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Abstract: To simultaneously reduce automobile exhaust pollution to the environment and satisfy the
demand for high-quality gasoline, the treatment of fluid catalytic cracking (FCC) gasoline is urgently
needed to minimize octane number (RON) loss. We presented a new systematic method for deter-
mining an optimal operation scheme for minimising RON loss and operational risks. Firstly, many
data were collected and preprocessed. Then, grey correlative degree analysis and Pearson correlation
analysis were used to reduce the dimensionality, and the major variables with representativeness
and independence were selected from the 367 variables. Then, the RON and sulfur (S) content were
predicted by multiple nonlinear regression. A multi-objective nonlinear optimization model was
established with the maximum reduction in RON loss and minimum operational risk as the objective
function. Finally, the optimal operation scheme of the operating variable corresponding to the sample
with a RON loss reduction greater than 30% in 325 samples was solved in Python.

Keywords: FCC; RON; grey relational analysis; nonlinear regression; multi-objective nonlinear
optimization

1. Introduction

Gasoline is the main fuel for small vehicles. The exhaust emitted from gasoline com-
bustion has an important impact on the atmospheric environment [1,2]. Therefore, countries
around the world have set increasingly stringent petrol quality standards (Table 1).

With the continuous improvement in the requirements for environmental protection,
the quality of gasoline products is also constantly improving, in which octane number
(RON) is an important index of the quality of gasoline products [3], which directly affects
whether the gasoline is qualified. Therefore, in order to meet the requirements of environ-
mental protection and reduce the emission of harmful substances in gasoline tail gas, the
demand for high-octane gasoline is increasing each year.

Heavy oil usually accounts for 40–60% of crude oil, which is difficult to directly used
given the high impurity content represented by sulfur (S). In order to effectively use heavy
oil resources, it is necessary to develop heavy oil lighterization technology centering on
FCC to convert heavy oil into gasoline, diesel and low carbon olefin [4].

As a secondary processing unit of petroleum, the fluid catalytic cracking (FCC) unit
performs the task of blending slag oil and lightening heavy oil. FCC gasoline is the main
source of motor gasoline, which accounts for a large proportion of fuel in many countries
at present [5]. For example, more than 70% of gasoline in China is produced by FCC,
so more than 95% of S and olefins in finished gasoline is from FCC. Desulfurization and
dealkylation are the key to improving the quality of FCC gasoline, so FCC gasoline must be
refined to meet the gasoline quality requirements. This has attracted the attention of many
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scholars [6–9]. In recent years, several new FCC gasoline desulfurization and olefins reduc-
tion processes have been developed abroad, such as ExxonMobil’s Octgain process [10]
and Scanfining process [11], Universal Oil Products Company’s ISAL process [12], and
Institute of Petrole France’s Primer-G process [6].

Table 1. European Union and China’s main specifications for automotive gasoline.

Standard of Gasoline
for Vehicles RON S Content (µg/g, ≤) Benzene Content

(%, ≤)
Aromatic Content

(%, ≤ ) Olefin Content (%, ≤)

China 3 (2010) 90–97 150 1 40 30
China 4 (2014) 90–97 50 1 40 28
China 5 (2017) 89–95 10 1 40 24

China 6-A (2019) 89–95 10 0.8 35 18
China 6-B (2023) 89–95 10 0.8 35 15

European 5 (2009) 95 10 1 35 18
European 6 (2013) 95 10 1 35 18
World Fuel Code
(5 class gasoline) 95 10 1 35 10

In order to protect the environment and reduce the emission of harmful substances
in gasoline exhaust, gasoline cleanness will be necessary. The core aspect of the cleaning
is to significantly reduce the contents of S, olefin, aromatic hydrocarbon, and benzene in
gasoline, while maintaining a high RON [13].

With the increasing demand for high-octane gasoline at present, research on RON
is also increasing [14–18]. The measures to improve the gasoline RON of heavy oil FCC
unit are being analyzed and discussed in order to achieve the goal of increasing the
gasoline RON.

RON is the most important index reflecting the gasoline combustion performance,
and is used as a commodity brand of gasoline (such as #92, #95, and #89). In the process of
desulfurization and olefins reduction of FCC gasoline, the octane number of gasoline is
generally reduced using existing technology. Each reduction in octane rating by one unit is
equivalent to a loss of about RMB 150 per ton. Take a 1 million tons/year catalytic cracking
gasoline refining unit as an example, if RON loss can be reduced by 0.3 units, the economic
benefit would be RMB 45 million.

