)u

}
(49)

where xC denotes controller state variables, and xD represents uncontrolled state vari-
ables. The dynamical system (49) is closed-loop stable for t > 0 if and only if (50)–(52) are
fully satisfied.

xC = xsp
C (50)

ẋsp
C = 0 (51)

ẋD = fD(x) + gD(x)usp ≤ 0 (52)

where
usp = −g−1

C (x) fC(x) (53)

This analysis is based on a Lyapunov framework, and the proof of this proposition is
in [50].

4. Numerical Results and Discussion

The process in the application case study is described by the exothermic CSTR modeled
by Equations (5)–(9), which were solved by employing the ordinary differential equation
(ODE) 23s library from Matlab, v2020a, on a PC with an Intel i7 processor. The open-loop
behavior of the reactor is based on the conditions in Table 1.

The proposed control strategy is as follows. The reactor operation is initiated together
with the implementation of the temperature regulation via a standard PI controller. A tem-
perature set point is selected to increase the chemical conversion of the corresponding
compounds. The abovementioned process increases the reactor temperature, and the
thermal effects increase the chemical conversion of reactant A. Because the reaction rate is
related to temperature via the Arrhenius model, reactant A can react to generate chemical
products B and D, in accordance with the kinetic pathway shown above. In fact, this
presents an interesting selectivity problem that must be solved if an intermediate chemical
product is desired. Once the temperature is stabilized, the reactor operates under isother-
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mal conditions, at which point, the optimal controller is activated, and the selected control
input is the mass input flow. This controller acts to optimize the mass productivity of
chemical compound B.

Upon initiation of the proposed closed-loop operation, the temperature of the reactor
is regulated via the temperature of the cooling jacket, which is considered the manipulated
variable uT , under a standard PI control structure. The controller gains are kp = 80
min−1 and ki = 35 min−1, which are calculated by an identification process via a step
disturbance in the temperature control input and the application of internal model control
(IMC) tuning rules [51]. Figure 1 shows a generalized scheme of the closed-loop operation
of an exothermic CSTR.

Figure 1. Exothermic CSTR.

As can be observed in Figure 2, the temperature response of the closed-loop reactor
is increasingly close to the required set point (Tsp = 185 °C), maintaining a small offset of
2.3 °C. Furthermore, when the reactor temperature is in the steady state (isothermal opera-
tion), at t = 0.1 min, the optimal controller is activated. This is a significant disturbance in
the thermal behavior of the reactor, but the temperature PI controller is able to resist it with
an acceptable margin and maintains a temperature of 187 °C, again with a small offset of
2.5 °C from the required set point. Thus, the PI controller is able to maintain the isothermal
operation of the reactor, as illustrated in Figure 3, which shows that the temperature control
input has a brief temperature decrease to 50 °C but, almost immediately, it behaves as
a first order-type response and reaches a steady state of 97 °C. The temperature of the
reactor is maintained within a small range around the required set point. When the optimal
controller has been activated, an increase in the mass input flow is required to increase
the concentration of chemical reactant A. Then, the temperature controller increases the
temperature of the cooling jacket to 116 °C, initiating the chemical pathway that forms
product B, which is the desired product. This reaction pathway has a high activation energy
(see Table 1), so sufficient energy must be maintained to continue generating product B.
In this sense, the temperature controller facilitates the supply of the necessary energy to
generate product B.
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Figure 2. Closed-loop dynamic behavior of the reactor temperature.

Figure 3. Control effort for temperature regulation.

As previously mentioned, the objective is to optimize the productivity of the genera-
tion of chemical product B, which is an intermediate compound in the reaction network.
Compound B is simultaneously a product and a reactant, so the optimal control must
solve this chemical selectivity problem. As observed in Figure 4, after the operation is
initiated, the concentration of the main reactant A is consumed from the initial condition
via temperature effects (recall that compound A reacts in a parallel reaction). Then, the con-
centration of compound B increases due to temperature effects and reaches a steady-state
value of CB = 0.4 mol/L, and when the optimal controller is activated, this concentration
increases to CB = 0.48 mol/L. However, as can be seen below, the optimal controller
increases the outlet mass flow and significantly increases the productivity. Furthermore,
the dynamic behavior of the uncontrolled concentration is stable. Therefore, the results of
numerical experiments show that the zero or inner dynamic of the reactor is stable and, as
a consequence, the reactor is stabilizable.

