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Abstract: As third-generation neural network models, spiking neural P systems (SNP) have dis-
tributed parallel computing capabilities with good performance. In recent years, artificial neural
networks have received widespread attention due to their powerful information processing capabil-
ities, which is an effective combination of a class of biological neural networks and mathematical
models. However, SNP systems have some shortcomings in numerical calculations. In order to
improve the incompletion of current SNP systems in dealing with certain real data technology in
this paper, we use neural network structure and data processing methods for reference. Combining
them with membrane computing, spiking neural membrane computing models (SNMC models)
are proposed. In SNMC models, the state of each neuron is a real number, and the neuron contains
the input unit and the threshold unit. Additionally, there is a new style of rules for neurons with
time delay. The way of consuming spikes is controlled by a nonlinear production function, and the
produced spike is determined based on a comparison between the value calculated by the production
function and the critical value. In addition, the Turing universality of the SNMC model as a number
generator and acceptor is proved.

Keywords: membrane computing; spiking neural P systems; artificial neural networks; spiking
neural membrane computing models; Turing universality

1. Introduction

Membrane computing, an important branch of natural computing, is a computing
model inspired by the structure, function, and behavior of biological cells. At present,
there are three main types of membrane computing models: cell-like P system, tissue-like
P system, and neural P system. In the past few years, research on neural P systems has
mostly focused on spiking neural P systems, which is a type of computing model inspired
by the processing of information in the form of spikes by neurons in biological neural
networks. In 2006, Ionescu et al. first proposed the concept of spiking neural membrane
systems [1], which have received extensive attention in recent years as a third-generation
neural network model. Artificial neural networks are based on imitating the information
processing function of the human brain nervous system, based on network topology to
simulate the processing mechanism of the human brain nervous system towards complex
information. It is a type that combines the understanding of biological neural networks
with mathematical models to achieve powerful information processing capabilities, and it
has a wide range of applications in pattern recognition, information processing, and image
processing. We can find that both membrane computing and artificial neural networks are
inspired by biological neural networks, and, in a certain sense, they are connected.

The SNP systems have accumulated rich research results in theory and application,
especially in theoretical research. By changing the rules, objects, synapses, and structures to
expand systems, many new SNP systems have been established. The changes in rules are
mainly reflected in the form of the rules, such as SNP systems with white hole rules [2], SNP
systems with communication rules [3], SNP systems with polarizations [4], asynchronous
SNP systems [5], SNP systems with inhibitory rules [6], SNP systems with astrocytes [7],
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nonlinear SNP systems [8], and numerical SNP systems [9]. Inspired by the inhibitory spike
effect of communication between neurons, the concept of the anti-spike was introduced,
and a type of SNP system with anti-spike was proposed [10–12]. With expansions on
synapses, there are systems such as SNP systems with weights on synapses [13], SNP
systems with multiple channels [14], SNP systems with the rule on the synapse [15,16], and
SNP systems with scheduled synapses [17,18]. The improvement of the structure mainly
lies in making the structure of the membrane system dynamically changeable, for example,
self-organizing SNP systems with variable synapses [19] and SNP systems with neuron
division and budding [20].

SNP systems have a good network-distributed structure, a powerful parallel com-
puting ability, dynamic characteristics, and nondeterminism. These characteristics mean
the SNP systems have good application prospects in solving many practical problems. At
present, some scholars have proven the feasibility of SNP systems to solve pattern recogni-
tion problems [21–25], combined with algorithms to solve optimization problems [26–28],
clustering [29], automatic design [30], fault diagnosis [31–34], and perform arithmetic and
logic operations [35–38], implemented by software and hardware [39,40].

At present, the research on membrane computing mainly focuses on theoretical re-
search, and further research on its application is needed. Therefore, how to use membrane
computing to solve practical application problems is not only an important topic in the
field of membrane computing research, it also has important significance for the theoretical
development of membrane computing and neural networks. Membrane computing is
similar to artificial neural networks in many features; for example, they are both highly
parallel. Therefore, some scholars are currently dedicated to combining membrane comput-
ing with neural networks. For example, according to the self-organizing and self-adaptive
characteristics of the artificial neural network, SNP systems with a plastic structure have
been proposed [41–44]. Inspired by Eckhorn’s neuron model, coupled neural P systems
are proposed [45]. Inspired by the intersecting cortical model, dynamic threshold neural P
systems have been proposed [46]. An application is the use of neural network and neural P
systems for image processing [47–50]. It is notable that the combination of neural network
and neural P systems is only a theoretical improvement based on a certain characteristic of
neural networks or an improvement in rule structure based on the operation mechanism of
a specific network model. This has certain research value and development prospects for
the development of membrane computing, but these still need further research.

Therefore, both the theory and application of membrane computing need to be further
expanded. Artificial neural networks are currently widely used in classification, image
processing, and pattern recognition, but there are few studies on membrane computing
dealing with these problems. If they can be combined, the theory and application research
of membrane computing can be further expanded. In this paper, based on the structure of
the neural network and data processing method, combining it with membrane computing,
spiking neural membrane computing models (SNMC models) are proposed. SNMC models
retain the distributed parallel computing of membrane computing and also have the
method and structure of data processing by artificial neural networks, which provides a new
dynamic evolution model and enriches the computing model for membrane computing.