The chemical process is usually modeled by data association or mechanism modeling,
and some achievements have been made [19–25]. However, because of the complexity of
the refining process and the diversity of the equipment, their operation variables (control
variables) are highly nonlinear, with coupling between the relationships. Given the rel-
atively few variables in traditional data correlation models, mechanism models for the
analysis of the raw material demand do not responding to the process optimization in
a timely manner, so the effect is not ideal. Recently, data mining has been widely used
in various fields [26,27]. Typically, the task of data mining is to predict variables that are
difficult to obtain from experiments. By fitting the function well, the predictive variable can
be output quickly through the input of the independent variable. Therefore, data mining
assisted by machine learning [28,29] is a good tool to solve chemical process.

Because of the complexity of the engineering process system, most engineering knowl-
edge is based on a variety of empirical equations. Therefore, it is very difficult to excavate
the internal relationship in the process of engineering. Kalogirou [30] presented a typical
study, applying data mining methods to optimize and design engineering applications.
Artificial neural network (ANN) was applied to the training of transient simulation data of
typical solar energy system in industrial engineering. Then, genetic algorithm [31,32] was
used to estimate the optimal size of the parameters according to the results of ANN. But
given the “black box” nature of neural networks, this means that we don’t know how and
why the neural network will produce a certain output. If we want to show the optimization
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process and explain the operation scheme better, applying the optimization model will be
a good choice.

Sinopec Gaoqiao Petrochemical was established in 1957. It is one of the earliest petro-
chemical plants in China. With total assets of 19.3 billion yuan, it is one of Sinopec’s key
10 million-ton-level oil refining bases and clean oil production bases. It is the backbone en-
terprise of refined oil supply in Shanghai and the only fuel-lubricant oil refining enterprise
in the Yangtze River Delta region,known as the cradle of China’s chemical industry.

At present, an FCC gasoline refining desulfurization unit of Sinopec Gaoqiao Petro-
chemical has been running for 4 years and has accumulated large amounts of historical data.
The average RON loss of its gasoline products is 1.37 units (%), but the minimum RON
loss of similar units is only 0.6 units. Therefore, there is still a large room for optimization.

The goal of this study was to optimize and adjust the operation plan of the FCC
refinery desulfurization unit in the petrochemical plant.

2. Process and Methods
2.1. Sample

We used four years of data from April 2017 to May 2020 from Sinopec Gaoqiao Petro-
chemical, using the data of 325 samples, considering 354 operation sites of the FCC gasoline
refining desulfurization unit, and 367 variables including 7 raw material properties, 2 prop-
erties of raw adsorbents, 2 properties of regenerative adsorbents, 2 product properties, and
so on. Data acquisition information is provided in Table 2.

Table 2. Raw data sampling.

Database Source Variable Date (YYYY.MM) Frequency

Honeywell PHD operation variable data 2017.04–2019.09 3 min/time
2019.10–2020.05 6 min/time

LIMS experimental database data on raw materials,
products, catalysts 2017.04-2020.05 2 times/week

2.2. Modeling Purposes

Based on the data from these samples, a mathematical model was established to
predict the RON loss of gasoline, and the optimum operating conditions of the samples
were obtained. Under the condition of S content being no more than 5 µg/g, the RON loss
of gasoline was reduced by at least 30%.

2.3. Modeling Procedures

The modeling procedure was performed according to the following steps:

1. Data preprocessing.
2. Based on the data of 325 samples, major variables were selected from 367 operational

variables by dimension reduction to establish the RON loss reduction model.
3. According to the main variables selected, data mining technology was used to establish

the RON loss prediction model, and the model was verified.
4. Based on the regression model, the optimization model was established. Using the

computer algorithm to solve it, so as to obtain the optimal operation scheme.

2.4. Data Preprocessing

For the data comparison in this study, a common situation occurred: Some of the
data only contained part of the time point, so we needed to eliminate outliers from the
incomplete value free sample data.

Delete the data that is difficult to recover and correct (abbreviated as delete). Replace
the blank value with the average of the data before and after the two hours (abbreviated
as mean patch). For the data that can be made up, mean patch is carried out after it
is removed.
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When processing data, it is sometimes necessary to exclude certain outliers in order to
improve the accuracy of the data. In this case, the Laida criterion, also known as the 3σ
criterion, can be considered.

Assume that a set of measurement variables contains only random error. Let these vari-
ables be x1, x2, ..., xn. Take the average of them, and denote it as x. And then calculate the
residual error vi = xi − x, i = 1, 2, ..., n. The standard error σ is calculated by using Bessel’s
formula. If the residual error vi of a measurement value xi satisfies |vi| = |xi − x| > 3σ, it
is considered that the residual error belongs to the gross error and should be eliminated.
Bessel’s formula is as follows:

σ = [
1

n− 1

n

∑
i=1

Vi
2]1/2 =

{[
n

∑
i=1

xi
2 − (

n

∑
i=1

xi)
2

/n

]
/(n− 1)

}1/2

(1)

The data preprocessing method is shown in Figure 1.

