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Abstract: Through the previous study a hydrothermal polymerization (HTP)—a catalytic method-
ology for treating various biomass and organic wastes—has been developed on a lab scale with a
1 L reactor and the results published. The research work described herein aims to ensure that the
catalytic process is scalable for pilot and even commercial scale plants. A 1700 L binary reactor system
has been built and the assumptions of a commercial scale plant that would have 10,000 to 20,000 L
pressure vessels tested. The HTP catalytic biofuel process converts mono- and polysaccharides into a
solid polymer fuel that is based on a furfuraldehyde ring system. The calorific value of the material
obtained from the pilot plant is on the order of 27 MJ/kg and the material typically has low ash and
fixed carbon content order of 48% which are about same as the lab results for various wood biomass
feedstocks. Though a 1700 times scale up binary reactor system the scalability of the HTP catalytic
methodology has been confirmed and the mass and energy balance of the binary reactor identified in
order to provide fundamental data for commercial scale establishment in future.

Keywords: hydrothermal carbonization; HTP catalytic process; pilot scale; biofuel; organic waste

1. Introduction

Green waste-to-energy (G2E) technology mostly deals with organic waste such as
garden waste, food waste produced from municipality. Thanks to zero organic waste policy
of many governments in Asia, North America and Europe, the G2E technology has been a
hot subject in the waste treatment industry and waste-to-energy R&D community as well.
Among the G2E technology three most popular subjects have been developed last decades:
gasification, torrefaction, and hydrothermal carbonization (HTC) [1,2]. Unlike gasification,
torrefaction and HTC technologies may produce solid biofuel through a thermal-chemical
process at a comparatively low temperature about 150 to 350 ◦C [3]. The distinction between
these two processes is that the HTC reaction is a wet process using water as a solvent
while the torrefaction is a dry process requiring more energy. The HTC usually requires
shorter reaction times (1 to 12 h) at a relatively lower temperature range (180~250 ◦C), with
corresponding pressures up to 3 MPa [4,5]. It has been proved that the HTC process works
well not only with biomass, but also with various feedstocks such as the organic part of
MSW, paper, food waste, and animal manure [6–9].

The reaction conditions of HTC can be effectively reduced by adding catalysts. Shimizu et al.
used various solid acid catalysts such as heteropolyacids, zeolites, and acidic resins [10].
They showed that the catalyst increases favorably the 5-hydroxymethylfurfural (HMF)
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yield in fructose dehydration while it decreases the undesired hydrolysis of HMF to
levulinic acid. Lynam et al. reported the effect of acetic acid and lithium chloride for the
HTC reaction of lignocellulosic biomass [11]. They demonstrated a 30% increase of higher
heating value (HHV) comparing to a non-catalytic process. Mackintosh et al. compared
various study results on the catalyst effect on HTC with newly defined efficiency of the
catalyst on HTC [12]. They used maleic acid as catalyst and optimized the operating
conditions for wood chips: temperature = 220 ◦C, pressure = 2.3 MPa, process time = 1 h,
and the amount of the catalyst = 20 g/L. Their so-called hydrothermal polymerization
(HTP) process attained a high energy density of 27 MJ/kg and a mass yield rate of 60%.
By using catalysts, the process temperature was lowered by 10 to 40 ◦C, the pressure
requirement was reduced by 1 to 2 MPa, the rate of yield was 22% higher, and the total
processing time was shortened by 3 h. These facts tell us the HTP process can use milder
and quicker operation conditions with higher energy value and yield rate comparing with
other catalytic and non-catalytic HTC reactions for wood biomass [7,12–14].

For commercialization some scale-up studies of the HTC process have been attempted.
Hoekman et al. developed a scaled-up HTC system (by a factor of 20) in order to process
3 kg of lignocellulosic biomass and showed that the results were in good agreement
with their lab scale 2 L reactor ones [15]. Owsianiak et al. assessed the environmental
performance of commercial scale HTC reaction system in 15 categories for four wet biomass
waste streams: green waste (garden waste), food waste, organic part of municipal solid
waste, and digestate from anaerobic digestion for agricultural waste [16]. As a replacement
for traditional waste treatment system, they suggested that the hydrochar from HTC
of these four different biowastes can be an attractive option with an energy recovery
system. Ismail et al. reported a numerical assessment for HTC for the conversion of
municipal waste into hydrochar at a commercial scale [17]. They used commercial code
with development of a transient model facilitated the calculation of important parameters
such as operation temperature, pressure, gas flow and composition respect to process time.
Eventually they recommended the HTC treatment system as an alternative to current MSW
treatment plants.