Although SNP systems have made great progress in recent years, they still have some
problems that can be improved, especially in data processing. In computer engineering and
other fields of calculation, numerical information processing is important work. However,
traditional SNP systems take the number of spikes as symbolic data, so it is difficult
to process a large amount of numerical information. However, in the SNMC model,
although the object is still spike, its production function can realize the processing of
numerical information.

In this paper, inspired by the MP neuron model, SNMC models are proposed. The
SNMC model contains two data units and rules with a production function. The data units
are all real values. The function of rules is to control the activation of neurons. Additionally,
the formulation of the rules is inspired by a nonlinear activation function. The main
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difference between the SNMC model and the artificial neural network is that the data flow
of the SNMC model is completed by rules and objects. The artificial neural network is only
calculated through mathematical models. The difference between the SNMC models and
the existing SNP systems are as follows.

(1) The forms of the rules are different; they contain the production functions. Addition-
ally, each neuron contains two data units, including the input value and the threshold
value. However, SNP systems contain the number of spikes in integer form.

(2) The execution steps of the rules are different. When the rules start to be executed,
SNMC models have the production and comparison steps.

(3) The synapse weights of connecting neurons in SNMC models are divided into in-
hibitory synapses and excitatory synapses, and the corresponding weights are positive
and negative. It can be explained in this manner: if the spike passes through the
inhibitory synapse, the spike will be negatively charged.

The structure of the rest of this paper is as follows. In Section 2, we give the concepts
of SNP systems and the MP model. In Section 3, the definition of a new type of neural
membrane computing model, called the SNMC model, is given; a detailed explanation of
the definition is also given, and the working process of the model is explained through an
example. In Section 4, through a simulation of a register machine, the Turing universality
of the SNMC model is proven in the generating mode and the accepting mode, respectively.
Finally, conclusions and future work are given in Section 5.

2. Related Works

In this section, SNP systems and the general mathematical model of the neuron
network are introduced. Moreover, some basic expressions of membrane computing
are given.

2.1. Spiking Neural P Systems

Definition 1. An SNP system with the degree m ≥ 1 is regarded as a tuple

Π = (O, σ1, σ2, · · · , σm, syn, in, out)

where

(1) O = {a} is the alphabet, and a is a spike included in neurons;
(2) (σ1, σ2, · · · , σm) represents m neurons with the form σi = (ni, Ri), 1 ≤ i ≤ m, where

(a) ni ≥ 0 is the number of spikes in neuron σi;
(b) Ri is the finite set of rules, including spiking rules and forgetting rules. The

form of spiking rules is E/ac → ap; d , c ≥ p ≥ 1, where d indicates the time
delay and E indicates the regular expression over the alphabet O. The form of
forgetting rules is as → λ , s ≥ 1. Additionally λ indicates the neuron is empty,
without spikes.

(3) syn ⊆ {1, · · · , m} × {1, · · · , m} represents synapses that connect neurons. Addi-
tionally, (i, j) ⊆ syn(i 6= j) indicates the synapse between neuron σi and neuron σj,
where;

(4) in is the input neuron;
(5) out is the output neuron.

An SNP system can be regarded as a digraph without self-circulation, denoted as
G(V, A). V is a set of vertices for neurons. A is the arc set for synapses. Spikes and rules are
included in neurons, and the number of spikes changes according to the rules in the neuron.
If the spiking rule activates, it means that the neuron contains at least c spikes. Additionally,
these c spikes will be consumed and produce p spikes that are sent to connected neurons
after d time units. In particular, the parameter d refers to delay, which means that the
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neurons involved in the delay turn off and refuse to accept external spikes before d time
units. For instance, assume d = 2 and the rule in neuron σi fires at step t, then σi is closed
in steps t and t + 1. The neuron σi reopens at step t + 2 and receives spikes at the next step.

If the forgetting rule activates, it means s spikes are removed from the neuron. The
function of input neuron is reading spikes from the environment, and the function of the
output neuron is outputting the results computed by the system.

The register machine has been shown to describe a set of recursive enumerable
languages called NRE, which is equivalent to the computing power of the Turing machine.
When proving the computational universality of various membrane systems below, the
purpose of characterizing NRE is mainly achieved by simulating the register machine,
which is denoted as a tuple, M = (m, H, l0, lh, I). Among them, m is the number of
registers, H is the instruction tag set, l0 is the start instruction, lh is the halting instruction,
and I is the instruction set. It is notable that each element in I corresponds to the element
in H. The register machine M contains the following three forms of instructions:

(1) ADD instructions, such as li : (ADD(r), lj, lk), mean that the number stored in register
r is increased by 1, and the next instruction is chosen lj or lk nondeterministically.

(2) SUB instructions, such as li : (SUB(r), lj, lk), generate two results according to the
number in register r. If the value stored in register r is greater than 0, the operation of
subtracting 1 is performed, and the next instruction lj is executed. If the value stored
in register r is equal to 0, no operation is performed on r, and the next execution
instruction is lk.