Figure 1. Data preprocessing method.

2.5. Descending Dimension

In order to establish the RON loss prediction model and the RON loss reduction model
for gasoline, it was necessary to screen out the main variables that affected the model. Given
the 367 variables involved, variable filtering was the top priority in the modeling. Variable
screening was needed to reduce the dimension of raw materials, adsorbent properties, and
operating variables. The operating variables were highly nonlinear and strongly coupled,
so the main variables needed to be selected having representativeness and with the the two
elements being independent.

For a screening factor or feature selection problem, the amount of computation in-
creases exponentially as the number of variables increases, and we wanted to identify
the set of variables that reflected the characteristics of the problem while minimizing the
amount of computation. Thus, in essence, this is a combinatorial optimization problem. For
this optimization problem, each method can only provide an approximate solution because
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the subset search methods and evaluation criteria are different, and the rationality of the
solutions of different methods is affected by their own limitations. In order to obtain a more
systematic and reasonable subset of variables, we used integration learning as a reference
and used a combination of various methods to form an integration method to minimize
the problems caused by the single datum and methods, and thus improve the effect.

There are many types of dimension reduction methods [33,34]. According to the
data’s characteristics in this article, principal component analysis (PCA) should not be used
because the variables obtained through PCA are no longer independent and representative.
There were only 325 data samples and 367 variables, so direct multiple linear regression
dimension reduction was not possible. If we regressed directly, there would be serious
overfitting. Similarly, random forest and other machine learning algorithms were not
appropriate. As such, first, we used grey relational analysis [35–37] to screen out the
variables with a large correlation degree with octane number to identify the representative
variables. Then, the Pearson correlation coefficient [38–40] was used to investigate the
correlation between variables to obtain both representative and independent variable sets,
and only one of the strongly correlated variable sets was retained. The same method was
used to screen out the main variables affecting the S content.

Grey correlation degree analysis [37] provides a reliable theoretical basis for system
prediction, control, and decision making. This method is suitable for time series data, that
is, it can accurately and rapidly reflect the situation change in data over time. When the
sample data reflect the change trend in two factors are basically the same, the shapes of
the time series curve are relatively close, reflecting the high correlation degree between the
two factors, or, vice versa, reflecting the low correlation degree between the two factors.
The specific steps are as follows:

(1) Deterministic analysis sequence
An index is determined as a dependent variable, and its time data series, as a reference
series, denoted as X0

′. The remaining indexes are taken as independent variables,
and their data sequence is taken as a comparison sequence, denoted as Xi

′, where
i = 1, 2, ...m and the number of observation samples is n. Then, a two-dimensional
table of (m + 1)× n for the sequence data is obtained, where the value is Xi

′(k) and
i = 0, 1, ...m; k = 1, 2, ...n.

(2) Dimensionless processing
In order to eliminate the influence of different index dimensions on the data analysis
results, variables need to be standardized.
Forward pointer:

Xi(k)−min
k

Xi(k)

max
k

Xi(k)−min
k

Xi(k)
(2)

Negative pointer:
max

k
Xi(k)− Xi(k)

max
k

Xi(k)−min
k

Xi(k)
(3)

(3) Calculate the correlation coefficient between each factor

ξi(k) =
min

i
min

k
|x0(k)− xi(k)|+ ρ max

i
max

k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρ max
i

max
k
|x0(k)− xi(k)|

(4)

where i = 1, 2, ...m, ξ i(k) is the coefficient of the correlation between the comparison
sequence and the reference sequence; ρ ∈ (0, 1) is the resolution coefficient, usually
taken as 0.5; and min

i
min

k
|x0(k)− xi(k)| and max

i
max

k
|x0(k)− xi(k)| are the two-stage

minimum difference and the two-stage maximum difference, respectively.
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(4) Calculate the correlation degree between all the variables

ξi =
1
n

n

∑
k=1

ξi(k), i = 1, 2, ...m (5)

2.6. Regression

Among the many statistical models, the multiple regression model is the most fre-
quently used [41–43]. If the relationship between dependent variables and independent
variables can be expressed in linear form, multiple linear regression models can be used for
analysis. The multiple linear regression model uses the known data set to fit the dependent
variables of interest and the main influencing factors, and then the effect of the influencing
variables can be analyzed through the obtained linear expression to explain and predict the
changing trend in the dependent variables with the changes in these influencing factors.

The ordinary linear regression model of dependent variable y and variable x1, x2...xp is:

y = ω0 + ω1x1 + ω2x2 + · · ·+ ωpxp + ε (6)

where ω0 is the regression constant, ωj,j = 1, 2..., p represents the regression coefficient; y is
the predictive variable; xi,i = 1, 2..., p is the explanatory variable; and ε is the random error
term. Moreover, it is assumed that E(ε) = 0, Var(ε) = 1. When p = 1, the above ordinary
linear regression model is a unitary linear regression model; when p > 1, it is a multiple
linear regression model.