Despite the many trials for commercial scale HTC processes there has been no pub-
lished scale-up study of catalytic HTC processes so far. As well known in catalyst studies,
the scalability of the catalyst is always a critical issue. Therefore, based on the previous lab
results of HTC with the hydrothermal polymerization (HTP) catalyst reported by Mack-
intosh et al. [12], a pilot plant has been established for a scalability check-up and future
commercial plant design. In this study, the 1700 L binary reactor system has been designed
for the sake of energy efficiency. The applied binary reactor system is currently being used
in various chemical synthesis processes such as the ethylene polymerization process [18]
and paper mills as well.

2. Experimental Setup and Binary Reactor System

A binary reactor system was implemented to reduce the energy requirement of the
HTP process by passing steam from the reactor that has finished processing the feedstock
to a reactor that is ready to be heated. The steam transfer accomplishes two things. First the
steam transfer from the reactor heats the cold reactor while cooling the hot reactor thereby
transferring a significant amount of energy that would otherwise be wasted. Secondly,
volatiles in the hot reactor are transferred to the cool reactor for further processing; the
volatiles transfer will also transfer a significant amount of catalyst thereby reusing the
catalyst in the next batch.

The reactors were heated using live steam injection into the bottom ports of the reactor
from a 300 KW electric boiler system. The boiler capacity was 426 kg/h of steam. The
maximum pressure was 40 kg/cm2 while the operating pressure was 35 kg/cm2. The
boiler was first heated to about 240 ◦C. The controller on the boiler regulating the pressure
in the boiler reservoir was set to 35 kg/cm2 which is the saturated steam pressure of hot
compressed water at 241 ◦C [19].
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Once the boiler was up to pressure the valve to the reactor system was opened and
the live steam was injected into the bottom of the reactor causing agitation and heating of
the biomass. When the pressure of the reactor was equal to that in the boiler a check valve
prevented back flow of the reactor contents into the boiler. The temperature in the reactor
was maintained by periodic addition of steam from the boiler (Figure 1).
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Figure 1. Layout of experimental setup and instrumentation for the HTC binary reactor (1700 L × 2) and boiler.

During testing of the reactor system a standard procedure was instituted for the
production of biofuel. The test results reported below for several feedstocks such as
sawdust, bark and chip, and palm waste were produced using the following procedure:

• 200 kg of feedstock (as received) was placed in the reactor pressure vessel.
• 200 kg of catalyst solution was added to the reactor system.
• The reactor was sealed and live steam was injected into the bottom of the reactor to

heat the biomass/catalyst solution to between 230 ◦C and 240 ◦C. This process took
about 1.5 h and added about 300 kg of water to the system.

• The reactor was held at this temperature for 2 h.
• After the process time the reactor was cooled by releasing the steam from the reactor.

Once the reactor was at atmospheric pressure and below 100 ◦C the bottom valve was
opened slightly and the catalyst solution allowed to drain out.

• Finally the bottom ball valve was opened and the resulting biofuel was recovered.
Samples were collected and sent to a lab for analysis.

3. Thermal Analysis of the Binary Reactor System

For the HTP hydrothermal process to be economically feasible, the rate of heating and
cooling of the reactor must be rapid. That is, on the order of under 1 h to heat the tank to
temperature. The best method of heating the tank to the required temperature and pressure
is to inject live steam into the bottom of the reactor. This steam will condense releasing
its heat of evaporation into the tank thus heating it rapidly. While the engineering of live
steam injection is well known [20], the effect of it on the biomass conversion to biofuel
process under the subcritical condition is not certain and must be investigated prior to a
commitment to the use of live steam for heating the reactors.
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3.1. Heat Transfer between Reactors

The binary pair will operate by having one tank at temperature and pressure while
the other tank is being loaded and prepared for processing. Once the first tank is finished
its cook, the steam off the top of the reactor will be transferred to the bottom of the second
reactor to recapture the heat from the first tank thereby heating the reactor. This process
was tested using a bark feedstock. The major parameters are the pressure and temperature
differentials. Also, the size of the piping between the two reactors needs to be of such
size to prevent flashover while also allowing equilibrium between the two tanks in a
15 min period.