(3) Halting instruction lh : HALT is used to halt calculation.

2.2. Neural Network

From a biological point of view, a neuron can be regarded as a small processing unit.
Additionally, the neural network of the brain is made up of many neurons connected in
a certain way. The simplified mathematical model of neurons is shown in Figure 1. The
representation of the model can be regarded as Formula (1), which indicates the sum of
input of neuron i

ai = ∑
j

wijxj − bi (1)

where wij is the weight between neuron i and neuron j, xj is the input vector that comes
from neuron j, and bi is the threshold of neuron i, the value of which can be set to positive
or negative. In this way, it indicates that the neuron activates when the signal received by
the neuron is greater than the threshold.

Figure 1. The structure of the MP neuron model.

This neuron model is called the MP neuron model, which is an abstract and simplified
model constructed according to the structure and working principle of biological neurons.
In our proposed models, we consider its activation function is a nonlinear function, which
is the binary function shown as Formula (2)

yi =

{
1, ai > 0
0, ai ≤ 0

(2)
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3. Spiking Neural Membrane Computing Models

In this section, inspired by artificial neural networks, a new variant membrane com-
puting model, called the spiking neural membrane computing model, is proposed. It is a
combined model of neural network and spiking neural P systems and contains multiple
neurons. Neurons are connected by synapses, and the synapses have weights, where
the weights represent the relationship between neurons. To facilitate understanding and
expression, we use an expression similar to SNP systems.

3.1. Definition

Definition 2. The tuple of an SNMC model with a degree m ≥ 1 is represented as

Π = (O, N, W, syn, in, out)

where

(1) O = {a} is the alphabet, and a refers to the spike included in neurons.
(2) N= {σ1, · · · , σm} is the set of neurons, and neuron σi has the form σi = (ui, bi, p fi, Ri),

where

(a) ui ∈ R is input data in neuron σi;
(b) bi ∈ R is a threshold of neuron σi;
(c) p fi is the production function, which is to compute the total real value of

neuron σi. The total real value is the weighted sum of all inputs minus the
threshold;

(d) Ri is the set of firing rules, with the form E/ ap f (ui−bi)|0 → as; t1, t2 , s ∈ {0, 1}.
If s = 0, neuron σi is not producing spikes, denoted as a0 = λ.

(3) W is the weight on the synapse, which can be positive or negative. A positive weight
means an excitatory synapse, and a negative weight means an inhibitory synapse.

(4) syn ⊆ {1, 2, · · ·m} × {1, 2, · · ·m} ×W is the set of synapses.
(5) in and out are the input neuron and the output neuron, respectively. The input neuron

converts the input data into spikes containing real values. The output neuron outputs
the input data as a binary string composed of 0 s and 1 s.

A spiking neural membrane computing model can be regarded as a digraph structure
without self-circulation, where the nodes of the graph are represented by neurons, and
the arcs represent the synaptic connections between neurons, as shown in Figure 2. The
definition and description of SNMC models are given below. The neuron contains two
kinds of data: a real input value and a threshold value. The way of transmitting data is
determined by rules and synaptic connections.

Figure 2. The neuronal structure of an SNMC model.

How the SNMC model works is explained here. There are two types of synapses: one
is the inhibitory synapse, and the other is the excitatory synapse. This can be embodied by
the value of weights, where a positive weight means an excitatory synapse, and a negative
weight means an inhibitory synapse. It also indicates the relationship between neurons. For
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example, the weight between σi and σj is wij = 2, which means the synapse between them
is an excitatory synapse, and neuron σj receives twice the value that neuron σi outputs.

There are two types of data units in each neuron, including the input data unit and
the threshold unit. The threshold can be 0, which means no threshold in neurons. It is
notable that the neurons in our proposed model contain spikes with real values, which are
real numbers. The input data ui of a neuron is the linking input data plus original data.
The linking input data comes from the connected neurons, and the original data are that
the neuron itself already exists. In this way, neuron σi has a spike with real value ui, which
is the sum of the weighted values sent by the connected neurons plus the original values,
such as Formula (3), where wij is the weight between σi and σj, sj is the output value of
neuron σj, and εi is the original data of neuron σi.

ui = ∑
j

wijsj + εi (3)

For the convenience of calculation in this article, only integers are involved, which
can be interpreted as “integer spikes” in this paper. For instance, the real value 2 is shown
as a2, which can be explained as two spikes in a neuron. Additionally, a−2 is explained by
two spikes with a negative charge in the neuron. A negatively charged spike can annihilate
one spike.

The output state of the neuron is related to the rules. At each step, each neuron
contains at least one firing rule, which is applied sequentially within the same neuron, but
neurons work in parallel mode with each other. At a certain moment, if some neurons
contain more than one rule that can be applied, they will nondeterministically choose one
of the rules to apply. The way the rules are executed and interpreted is given below.

The rule contains two parts, including the production function and the outputting
function. The production function is used to calculate the total real value of the current
neuron, and the total effect on neuron σi is the input data minus the threshold, which will
cause the state change of neuron σi. In addition, the neuron has a critical value, which is
set to 0. Therefore, the execution steps of rules are divided into three steps: production,
comparison, and outputting.