In practical problems, the relationship between dependent variables and independent
variables of many regression models is not linear, and some regression models can be
transformed into linear relationships by functional transformation of independent variables
or dependent variables, and linear regression can be used to solve unknown parameters
and perform regression diagnosis. Common transformations are shown in Table 3.

Table 3. Common transformations.

Model Original Model Transform New Model

Logarithm y = a + b ln t x = ln t y = a + bx
Inverse y = a + b 1

t x = 1
t y = a + bx

Quadratic y = a + bt + ct2 x1 = t, x2 = t2 y = a + bx1 + cx2
Combination y = a + bt + c ln t x1 = t, x2 = ln t y = a + bx1 + cx2

2.7. Optimization

The first determining objective functions were the largest RON loss decline and mini-
mum operation risk. According to the problem, the corresponding constraint conditions
were given to establish a multi-objective nonlinear optimization model [44]. Then, we
transformed the multi-objective model into single-objective optimization model, and by
introducing a new variable to the absolute value, nonlinear optimization becomes linear
optimization. Finally, the optimal operation scheme of operation variables was obtained
by Python.

In practice, the multi-objective problem is widely used, and there are many methods
available to solve this problem. Generally, the basic approach involves transforming solving
the multi-objective problem into solving a single-objective problem.

The common methods to transform multi-objective problem into single-objective
problem include optimization method, linear weighted sum method, stratified sequencing
method and so on. When one objective is clearly important among multiple objectives,
optimization method is more appropriate.
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Multi-objective programming is generally expressed as:

min f (x) =
n
∑

i=1
cixi, i = 1, 2, . . . n

min g(x) =
n
∑

i=1
dixi, i = 1, 2, . . . n

s.t.


n
∑

i=1
aixi ≥ bi, (≤ bi,= bi),

xi ≥ 0, i = 1, 2 . . . n.

(7)

Optimization method can optimize the main objective while taking into account other
objectives, then the problem becomes to find the optimal value of the main objective. Other
objectives are constraining conditions that limit their variation within a certain range. Thus,
multi-objective problem can be reduced to the following single-objective problem.

min g(x) =
n
∑

i=1
dixi, i = 1, 2, . . . n

s.t.


f (x) ≤ k(≥ k)
n
∑

i=1
aixi ≥ bi, (≤ bi,= bi),

xi ≥ 0, i = 1, 2 . . . n.

(8)

3. Results and Discussion
3.1. Filtering of Major Variables

The idea of reducing dimensionality first and then modeling is often used in engi-
neering problems. In order to screen out the main variables affecting the model, the grey
correlation degree analysis was first used to screen out the variables with a greater cor-
relation degree with RON to obtain representative variables. It was solved in Python to
produce Figure 2.

Figure 2. RON grey correlative degree.
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After obtaining the grey correlative degree results of the independent variables and
RON, we found that most of the non-operated variables in the independent variables are
ranked in the top 150 of the grey correlative degree results, and most of the variables after
the 150 are operated variables. This is also logical, because it is the non-operated variables
that have a decisive impact on the change of RON, and the operated variables can only
play an auxiliary role.

We can know from Figure 2 that the grey correlative degree of variables after the
number of 150 began to decline significantly. If we choose more than 150 variables, this will
not significantly increase the number of final independent variables. The variables after
150 are basically operating variables that have a relatively general impact on RON and they
will have a strong relationship with the operated variables in the top 150 variables. These
added variables will be replaced by the top 150 variables in the correlation analysis. So we
finally adopted 150 as the demarcation point.

Perform Pearson correlation analysis on these 150 variables. Only one of them was
kept in the strongly correlated variable group, identifying 19 variables that were represen-
tative and independent. The variable names and properties are shown in Table 4.

Table 4. Main RON variables.

Code Property

1 Raw Material RON Nonoperational Variable
2 Saturated Hydrocarbon Nonoperational Variable
3 Aromatic Hydrocarbon Nonoperational Variable
4 Density(20 ◦C) Nonoperational Variable
5 S-ZORB.FC_2801.PV Operational Variable
6 S-ZORB.TE_2103.PV Operational Variable
7 S-ZORB.FT_9201.PV Operational Variable
8 S-ZORB.SIS_TE_6010.PV Operational Variable
9 S-ZORB.TC_1606.PV Operational Variable
10 S-ZORB.FC_1203.PV Operational Variable
11 S-ZORB.FT_9002.DACA Operational Variable
12 S-ZORB.LT_9001.DACA Operational Variable
13 S-ZORB.LC_5102.DACA Operational Variable
14 S-ZORB.TE_2501.DACA Operational Variable
15 S-ZORB.TE_5004.DACA Operational Variable
16 S-ZORB.SIS_PT_2602.PV Operational Variable
17 S-ZORB.PDC_2702.DACA Operational Variable
18 S-ZORB.TXE_3201A.DACA Operational Variable
19 S-ZORB.CAL.LINE.PV Operational Variable

The correlation coefficients of these 19 variables are shown in Table 5.
As shown in Table 5, we found independence between variables. Therefore, these

19 variables are both representative and independent major variables affecting the gaso-
line RON.