Figure 2 below plots the pressure and temperature in the two reactors as a function of
time. The time frame covers the entire cycle of the binary reactor system. The boiler system
regulated pressure in the reactors so the pressure remains constant once the reactor is up to
process temperature. When the left reactor’s processing time is complete the valve to the
boiler is closed and the valve to the right reactor was opened allowing steam to flow from
the top of the left reactor to the bottom of the right reactor. The steam flow was driven
by the pressure gradient, once the pressures became equal the flow of steam between the
reactors stopped and equilibrium was achieved. The equilibrium pressure was noted to be
10 kg/cm2 while the temperature was 179 ◦C at the bottom of the reactor. The difference
between the top and the bottom of the right reactor is due to the thermal mass of the reactor
shell taking longer to heat to equilibrium. The saturated steam pressure of 10 kg/cm2

would indicate a temperature of 179 ◦C.
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As shown in Figure 2 the temperature in the left reactor drops as the processing time
increases. This temperature decrease is due to the evolution of gasses from the feedstock.
Since the feedstock contains volatiles (woody biomass can be up to 3–5% volatiles), the
rapid heating of the biomass will result in the volatiles boiling off. Since the reactors are
regulated by temperature the gas evolution manifests itself as a decrease in temperature.
After the initial decline there is a further slower decline due to the formation of CO2 during
the conversion process. It is interesting to note that the CO2 mediated decline is larger in
the second reactor than in the first cook. This would indicate that CO2 formed in the first
reactor is transferred to the second reactor thus suppressing the operating temperature
when the system is regulated by pressure. A method to reduce this effect would be to leave
the second reactor open to the atmosphere at the beginning of the transfer process thereby
allowing the CO2 to escape.
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Figure 3 gives detailed view of the pressure and temperature changes that occur in
the two reactors when they are connected. The steam from the top of the left reactor flows
to the bottom of the right reactor where it condenses heating the catalyst and biomass in
the right reactor. The thermal transfer is quick; essentially complete in about 5 min. The
step in the pressure and temperature curve around 214 min is probably due to the time
the liquid in the reactor takes to boil. We found that there was a crust buildup on the
surface of the catalyst solution from components in solution polymerizing at the surface of
the liquid (Figure 4). The formation of solids on surface is expected to reduce the rate of
steam production.
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Figure 4. Photograph of crust from top of biofuel slurry after evaporative cooling of reactor.

In the reactor that is cooling the temperature drops fairly smoothly and equally over
the entire volume of the reactor as illustrated by Figure 5 which plots the temperature of the
top, middle and bottom of the reactor. Interestingly, the same cannot be said for the heating
of the right reactor. The lower thermocouple heats very quickly and to a higher temperature
than does the middle and upper thermocouples. Due to the loading of the reactor only the
bottom thermocouple is in the solution while the middle and top thermocouples are above
the liquid. Most of the steam being injected into the reactor system would be expected to
condense causing the liquid to heat faster than the material above. It had been assumed
the injected steam would be sufficient to mix the biomass/catalyst solution to prevent this
temperature stratification. Clearly, this assumption is incorrect. To address the issue the
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amount of catalyst solution needs to be increased so that the slurry will mix better and/or
a stirrer needs to be added to the system.

1 
 

 

Figure 5. Temperature profile of all six thermocouples in the left and the right reactors during heat
transfer process.

3.2. Mass and Energy Balance of Binary Reactors

Based on the heat transfer analysis above, mass and energy balance of the binary
reactors was determined as seen below (Figure 6). Once the first reactor’s cooking is done,
it releases 116,000 kcal of energy. The second reactor retrieves 104,300 kcal of energy from
the first reactor which is about 89.9% of the flash steam energy (116,000 kcal) and 63.1% of
the total input energy (165,200 kcal) holding by the first reactor. The waste energy including
11,700 kcal of the flash steam and 49,200 kcal of the biofuel slurry output at 100 ◦C can be
used as preheating source for feedstock through waste heat recovery system like a heat
exchanger. The recycled energy is able to increase the temperature of the 2nd reactor to
179 ◦C so that it requires only 42,700 kcal of energy more out of 165,200 kcal total input
requirement. This tells that about 74% of the input energy is saved through steam flash
between the two reactors.

4. Results and Discussion

The bark and chip tested appeared to be the type of material that is used for landscap-
ing. The feedstock was measured to have a moisture content of 38%. Thus, the dry weight
of the 200 kg of wet feedstock used was 124 kg. Two hundred kilograms of wet bark and
chips were placed in the bioreactor and 200 kg of catalyst concentrate was added. The
catalyst used was the same maleic acid (C4H4O4) developed through the previous study
in the lab scale [12]. The concentration of the catalyst concentrate was 0.14 molar with a
pH of 1.56.