(1) Production step. When neuron σi receives weighted spikes with real value u1,i(t1),
u2,i(t1), · · · , uk,i(t1) from connected k neurons at time t1, and the threshold is bi, the
production function works to calculate the total real value by Formula (4).

p fi = ∑
j

uj − bi (4)

(2) Comparison step. In this step, the result p fi computed by Formula (4) is compared with
the critical value 0. It determines whether the real value output of the next step is
1 or 0.

(3) Outputting step. According to the result of the comparison step, if it has p fi > 0, then
s = 1, and the rule E/ap f (ui−bi)|0 → a; t1, t2 can be applied to output a spike with the
real value of 1. If it has p fi ≤ 0, then s = 0 and the rule E/ap f (ui−bi)|0 → λ; t1, t2 fires.
Therefore, no spike can be sent to the connected neurons.

The firing of rules requires two conditions: (1) Assume the number of spikes contained
in neuron σi is k, ak belongs to the language set represented by the regular expression E,
and the number of spikes k contained in neuron σi is greater than or equal to the number
of spikes consumed, ui, i.e., k ≥ ui. (2) The neuron can only be activated when it receives
the signal sent by the connected neurons.

Additionally, t1 and t2 after the rule refers to time delay. t1 means the time neuron
receives spikes and t2 represents the rule execution time (from the execution of the produc-
tion steps to the outputting step). Before a delay of t1 times, the neuron is in a closed state.
If there is no delay, then the firing rule is abbreviated to E/ ap f (ui−bi)|0 → as . Moreover, the
neuron fires and contains a spike with the real value of u; then, the real input value of the
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input unit is reset to 0, and the threshold unit is unchanged after the outputting step. In
other words, once the rules fires in the neuron, the input value in the neuron is consumed.
It is noted that if the input value of the SNMC model is a natural number, and there is no
threshold in neurons and the weights are positive integers, then the SNP systems belong to
a special case of our proposed SNMC models.

At each step, the configuration of the system Π is composed of the real values of input
units and threshold units of all neurons, denoted as Ct ≤ u1(t), b1(t), · · · , um(t), bm(t) >,
where m is the number of neurons. The initial configuration is denoted as C0 ≤ u1(0),
b1(0), · · · , um(0), bm(0) >. With the application of firing rules, the configuration of the
system Π at a certain time is also changed. The transition from configuration at time t
to the configuration at time t1 is denoted as Ct ⇒ Ct+1 . When the calculation reaches a
certain configuration and there is no rule that can be activated, then the calculation stops,
and this configuration is denoted as Ch. The computational process of the system can be
regarded as a transition of a series of configurations, which is ordered and finite, i.e., from
the initial configuration to halting configuration C0 ⇒ C1 ⇒ · · · ⇒ Ch .

When an SNMC model is working in a generating mode in the initial configuration, all
the neurons in the model are empty except for neuron σ1, which means that all registers are
empty except for the number stored in Register 1. The calculation starts from instruction l0,
stops when the end instruction lh is reached, and then the number stored in Register 1 is the
generated number. The calculation result is associated with the firing time of neuron σout,
which is calculated by the time interval between the two nonzero values, that is, the time
it takes neuron σout to send the two spikes to the environment. Suppose that neuron σout
sends the spike to the environment for the first time at time t1; the environment receives
the second spike coming from σout at time t2, and then the calculation result is t2 − t1. In
addition, when an SNMC model works in the accepting mode, an input neuron σin is added
to read the values from the environment and all neurons are empty at the beginning. The
number is fed into the system in the form of an encoded spike train, and it means the time
interval between the two firings of σin is the input number. For instance, the input number
is n, n ∈ N+, and it is encoded as a spike train 10n−11, where 1 represents spike and 0 is
empty. The interval between two spikes is (n + 1)− 1 = n, which is the input number.

The family of all sets of numbers is denoted as Nα(Π), α ∈ {2, acc}. When α = 2,
N2(Π) represents the result of the system Π calculation. Additionally, “2” indicates that
only the first two firing times of neuron σout are considered. When α = acc, Nacc(Π) is the
set of all the accepted numbers by Π. The sets generated and accepted by SNMC models
are denoted by NαSNMC(p f (2))β

m, where p f (2) means two variables contained in each
production function, m ≥ 1 is the number of neurons, and β ≥ 1 is the number of rules.
Notice that when the number of neurons cannot be counted, it is denoted by a symbol, ∗.
In the following proof of the computing universality of SNMC models, the NRE, which is
a family of numerically computable natural numbers, can be described mainly through
simulating the register machine.

3.2. Illustrative Example

This example consists of 5 neurons and several synapses to explain the workflow
of the system Π, as shown in Figure 3. Neuron σ1 contains a real input value 2 and a
threshold value 1, and it exists in the neuron in the form of spikes [a2, a]. Suppose that
at Time 1, neuron σ1 fires since p f = 2− 1 = 1 > 0, and a spike is generated at Time 2,
that is,s = 1. Thus, neuron σ3 receives two spikes from neuron σ1. At Time 3, σ3 generates
one spike because its p f value is 1. Additionally, neuron σ2 contains two rules, of which
one is selected for execution indeterminately. Hence, there are two cases that can happen
depending on the rule selection in σ2.
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Figure 3. An example of the SNMC model. It is an explanation of the model workflow.