The 14 main variables affecting S content were obtained by the same method. The
variable names and properties are shown in Table 6.

The correlation coefficients of these 14 variables are shown in Table 7.
As shown in Table 7, we found independence between variables. Therefore, these

14 variables were found to be both representative and independent main variables affecting
S content.
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Table 5. The correlation coefficients of the major RON variables.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 1.000 −0.429 0.081 0.246 0.088 −1.002 −1.224 −1.018 0.065 0.378 −1.136 0.048 0.030 −1.059 0.185 −1.013 0.017 −1.174 0.075
2 −1.429 1.000 0.006 −1.138 −1.479 0.122 −1.059 0.123 −1.104 0.127 0.223 −1.192 −1.268 −1.112 −1.319 0.141 0.041 0.134 0.157
3 0.081 0.006 1.000 0.445 −1.111 −1.070 −1.001 0.170 0.060 −1.100 0.033 −1.094 −1.132 0.061 −1.133 −1.075 0.119 0.293 0.120
4 0.246 −1.138 0.445 1.000 −1.158 −1.128 −1.134 0.225 0.102 −1.017 0.133 −1.026 −1.147 −1.045 −1.085 −1.056 −1.007 0.273 0.109
5 0.088 −1.479 −1.111 −1.158 1.000 0.442 0.303 0.090 0.122 −1.005 0.201 0.235 0.335 0.272 0.453 0.149 0.377 −1.249 −1.365
6 −1.002 0.122 −1.070 −1.128 0.442 1.000 0.300 0.594 −1.226 0.423 0.388 0.031 −1.186 0.484 0.295 0.466 0.494 −1.092 0.014
7 −1.224 −1.059 −1.001 −1.134 0.303 0.300 1.000 0.336 0.022 −1.126 0.357 0.016 0.050 0.266 0.054 0.141 0.202 0.181 −1.002
8 −1.018 0.123 0.170 0.225 0.090 0.594 0.336 1.000 −1.097 0.265 0.491 −1.082 −1.273 0.361 0.160 0.276 0.227 0.370 0.355
9 0.065 −1.104 0.060 0.102 0.122 −1.226 0.022 −1.097 1.000 −1.104 0.060 0.182 0.264 −1.303 −1.014 −1.124 −1.082 −1.005 −1.182

10 0.378 0.127 −1.100 −1.017 −1.005 0.423 −1.126 0.265 −1.104 1.000 0.080 −1.061 −1.098 0.131 0.150 0.192 0.230 −1.144 0.278
11 −1.136 0.223 0.033 0.133 0.201 0.388 0.357 0.491 0.060 0.080 1.000 −1.002 −1.109 0.055 0.068 0.188 0.264 0.188 −1.058
12 0.048 −1.192 −1.094 −1.026 0.235 0.031 0.016 −1.082 0.182 −1.061 −1.002 1.000 0.276 −1.049 0.170 0.021 −1.047 −1.042 −1.003
13 0.030 −1.268 −1.132 −1.147 0.335 −1.186 0.050 −1.273 0.264 −1.098 −1.109 0.276 1.000 −1.243 0.128 −1.121 0.013 −1.225 −1.282
14 −1.059 −1.112 0.061 −1.045 0.272 0.484 0.266 0.361 −1.303 0.131 0.055 −1.049 −1.243 1.000 0.121 0.200 0.124 0.295 0.259
15 0.185 −1.319 −1.133 −1.085 0.453 0.295 0.054 0.160 −1.014 0.150 0.068 0.170 0.128 0.121 1.000 0.110 0.007 −1.029 −1.073
16 −1.013 0.141 −1.075 −1.056 0.149 0.466 0.141 0.276 −1.124 0.192 0.188 0.021 −1.121 0.200 0.110 1.000 0.162 −1.062 0.073
17 0.017 0.041 0.119 −1.007 0.377 0.494 0.202 0.227 −1.082 0.230 0.264 −1.047 0.013 0.124 0.007 0.162 1.000 −1.144 −1.252
18 −1.174 0.134 0.293 0.273 −1.249 −1.092 0.181 0.370 −1.005 −1.144 0.188 −1.042 −1.225 0.295 −1.029 −1.062 −1.144 1.000 0.383
19 0.075 0.157 0.120 0.109 −1.365 0.014 −1.002 0.355 −1.182 0.278 −1.058 −1.003 −1.282 0.259 −1.073 0.073 −1.252 0.383 1.000
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Table 6. Major S content variables.