4.1. Effect of Washing Biofuel from Bark and Chips

Samples of the biofuel produced from bark and chip were washed by placing the
biofuel in a coarse #10 mesh (2 mm) fabric bag and immersing it in several changes of water.
The wash water was black so the solids were allowed to settle out from the wash water
and were collected for analysis. The proximate analysis determined by thermogravimetric
analysis is done. As expected, the fines from washing had lower ash content.
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The fines are less than 2 mm which is much smaller than the bulk of the biofuel
so are more effectively washed removing both ash components and the soluble volatile
components in the biofuel.

Processes 2021, 9, x FOR PEER REVIEW 7 of 14 
 

 
Figure 6. Mass and energy balance between the two reactors with bark feedstock HTC process. 

The fines are less than 2 mm which is much smaller than the bulk of the biofuel so are 
more effectively washed removing both ash components and the soluble volatile compo-
nents in the biofuel. 

The proximate analysis was performed on air dried material using a Mettler TGA/DSC 
(Mettler-Toledo, LLC, Columbus, OH, USA). The method was a modified ASTM E1131 
method. The calorific value was determined using a PARR 6200 Isoperibol Bomb Calorim-
eter (Parr Instrument Company, Moline, IL, USA). The method was the standard method 
recommended by Parr Instruments Inc. The proximate analysis and calorific value (HHV) 
data is shown in Table 1 below. 

Table 1. Proximate analysis and calorific value of the biofuel from bark and chips. 

 
Biofuel from Bark and Chip  

(<2 mm Fines Washed) 
Biofuel from Bark and Chip  

(Unwashed) 
Moisture 2.83% 2.28% 
Volatiles 49.67% 49.30% 

Fixed Carbon 43.81% 42.44% 
Ash 3.69% 5.98% 

Calorific Value (HHV) 25.9 MJ/kg 24.5 MJ/kg 

4.2. FTIR Analysis of Biofuel from Bark and Chips 
Samples of the biofuel from bark chip biomass were analyzed using a 6700 mid-in-

frared Fourier transform infrared spectrometer (Thermo Nicolet, Waltham, MA, USA) 
equipped with KBr optics and a DTGS detector and a Smart iTR module with a diamond 
anvil. The biofuel spectrum was consistent with those we have collected from other 
woody-based biofuels. Figure 7 below shows the entire spectrum from 4000 cm−1 to 600 
cm−1. 
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The proximate analysis was performed on air dried material using a Mettler TGA/DSC
(Mettler-Toledo, LLC, Columbus, OH, USA). The method was a modified ASTM E1131
method. The calorific value was determined using a PARR 6200 Isoperibol Bomb Calorime-
ter (Parr Instrument Company, Moline, IL, USA). The method was the standard method
recommended by Parr Instruments Inc. The proximate analysis and calorific value (HHV)
data is shown in Table 1 below.

Table 1. Proximate analysis and calorific value of the biofuel from bark and chips.

Biofuel from Bark and Chip
(<2 mm Fines Washed)

Biofuel from Bark and Chip
(Unwashed)

Moisture 2.83% 2.28%
Volatiles 49.67% 49.30%

Fixed Carbon 43.81% 42.44%
Ash 3.69% 5.98%

Calorific Value (HHV) 25.9 MJ/kg 24.5 MJ/kg

4.2. FTIR Analysis of Biofuel from Bark and Chips

Samples of the biofuel from bark chip biomass were analyzed using a 6700 mid-
infrared Fourier transform infrared spectrometer (Thermo Nicolet, Waltham, MA, USA)
equipped with KBr optics and a DTGS detector and a Smart iTR module with a diamond
anvil. The biofuel spectrum was consistent with those we have collected from other woody-
based biofuels. Figure 7 below shows the entire spectrum from 4000 cm−1 to 600 cm−1.