(1) Assuming that the rule ap f (u2−b2)|0 → as; 0, 1 is applied, neuron σ2 receives a spike
from σ1 at Time 2, and then the production function executes at Time 3. The value
p f = 1− 1 = 0 is obtained. Hence, at Time 4, neuron σ2 produces and sends an
empty to neuron σ4. At the same time, neuron σ2 also receives one spike from neuron
σ3; the rule ap f (u2−b2)|0 → as; 1, 0 is used. Since its p f value is 0, neuron σ2 sends an
empty to neuron σ4. The neuron σ4 has not received any spikes, so it produces empty
at Time 5, and neuron σ5 receives two spikes from neuron σ3. At Time 6, its rule in
neuron σ5 fires and its p f = 2− 1 = 1 > 0, so it produces one spike and sends it out
at the same time.

(2) Assuming that the rule ap f (u2−b2)|0 → as; 1, 0 is used, then neuron σ2 is in the closed
state before Time 3 and does not receive any spikes. At Time 3, the production
function of neuron σ3 performs and produces one spike to send to neurons σ2 and σ5.
Thus, at Time 3, neuron σ2 receives two spikes: one from neuron σ1 and the other from
neuron σ3. At Time 4, since p f = 2− 1− 1 > 0 in σ2, it has s = 1, and σ2 produces a
spike and sends it to neuron σ4. Neuron σ4 receives three spikes, and at Time 5, its
producing function can be calculated as p f = 3− 2 = 1 > 0, so s = 1. Meanwhile,
neuron σ5 receives two spikes from neuron σ3 and one negative spike from neuron σ4,
so neuron σ5 contains one spike. In this way, no spike is generated and sent out at
Time 6 because of p f = 1− 1 = 0.

In order to conveniently display the changes of neurons at each time, a graph of
configuration is given, as shown in Figure 4. The configuration in this figure is in the order
of neuron σ1, σ2, σ3, σ4, and σ5, and it is composed of the input unit and the threshold unit
with the form of C ≤ u1, b1, u2, b2, u3, b3, u4, b4, u5, b5 >. When rules are still performing at
a certain moment, the corresponding spikes are considered not to be consumed completely,
denoted as “ui

′”.

Figure 4. The configuration of the example at each time.
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4. Turing Universality of SNMC Models

In this section, the computational power of SNMC models is proved as number
generators and acceptors, respectively.

4.1. Generating Mode

In generating mode, the most important neuron σout is contained. In this way, the
Turing universality of SNMC models as a generator is investigated by simulating three
instructions, including the ADD instruction, the SUB instruction, and the halt instruction.
Thus, three modules, named ADD, SUB, and FIN modules, are used for the simulation. As-
sume that each neuron contains a certain initial threshold. It is stipulated that each neuron
corresponding to an instruction has an initial threshold a, and each neuron corresponding
to the register has an initial threshold a.

Theorem 1. N2SNMC(p f (2))2
∗ = NRE.

Proof of Theorem 1. Module ADD is used to simulate ADD instructions li : (ADD(r), lj, lk),
as shown in Figure 5. When register r is increased by one, the spike is transmitted
indeterminately to lj or lk. Assume that the configurations of the module ADD Ct ≤
u1, b1, u2, b2, . . . , u6, b6 > is associated with six neurons σli , σc1 , σc2 ,σc3 , σlj

and σlk , respec-
tively. Assume neuron σli receives two spikes at time t, and the configuration of time t
is Ct ≤ 2, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 >. At time t + 1, the rule in σli fires and the production
function starts to compute. It has p f = 2− 1 = 1 > 0, thus neuron σli sends the produced
spike to neurons σc1 , σc2 and σr respectively, at time t + 2. There are two rules within
neuron σc2 , and the application of one of them is indeterminately selected. Therefore, two
cases happen.

Figure 5. Module ADD. Its function is to Simulate ADD instruction li : (ADD(r), lj, lk).

(1) If the rule ap f (u2−b2)|0 → as is applied, neuron σc1 receives two spikes and σc2 receives
one spike at time t + 2. The configuration becomes Ct+2 ≤ 0, 1, 2, 1, 1, 1, 0, 1, 0, 1, 0, 1 >.
In neuron σc1 , it has p f = 2− 1 = 1 > 0 and sends one spike to σc2 and σc3 at time
t + 3. But due to the delay of one time in σc3 , neuron σc3 receives the spike at the next
time. Thus, the configuration of time t + 3 is Ct+3 ≤ 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1 >. At
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time t + 4, the rule ap f (u2−b2)|0 → as; 1, 0 fires and the production result in neuron σc2

is p f = 1− 1 = 0, such that the neuron produced empty, with s = 0 in the outputting
step. In this way, neuron σlk is empty. Since the time delay in neuron σc3 , σc3 only
receives the spikes sent by neurons σc2 and σc1 at time t + 4, so neuron σc3 receives
two spikes from σc1 in total and Ct+4 ≤ 0, 1, 0, 1, 0, 1, 2, 1, 0, 1, 0, 1 >. Calculate the p f
value p f = 2− 1 > 0, and one spike is generated. Therefore, neuron σl j receives two
spikes at time t + 5 and Ct+5 ≤ 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1 >.