Figure 4. Closed-loop dynamic behavior of concentrations.
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Figure 5 shows the control effort of the optimal controller. The corresponding mass control
input is adjusted to a nominal value (uc = 72.5 mol/L) when the process is operating under
the temperature regulation regimen. When the optimal controller is activated at t = 0.1 min,
the corresponding input flow drastically and rapidly increases to uc = 84 mol/L. This is
an important characteristic of the behavior of the control input. Because of this substantial
flow increase, the productivity of the reactor increases, as shown below (recall that the reactor
productivity P is defined as P = ucCB).

Figure 5. Control effort of the optimal controller.

As mentioned previously, the optimal controller requires online information about
the reaction rate term of chemical compound B. To provide this information, an observer-
based uncertainty estimator (see Equation (41)) is coupled with the control algorithm.
Figure 6 shows the performance of the proposed observer, where the observer gain is
λ = 500. The results of numerical experiments show that the controller has adequate per-
formance, despite the significant disturbances related to the activation of the temperature
and productivity controllers.

Figure 6. Dynamic performance of the uncertainty estimator.

Finally, as one of the main results, Figure 7 shows the productivity performance of
compound B in the reactor. When the reactor operates in the open-loop regimen, the steady-
state productivity is reached at P = 20 mol/L min, and when the proposed control
strategy is applied, the productivity is increased to P = 27 mol/L min in the first step of
control temperature operation. When the optimal controller is activated, the corresponding
productivity of compound B is successfully increased to P = 38 mol/L min.
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Figure 7. Open-loop and closed-loop dynamic behaviors of reactor productivity for compound B.

Figure 8 depicts the behavior of the relative stability values, i.e., the time derivatives
of the uncontrolled concentrations, from the analysis of closed-loop stability in accordance
with inequality (52). After the startup of the reactor under the temperature closed-loop
regimen, compounds B and C are unstable because their relative values are positive,
but their corresponding relative stability values asymptotically approach zero, becoming
stable state variables. Compounds A and D show dynamic trajectories that are close to
zero, indicating that they are acting as stable state variables. When the optimal controller
is activated, the reactor dynamics undergo a considerable disturbance, and all relative
stability values become positive, with the exception of compound D, whose relative value
is always close to zero. As observed in the figure, all the zero dynamics of the reactor
asymptotically reach a stable operating condition. These results agree with the dynamic
behavior of the uncontrolled concentrations shown in Figure 4.

Figure 8. Relative stability values for uncontrolled concentrations (red—compound A;
blue—compound B; green—compound C; black—compound D).

5. Conclusions

This work presents a two-input two-output (TITO) control strategy in which the
control pairs are the reactor temperature/jacket temperature and productivity/input mass
flow. At the first stage, the proposed closed-loop strategy aims to regulate the reactor tem-
perature via a standard PI control law to increase the concentration of chemical compound
B via a temperature increase until the reactor operation reaches isothermal conditions.
Furthermore, an optimal controller designed by using the Euler–Lagrange approach is pro-
posed. An important characteristic is that the Lagrangian is based on the model equation of
the reactor, and when it is included in the corresponding functional, an analytic and explicit
form of the corresponding controller can be obtained. This avoids the high computational
effort required to numerically calculate the controller system, which is a common issue in
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other optimization strategies. The reactor productivity, which is the objective function, is
optimized for compound B. The optimal controller design depends on online measurement
of the reaction rate, which is unavailable. However, a reduced-order uncertainty observer
is coupled with the controller to provide the required feedback term. The numerical re-
sults show the efficiency of the proposed TITO control methodology, and the temperature
regulation regimen is confirmed to increase the productivity of the reactor by 40% in
comparison with the open-loop operation. The increase in productivity after temperature
regulation achieves optimal control is 32.15%, and the global productivity increase with
the optimal control operation is 85.4% compared with the open-loop operation. To build
on the theoretical results for the optimal controller design and the initial positive results
of numerical experiments, future work will be oriented to real-time implementation to
validate the performance of the proposed control strategy.
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