The FTIR spectral comparison (Figure 8) of the biofuel from bark shows the changes
to the biofuel properties caused by washing. The two spectra were normalized to each
other by matching the –OH peak between 3200 and 3400 cm−1. The broad –OH peak is
characteristic of alcohol functional groups in the biofuel. Comparing the absorbance of the



Processes 2021, 9, 758 8 of 14

biofuel in the region of 800 cm−1 and 1800 cm−1 to the –OH region we note that absorbance
of the alcohol groups in the washed sample is less than that in the unwashed sample. This
clearly indicates that more soluble alcohol and carboxylic acids components were removed
by washing.
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4.3. Biofuel from Sawdust Feedstock

The sawdust feedstock was a wet coarse woody material. The moisture content was
measured to be 27.5% Since 200 kg of sawdust was loaded into the reactor we can calculate
the dry weight equivalent of the biomass to be 145 kg. The catalyst concentrate volume was
200 kg. The catalyst type was maleic acid (C4H4O4) catalyst dissolved in dilute phosphoric
acid. The pH of the concentrate added into the reactor was 1.56. The biomass was placed
in the reactor prior to putting in the catalyst solution resulting in incomplete mixing of the
catalyst solution with the biomass. The consequence to this defect was that the bottom
portion of the biomass was not fully processed. Samples analyzed herein are from the
middle portion of the biofuel (Table 2).

Table 2. Proximate analysis of the biofuel from wood (sawdust), in washed and unwashed conditions.

Biofuel from Sawdust
(Washed)

Biofuel from Sawdust
(Unwashed)

Moisture 3.0% 2.8%
Volatiles 46.6% 47.5%

Fixed Carbon 49.1% 48.5%
Ash 1.3% 1.2%

Calorific Value (HHV) 27.6 MJ/kg 26.4 MJ/kg
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4.4. Infrared Spectroscopy of the Biofuel from Sawdust

Figures 8 and 9 are the Fourier transform infrared absorbance spectra of the biofuel
produced in the 1700 L pilot plant reactor and the 1 L lab scale reactor. The spectra for
the two samples are similar indicating that on a chemical functional group level the two
materials are of similar product. There are some differences in the peaks at 1270 cm−1,
1212 cm−1 (ether C-O stretching) and 1172 cm−1 (–ν C–O–C in cellulose and hemicelluloses)
are likely due to the product from the large reactor having more unprocessed feedstock in
the product than the 1 L batch. This fact provides strong evidence that the hydrothermal
processes that we have observed in the laboratory are the same as those occurring in an
industrial scale setting.
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4.5. Biofuel from Palm Oil Production Waste (Nut Husks)

The conversion of palm oil waste was processed using the standard method. The
biomass (200 kg was added to the reactor followed by a maleic acid (C4H4O4) catalyst
concentrate. The input catalyst concentration was 1.56. After processing the catalyst
recovered had a pH of 3.47. The change in pH is due to two factors: the inherent moisture
in the biofuel and the water added to the reactor during the live steam injection process.
The process time was 2 h and the process temperature was between 230 ◦C and 240 ◦C. A
significant portion of the palm nut waste in the lower section of the reactor was not fully
processed and led to varying quality of the biofuel produced. We sampled the material in
two aliquots: the first being the light brown shells which were not fully processed and the
black looking shells that were fully cooked. Samples of unprocessed palm kernel waste
were not tested for analysis, but the proximate analysis of palm nut waste has been reported
in the literature [21] and is presented in Table 3 below.

Table 3. Proximate analysis on oven dried palm kernel shell and palm fiber compared to biofuel
produced with a 1700 L binary pair reactor.

Palm Kernel Shell Palm Fiber Biofuel from Palm Waste

Moisture 0% 0% 3.20%
Volatile matter 74.60% 74.59% 47.35%
Fixed Carbon 22.58% 19.38% 46.43%

Ash 2.82% 6.03% 3.02%
Calorific Value (HHV) 19.4 MJ/kg 18.1 MJ/kg 27.2 MJ/kg

When we compare the volatiles and fixed carbon content from the unprocessed palm
waste feedstock to that of the material converted to a biofuel, we note that there is a large
decrease in the volatiles and a commensurate increase in the fixed carbon content. The
increase in calorific value is significant in that the material once processed into a biofuel
has a calorific value of a mid-rank coal and so will be an excellent replacement of fossil
coal burnt in thermal power plants. It should also be noted that the partially processed
material had a significantly lower volatile content (67.6%) and higher fixed carbon content
(28.4%) than did the unprocessed material.

4.6. FTIR Analysis of Biofuel from Palm Kernel Shell

Samples of the biofuel from palm kernel shell waste and the ash from the biofuel were
analyzed using Fourier transform infrared spectroscopy (Figures 10 and 11). The biofuel
spectrum was consistent with that we have collected from other woody based biofuels.
The ash from combustion showed a very strong peak that is consistent with phosphates
and silicate-based clays.