(2) If the rule ap f (u2−b2)|0 → as; 1, 0 in neuron σc2 is activated, then at time t + 2, since
there is the time delay in σc2 , only neuron σc1 receives two spikes and neuron σr re-
ceives one spike. The configuration of time t + 2 is Ct+2 ≤ 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1 >.
The p f value in neuron σc1 is 1, which is greater than 0; thus, σc1 sends out a spike at
time t + 3. Thus, neuron σc2 receives two spikes sent by neurons σli and σc1 at time
t + 3, and Ct+3 ≤ 0, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1 >. At the next time, neuron σlk receives
two spikes sent by neuron σc2 . Additionally, neuron σc3 receives two spikes from σc1

and one spike with a negative charge from neuron σc2 , so neuron σc3 has one spike
at this time, and the configuration is Ct+4 ≤ 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1 >. Therefore,
no spike is sent to neuron σl j in time t + 5 because of p f = 1− 1 < 0 in σc3 and
Ct+5 ≤ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1 >.

The module SUB, as shown in Figure 6, is used to simulate the SUB instruction in
the register machine. The configuration of the module SUB is Ct ≤ u1, b1, . . . u7, b7 >; they
correspond to the number of input units and threshold units of neurons σli , σv1 , σr, σv2 , σv3 ,
σlj

and σlk . Assume that neuron σli receives two spikes at time t, and the configuration
is ct ≤ 2, 1, 0, 1, x, 1, 0, 1, 0, 1, 0, 1, 0, 1 >. At time t + 1, the production function starts to
calculate a p f value that is equal to 1 (greater than 0), so one spike is generated at time
t + 2 and sent to σv1 and σr. At time t + 2, neuron σv1 receives two spikes, and neuron σr
receives one spike, but it is unknown whether there is empty in neuron σr. According to
the number of spikes contained in σr, the operation results are divided into the following
two cases:

Figure 6. Module SUB. Its function is to simulate SUB instruction li : (SUB(r), lj, lk).
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(1) If register r of register machine M stores a number n > 0, it means that neuron σr
contains at least one spike. At time t + 2, neuron σr contains at least two spikes, and
so Ct+2 ≤ 0, 1, 2, 1, n + 1, 1, 0, 1, 0, 1, 0, 1, 0, 1 >. As its p f value is 1>0, one spike is
generated and sent to neurons σv2 and σv3 , respectively, at time t+ 3. At the same time,
neuron σv1 generates one spike since p f = 2− 1 = 1 > 0. Thus, neuron σv2 receives
two spikes, one from σr and the other from σv1 , and σv3 receives one spike because one
negatively charged spike and one spike are annihilated. The configuration of time t+ 3
is Ct+3 ≤ 0, 1, 0, 1, 0, 1, 2, 1, 1, 1, 0, 1, 0, 1 >. At the next time, since p f = 2− 1 = 1 > 0
of neuron σv2 , a spike is generated and two spikes are sent to σlj

. Additionally, the p f
value of neuron σv3 is 0, so no spike is generated; then, neuron σlk is empty. In this
way, the configuration of time t + 4 is Ct+4 ≤ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 1 >.

(2) Suppose that no number is stored in register r at the initial time; that is, neuron σr is
empty. At time t + 2, one spike from σli is received by σr, and the rule fires. Thus, the
configuration is Ct+2 ≤ 0, 1, 2, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1 >. Since there is only one spike
in σr, and its p f = 1− 1 = 0, neuron σr produces no spike at time t + 3. Meanwhile,
the neuron σv2 receives one spike from σv1 and σv3 receives two spikes from σv1 . The
configuration of time t + 3 is Ct+3 ≤ 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 1, 0, 1 >. At time t + 4,
the rule in σv2 is applied, and the calculation p f = 1− 1 = 0, so no spike is generated.
Additionally, according to the rule, σv3 generates one spike and neuron σlk obtains
two spikes. Therefore, neuron σlk has one spike and neuron σlj

is empty. In this way,
Ct+4 ≤ 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 1 >.

It is notable that despite that it is possible to have multiple SUB instructions operating
on the same register, no incorrect simulation of M caused by the interference among SUB
modules in Π takes place. Assume that SUB instructions li and l′ i share the same register r,
so when the instruction li works, we need to ensure that the work of instruction l′ i will not
be affected in the next work. Assume that the neurons connected to register r in instruction
l′ i have σ′v2 and σ′v3 , which correspond to σv2 and σv3 shown in Figure 6. According to the
simulation of the above module SUB, when there is no number stored in register r, neuron
σr does not generate any spike, so it will not affect instruction l′ i. When register r is not
empty, then neuron σr produces one spike. After passing through the synapse, neuron σ′v2

receives one spike and neuron σ′v3 receives a spike with a negative charge. According to
the rules of neurons σ′v2 and σ′v3 , their p f value does not exceed 0, so no spike is generated.
Therefore, instruction l′ i is not affected when instruction li is simulated. In this way, the
simulation of module SUB is proven correct.