Code Property

1 Raw Material S content Nonoperational Variable
2 Raw Material RON Nonoperational Variable
3 Olefin Nonoperational Variable
4 Density(20 ◦C) Nonoperational Variable
5 S-ZORB.FC_2801.PV Operational Variable
6 S-ZORB.TE_2103.PV Operational Variable
7 S-ZORB.FT_9201.PV Operational Variable
8 S-ZORB.AT_1001.PV Operational Variable
9 S-ZORB.AC_6001.PV Operational Variable
10 S-ZORB.TC_1606.PV Operational Variable
11 S-ZORB.TE_1203.PV Operational Variable
12 S-ZORB.LC_5102.DACA Operational Variable
13 S-ZORB.TE_5004.DACA Operational Variable
14 S-ZORB.PDC_2702.DACA Operational Variable

Table 7. The correlation coefficient of the main S content variables.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 1.000 0.475 0.393 0.191 0.174 −0.105 −0.118 0.431 0.138 0.113 0.052 0.244 0.091 0.088
2 0.475 1.000 0.366 0.246 0.088 −1.002 −1.224 0.219 −1.032 0.065 0.039 0.030 0.185 0.017
3 0.393 0.366 1.000 −1.039 0.485 −1.086 0.055 0.497 0.074 0.075 0.124 0.297 0.344 −1.083
4 0.191 0.246 −1.039 1.000 −1.158 −1.128 −1.134 −1.102 −1.020 0.102 0.025 −1.147 −1.085 −1.007
5 0.174 0.088 0.485 −1.158 1.000 0.442 0.303 0.485 0.135 0.122 0.260 0.335 0.453 0.377
6 −1.105 −1.002 −1.086 −1.128 0.442 1.000 0.300 0.101 0.005 −1.226 −1.265 −1.186 0.295 0.494
7 −1.118 −1.224 0.055 −1.134 0.303 0.300 1.000 0.091 0.029 0.022 −1.008 0.050 0.054 0.202
8 0.431 0.219 0.497 −1.102 0.485 0.101 0.091 1.000 0.104 0.110 0.114 0.259 0.191 0.190
9 0.138 −1.032 0.074 −1.020 0.135 0.005 0.029 0.104 1.000 0.093 0.034 0.091 −1.014 0.080
10 0.113 0.065 0.075 0.102 0.122 −1.226 0.022 0.110 0.093 1.000 0.329 0.264 −1.014 −1.082
11 0.052 0.039 0.124 0.025 0.260 −1.265 −1.008 0.114 0.034 0.329 1.000 0.246 0.135 0.042
12 0.244 0.030 0.297 −1.147 0.335 −1.186 0.050 0.259 0.091 0.264 0.246 1.000 0.128 0.013
13 0.091 0.185 0.344 −1.085 0.453 0.295 0.054 0.191 −1.014 −1.014 0.135 0.128 1.000 0.007
14 0.088 0.017 −1.083 −1.007 0.377 0.494 0.202 0.190 0.080 −1.082 0.042 0.013 0.007 1.000

3.2. Regression Analysis Model

First, the screened variables were taken as independent variables, the RON and S
content of the product were taken as dependent variables to establish a multiple regression
model, and the T-test and F-test were carried out to construct the product prediction model.

The logarithm model, inverse model, quadratic model, and combination model were
transformed into linear regression separately in the form shown in Table 3.

Then, stepwise regression analysis was used for the linear model, logarithm model,
inverse model, quadratic model, and combination model, separately. We used mean square
error (MSE) as the evaluation criterion to determine the optimal case in each model. The
optimal model of various models were obtained and their effects were recorded as shown
in Table 8.

Table 8. Functional form. MSE, mean square error; MAE, mean absolute error; R2, coefficient
of determination.

Model Linear Logarithm Inverse Quadratic Combination

MSE 0.087 0.066 0.207 0.164 0.043
MAE 0.198 0.188 0.411 0.385 0.154

R2 0.948 0.950 0.814 0.883 0.956

In this study, the MSE and MAE were selected as the measurement indexes of the
prediction effect and prediction accuracy.
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Mean square error:

MSE =
1
T

T

∑
t=1

e2
t (9)

Mean absolute error:

MAE =
1
T

T

∑
i=1
|et| (10)

Then, we compared these models to obtain Figure 3.

Figure 3. Comparison of the optimal case effects of various models.

As shown in Figure 3, both the MSE and MAE of the combination model were obvi-
ously the smallest, and R2 was also the best, so we chose the combination model.