One notable difference is the lower intensity of the 1600 cm−1 peak as compared
to the 1600 cm−1 peak. Since the symmetric aryl peak is stronger, this would suggest
a higher content of aromatics from lignin compounds in the biofuel from palm kernels
than from white wood. The broad peak at 3366 cm−1 is due to –OH groups in the biofuel
while the peaks at 2934 cm−1 and 2843 cm−1 are from symmetric and asymmetric bending
of methylene –CH2 groups. 1698 cm−1 conjugated carbonyl (C=O). This peak is lower
than usual 1740–1720 cm−1 due to internal hydrogen bonding which occurs in conjugated
unsaturated aldehyde. 1600 cm−1 and 1513 cm−1 are due aryl ring stretching symmetric
and asymmetric respectively. 1450 cm−1 and 1427 cm−1 C-H deformation, symmetric and
asymmetric. 1269 cm−1 and 1215 cm−1 indicate Ether C-O stretching vibration. The peak
at 1115 cm−1 is -ν C–O–C in cellulose and hemicelluloses while the 1030 cm−1 is –ν C–O
in cellulose.

The infrared spectrum of the ash is indicative of both phosphates and silicates being
present in the biofuel. The strong peak at 1027 cm−1 is diagnostic for both phosphate and
silicates while the peak at 795 cm−1 is indicative of silicon dioxide. The peak at ~600 cm−1

is ascribed to bending O-P-O vibrations indicating there are phosphates in the ash. [22]
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inorganic phosphates or silicates.

For van Krevelen diagram plot element analysis for C, H, O has been done and the
atomic percentage ratio of O/C and H/C calculated (Table 4). In the van Krevelen diagram
(Figure 12) the three biofuels made out of bark chips, palm waste, and sawdust are located
near the zone of coal and lignite coal. With the lower O/C ratio and the higher H/C ratio,
the fuel has a higher heating value. Therefore, it proved that the three biofuels from the
pilot plant made from three different biomass feedstocks are well carbonized through
the pilot plant and have a characteristic of regular coal in terms of the amount of carbon,
hydrogen, and oxygen.
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Table 4. Element analysis & comparison of O/C vs. H/C for three biofuels from Bark and Chip,
Palm Waste, and Sawdust.

C H O O/C H/C Caloric Value (HHV)

Bark and Chip 5.739 5.267 0.760 0.132 0.918 25.9 MJ/kg
Palm Waste 5.574 4.871 1.571 0.282 0.874 27.2 MJ/kg

Sawdust 5.495 4.762 1.623 0.295 0.867 27.6 MJ/kg
(Unit: atomic %).
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5. Conclusions

Table 5 summarizes the results of the 1700 L pilot plant and compares with previous
1 L lab scale results [12].

Table 5. Proximate analysis and calorific value results. References for the lab results comes from previous work of
Alexis et al.

* Feedstock
Wastewood

* Lab 1 L
Wastewood

** Lab 1 L
Sawdust

1700 L
Sawdust

1700 L Bark
and Chip

1700 L Palm
Waste

Moisture (%) 9.2 2.1 1.0 3.0 2.83 2.89
Volatile Matter (%) 72.3 56.8 50.2 46.6 49.67 47.35
Fixed Carbon (%) 17.1 39.8 48.4 49.1 43.81 46.43

Ash (%) 1.2 1.3 0.5 1.3 3.69 3.02
Calorific Value: HHV

(MJ/kg) 17.8 26.1 27.0 27.6 25.9 27.2

* [12] and separate, ** lab results.

The above results demonstrated that the biofuel produced in the 1700 L reactor has
the same properties as the biofuel produced in the laboratory using a 1 L reactor. This
is also supported by FTIR spectroscopy results at Figures 8 and 9 and the van Krevelen
diagram in Table 4 and Figure 12. Therefore, the results show conclusively that the biofuel
process will scale to commercial size and that the results determined in the laboratory are
the same as the results from a 1700-times larger reactor.

For building a commercial system, a mass and energy balance has been performed
(Figure 6) through the study of heat transfer between two reactors. It showed that the flash
steam movement between the two reactors enables a 74% energy savings. It provides a
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tool to calculate the amount of steam that needs to be put into the system. However, it is
regretfuk that the system didn’t have a steam flow meter to double check the amount of
the steam arising in each procedure.

The reactor system showed significant thermal stratification during runs with typical
biomass feedstocks. The uneven temperature leads to a significant variability of the quality
of the feedstock. In order to ensure thermal uniformity of the process a stirrer will be
needed. Alternatively, a pump could be used to circulate the liquid from the bottom of the
reactor to the top thereby heating the biomass more uniformly.
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