The function of module FIN is to output the computational result (shown in Figure 7).
Suppose that the number in Register 1 is n, that is, there are n spikes in neuron σ1. Ad-
ditionally, neurons σlh and σout contain a spike, respectively. Suppose that at time t,
neuron σlh receives two spikes. As shown in Figure 7, we can see that the configuration
is Ct ≤ 2, 1, 0, 1, 0, 1, 0, 1, n, 1, 0, 0, 1, 1 >. Therefore, at time t + 1, from the p f value of σlh
(p f = 2− 1 = 1 > 0), one spike is generated and sent to neurons σh1 and σh2 . Neurons
σh1 and σh2 both receive two spikes, and their rules are activated. Since the p f values of
σh1 and σh2 are p f = 2− 1 = 1 > 0, at time t + 2, both neurons σh1 and σh2 generate one
spike. Neurons σh3 and σh2 both receive two spikes from neuron σh1 , and neuron σh1 also
receives two spikes from σh2 . Hence, at time t + 3 until the calculation stops, neurons σh1
and σh2 will always repeat the operation as at time t + 2. At time t + 3, the rule of neuron
σh3 is activated, and it has p f = 2− 1 = 1 > 0, so one spike is sent to neurons σout and σ1,
respectively. Neuron σout contains two spikes. Thus, at time t + 4, according to the rule in
σout, one spike can be generated and sent to the environment. At the same time, neuron
σout receives a spike obtained from neuron σh3 . It is worth noting that neuron σh3 always
sends one spike every time after time t + 3 to neuron σout and σ1 until the calculation stops.
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Figure 7. Module FIN. Its function is to output the computation result.

At time t + 3, neuron σ1 receives a spike with a negative charge. Hence, neuron σ1
contains n− 1 spikes at this time. However, according to the rule in neuron σ1, the rule can
fire if and only if the number of spikes in neuron σ1 is not more than 2. Hence, until time
t + n, when neuron σ1 contains only two spikes, the rule is activated. At time t + n + 1,
since p f = 1 > 0 in neuron σ1, it generates a spike and sends it to neuron σh4 . At the next
time, the rule of σh4 fires. Since its p f value is greater than 0 and the rule execution time has
a one-step delay, one spike is generated and sent to neuron σout at time t + n + 3. At this
time, neuron σout also gets a spike from neuron σh3 , so it contains two spikes. Therefore,
at time t + n + 4, neuron σout generates one spike and sends it to the environment. The
calculation result of the SNMC model is defined as the time interval for the output neuron
to send the first two nonzero values to the environment, that is, t + n + 4− (t + 4) = n
which is consistent with number n stored in Register 1. Therefore, the FIN module can
output the calculation result correctly.

In this way, the computation power of SNMC models in generating mode is investi-
gated by simulating the register machine correctly through three modules. �

4.2. Accepting Mode

The computational power of an SNMC model is obtained by simulating the deter-
ministic register machine in the accepting mode. We need to construct an SNMC model,
including module INPUT, module SUB, and module ADD’, to simulate the deterministic
register machine. Module SUB is the same as that in the generating mode, and we will
not prove it in this part. Additionally, module ADD’ simulates the deterministic ADD
instruction li : (ADD(r), lj).

Theorem 2. NaccSNMC(p f (2))2
∗ = NRE.

Proof of Theorem 2. We only need to prove that module INPUT and module ADD can
simulate the register machine. The function of module INPUT is to read the number
encoded into a spike train into the model, as shown in Figure 8. Assume that number n
is to be read into the SNMC model by module INPUT. Firstly, encode n into a spike train
10n−11, where the time interval between two spikes is n. When input neuron σin reads the
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symbol 1, it means that input value u is 1, and when the read symbol is 0, it means input
value u is 0. Then, use module INPUT to store the number in Register 1. If Register 1 stores
number n, it corresponds to neuron σr receiving n spikes.

Figure 8. Module INPUT. Its function is to read the spike train to model Π.

At the initial moment, there is one spike in neuron σin, one spike in σc1 , and one spike
with a negative charge in σc2 , i.e., the initial configuration is C0 ≤ 1, 0, 1,−1,−1, 1, 0, 1, 0, 1 >.
Suppose that at time t, neuron σin receives the first spike from the environment. Thus, there
are two spikes in σin. According to the rule ap f (uin−bin)|0 → as , the p f value is equal to
2 > 0, so a spike is generated. At time t + 1, neuron σc1 receives one spike with a negative
charge, which annihilates the spike it contains. Hence, there is no spike in σc1 . According
to the rule ap f (uc1−bc1 )|0 → as , calculate the p f value and p f = 0 + 1 = 1 > 0. Hence, σc1

produces one spike and sends it to neuron σ1 at the next time. Neuron σc2 also receives two
spikes from σin at time t + 1, one of which is annihilated by the negatively charged spike.
At this time, σc2 has one spike. Additionally, calculate p f = 1− 1 = 0, so that neuron σc2

generates empty at time t + 2. Simultaneously, neuron σin receives the empty (0) from the
environment and sends the empty to neurons σc1 and σc2 according to its rule.