Based on the 325 sample data and using the main variables selected, the product
RON was used as the predictive variable in the least squares method, and the variables
with P > 1 were eliminated by the t-test. The optimal model of combination model was
obtained as

y = 0.7855 + 0.9958x1 − 0.0103x2 + 0.0004x3 − 0.0032x4 + 0.0012x5 − 0.0046x6
+0.2709lnx7 − 0.2904lnx8,

(11)

which can be abbreviated to

y = a0 +
6

∑
i=1

aixi +
8

∑
i=7

ailnxi. (12)

Similarly, the S content prediction model was obtained

z = −17.4300+ 0.0743t1 + 0.115t2− 0.0368t3 + 0.4615lnt4 + 3.2104lnt5− 1.6812lnt6. (13)

That is,

z = c0 +
3

∑
i=1

citi +
6

∑
i=4

cilnti. (14)

The symbolic descriptions of (12) and (14) were listed in Table 9.
It should be noted that x3 and t5 are the same variable, and x6 and t3 are also the same

variable, so there is a certain correlation between the product RON and S content in the
production process.
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Table 9. Nomenclature.

Symbol Meaning Unit

y Product RON %
x1 Raw Material RON %
x2 Saturated Hydrocarbon %
x3 S-ZORB.FC_2801.PV Nm3/h
x4 S-ZORB.TE_2103.PV ◦C
x5 S-ZORB.FT_9002.DACA Nm3/h
x6 S-ZORB.TE_5004.DACA ◦C
x7 S-ZORB.TE_2501.DACA ◦C
x8 S-ZORB.TXE_3201A.DACA ◦C
z Product S content µg/g
t1 Olefin %
t2 S-ZORB.TE_1203.PV ◦C
t3 S-ZORB.TE_5004.DACA ◦C
t4 Raw Material S content µg/g
t5 S-ZORB.FC_2801.PV Nm3/h
t6 S-ZORB.PDC_2702.DACA

3.3. RON Loss Reduction Multi-Objective Optimization Model

Our goal was to optimize and adjust the operation plan of the FCC refinery desulfur-
ization unit in the petrochemical plant to try to reduce the RON loss of gasoline by more
than 30% under the premise of ensuring the desulfurization effect of gasoline products
(S content being not more than 5 µg/g). In addition to the consideration of RON loss and
operational risk, other factors such as the range of operational variables for the feasibility
of S content operations were also considered. Only after the comprehensive measure-
ment of all factors can the decision be more reasonable, which is a typical multi-objective
optimization problem.

Combined with the actual situation, we ignored the minor factors. Therefore, we set
up two objective functions: maximum RON loss reduction and minimum operational risk.

3.3.1. Objective Function 1

Taking the maximum RON loss reduction as the target, the corresponding function
relation was obtained: RON loss = original RON loss – adjusted RON loss. If R0 represents
raw material RON, R1 represents original product RON, and Y1represents adjusted product
RON, then RON loss can be expressed as

R0 − R1 − (R0 − y1) = y1 − R1. (15)

Substitute (12) into the above equation to obtain the objective function

max a0 +
6

∑
i=1

aixi +
8

∑
i=7

ailnxi − R1. (16)

3.3.2. Objective Function 2

In order to minimize the operational risk, we wrote the corresponding function
relations. In the actual engineering operation process, for either manual adjustment or
computer or machine control, each operation may pose certain risks: the less, the better. The
original value of xi is denoted by ri, and ∆i represents the maximum amount of change in
the operation variable each time. The original value of ti is denoted by si, and λi represents
the maximum amount of change in the operation variable each time. As x1, x2 are not
operation variables, i = 3, 4, ..., 8 in the function expression for the number of operations
of RON. As t1, t4 are not operation variables, i = 2, 3, 5, 6 in the function expression for
the number of operations of S content. In addition, the number of operations that need to
change but do not reach a multiple of ∆i and λi should be rounded up, even if it is less
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than ∆i and λi. Then, the objective function with the smallest number of operations can be
expressed as

min
8

∑
i=3

⌈
|xi − ri|

∆i

⌉
+

3

∑
i=2

⌈
|ti − si|

λi

⌉
+

6

∑
i=5

⌈
|ti − si|

λi

⌉
. (17)

However, the number of operations is related to the variable, and the relationship
containing the variable needs to be rounded up. This was difficult to achieve in the
solver process, so we needed to remove the integer symbol. After removing the integer
symbol, this expression expresses the relative modification range. Similarly, the smaller the
relative modification range, the fewer the operation times, and the lower the operation risk.
Therefore, the function expression of objective function 2 can be expressed as

min
8

∑
i=3

|xi − ri|
∆i

+
3

∑
i=2

|ti − si|
λi

+
6

∑
i=5

|ti − si|
λi

. (18)