Therefore, at time t + 2, neuron σc1 is activated again, and its p f = 0 + 1 = 1 > 0.
Thus, σc1 produces one spike and sends it to neuron σ1. At the next time t + n− 1, neuron
σin always accepts the empty, so neuron σ1 receives n spikes until time t + n. At time t + n,
σin obtains the second spike. Thus, according to the value p f = 1− 0 = 1 > 0, σin produces
one spike. In this way, σc1 receives one spike with a negative charge, and σc2 receives two
spikes. At time t + n + 1, neuron σc1 fires, and its p f = −1 + 1 = 0, hence no spike is
generated. Meanwhile, according to the rule in neuron σc2 which is p f = 2− 1 = 1 > 0,
a spike is produced and two spikes are sent to neuron σl0 . So far, the module INPUT
simulation is completed.

The module ADD’, used to simulate deterministic ADD instruction li : (ADD(r), lj),
is shown in Figure 9. When neuron σli receives two spikes, the produced one spike is
transmitted to neuron σlj

because of p f = 2− 1 = 1 > 0; hence, neuron σlj
receives two

spikes and neuron σr also gets one spike from neuron σli . Therefore, the operation of
increasing by 1 to register r is successfully simulated by module ADD’.
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Figure 9. Module ADD’. Its function is to simulate deterministic ADD instruction li : (ADD(r), lj).

Based on the above proof, it is determined that the register machine can be correctly
simulated by the SNMC model working in the accepting mode. Therefore, NaccSNMC(p f (2))2

∗
= NRE. �

5. Conclusions

Inspired by the SNP systems and artificial neural networks, this paper presents a
new membrane computing model called the spiking neural membrane computing model.
The model is composed of multiple neurons and connected synapses. The weights on
the synapses represent the relationship between the neurons. According to the types of
synapses, weights can be either positive or negative. If the synapse is inhibitory, the weight
is negative. If the synapse is excitatory, a positive weight value denotes it. Each neuron
contains two data units: the input value unit and the threshold unit, both of which exist in
the form of spikes. In this model, the activation of rules in neurons requires two conditions.
One is to meet the conditions generated by the regular expression, and the other is that the
neuron can only be activated when it receives signals from the connected neurons.

The operation of the rule needs to be divided into three stages: production step,
comparison step, and outputting step. Note that when the generated positive real value is
transmitted to the neuron through the inhibitory synapse, the neuron receives a negative
value; this means that there is a spike with a negative charge in the neuron. A spike with a
negative charge and a spike with a positive charge can cancel each other out. In addition,
we also proved the computing power of the SNMC model through Theorems 1 and 2.
When the model is in the generating mode, the Turing universality of the SNMC model
as a number generator is proven by simulating the nondeterministic register machine.
Additionally, the Turing universality of the SNMC model as a number acceptor is proven
by simulating a deterministic register machine.

The following are the advantages of the SNMC model:

1. The weight and threshold values are introduced into the SNMC model, and the rule
mechanism is improved compared with the SNP system so that the model combines
the advantages of membrane computing and neural networks and can extend the
application when processing real value information in particular.

2. The rules of the SNMC model involve production function, and the calculation
method of production function originates from the data processing method of neural
networks, so the effective combination of the SNMC model and algorithms can be
realized in the future.

3. The computing power of the SNMC model has been proven, and it is a kind of Turing
universal computational model.

The SNMC model extends the current SNP systems and comprehensively considers
the relevant elements of the current SNP systems, such as time delay, threshold, and weight.
The way of data processing in SNMC models makes the development of SNP systems more
possible. We found that if the potential value of the SNMC model is a natural number, there
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is no threshold and weights are only positive integers; then, most of the currently existing
SNP systems belong to a special case of our proposed SNMC model. The main difference
between SNMC models and current SNP systems lies in the operating mechanism of
rules. For example, the SNMC model is compared with SNP systems with weights and
thresholds (WTSNP) [51]. They have different forms of rules, roles of thresholds, and
operation mechanisms of rules. Additionally, the main difference with the numerical SNP
system (NSNP) [9] is that the NSNP is embedded into the SNP system as the form of
rule of the numerical P system and its object is not a spike. The firing rules also operate
differently. In the SNMC model, the potential value is consumed in the form of spikes, and
two results are produced, 0 or 1, according to the comparison results of the production
function. Additionally, the SNMC model works by mapping the production function to an
activation function.

The main difference between the SNMC model and artificial neural networks is that
the data flow of the SNMC model is completed by rules and objects. Artificial neural
networks are only calculated through mathematical models. The proposed SNMC model
not only retains the distributed parallel computing of membrane computing but also has
the method and structure of neural networks for data processing. Therefore, the model can
be used in the future to deal with certain practical problems and expand the application
of membrane computing. For example, further research can be carried out on image
processing and algorithm design.
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