3.3.3. Constraint Condition 1

First, since optimization was carried out, the product RON after the optimized opera-
tion had to be larger than the previous product RON R1; otherwise, the optimization would
be meaningless. In addition, the product RON was transformed from the raw material
RON, so the product RON after optimized operation could not be greater than the raw
material RON R0. Therefore, the constraint condition1 was

R1 ≤ a0 +
6

∑
i=1

aixi +
8

∑
i=7

ailnxi ≤ R0. (19)

3.3.4. Constraint Condition 2

Our goal was to reduce the RON loss of gasoline to more than 30% under the condition
that the S content was no more than 5 µg/g, so we needed to restrict the S content to less
than or equal to 5 µg/g. Therefore, the constraint condition 2 was

c0 +
3

∑
i=1

citi +
6

∑
i=4

cilnti ≤ 5. (20)

3.3.5. Constraint Condition 3

Due to process requirements and operation experience, each operation variable has its
operating range, with [li, ui] denoting the operating range corresponding to xi, and [Li, Ui]
denoting the operating range corresponding to ti. In addition, x1, x2, t1, t4 are not operation
variables, so i = 3, 4, ..., 8 for xi and i = 2, 3, 5, 6 for ti. Therefore, the corresponding
constraint condition 3 is

li ≤ xi ≤ ui, i = 3, 4, ..., 8. (21)

Li ≤ ti ≤ Ui, i = 2, 3, 5, 6. (22)

It ensures the robustness of the model. Because as long as the variable meets the
constraints of the scope of operation, the operability of the solution can be guaranteed.

3.3.6. Constraint Condition 4

As x3 and t5 are the same variable, and x6 and t3 are also the same variable, the
constraint condition 4 is

x3 = t5, (23)

x6 = t3. (24)
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3.3.7. Constraint Condition 5

As x1, x2, t1, t4 are not operation variables, they are equal to their original value and
do not change, so the constraint condition 5 is

xi = ri, i = 1, 2, (25)

ti = si, i = 1, 4. (26)

By sorting out the above objective function and constraint conditions, the multi-
objective nonlinear optimization model of the RON loss reduction is expressed as

max a0 +
6
∑

i=1
aixi +

8
∑

i=7
ailnxi − R1,

min
8
∑

i=3

|xi−ri |
∆i

+
3
∑

i=2

|ti−si |
λi

+
6
∑

i=5

|ti−si |
λi

,

s.t.



R1 ≤ a0 +
6
∑

i=1
aixi +

8
∑

i=7
ailnxi ≤ R0,

c0 +
3
∑

i=1
citi +

6
∑

i=4
cilnti ≤ 5,

li ≤ xi ≤ ui, i = 3, 4, ..., 8,
Li ≤ ti ≤ Ui, i = 2, 3, 5, 6,
x3 = t5,
x6 = t3,
xi = ri, i = 1, 2,
ti = si, i = 1, 4.

(27)

Although the RON loss reduction multi-objective optimization model was established,
we found that there were two urgent problems to be addressed before solving: the dual
objective needed to be changed into a single objective and the absolute values needed to
be removed, and nonlinear programming needed to be changed into linear programming.
Then, we used Python to solve the model.

Here, RON loss reduction was an obviously important main goal, so risk minimization
was set as a constraint condition to transform the multi-objective problem into a single-
objective problem. We set the maximum value of the constraint range corresponding to
operational risk as T, then the RON loss reduction multi-objective nonlinear optimization
model was transformed into the single-objective nonlinear model.

There were also absolute values in the model, so the nonlinear optimization was
changed into linear optimization by introducing new variables to the absolute value. We
introduced the non-negative variable x1

i , x2
i , i = 3, 4, ..., 8, and t1

i , t2
i , i = 2, 3, 5, 6.

Let 

|xi − ri| = x1
i + x2

i , i = 3, 4, ..., 8,
xi − ri = x1

i − x2
i , i = 3, 4, ..., 8,

x1
i , x2

i ≥ 0, i = 3, 4, ..., 8,
|ti − si| = t1

i + t2
i , i = 2, 3, 5, 6,

ti − ri = t1
i − t2

i , i = 2, 3, 5, 6,
t1
i , t2

i ≥ 0, i = 2, 3, 5, 6.

(28)

Thus,
xi = x1

i − x2
i + ri, i = 3, 4, ..., 8, (29)

ti = t1
i − t2

i + si, i = 2, 3, 5, 6. (30)

In conclusion, the multi-objective nonlinear optimization model is transformed into
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max a0 + a1x1 + a2x2 +
6
∑

i=3
ai(x1

i − x2
i + ri) +

8
∑

i=7
ailn(x1

i − x2
i + ri)− R1

s.t.



8
∑

i=3

x1
i +x2

i
∆i

+
3
∑

i=2

t1
i +t2

i
λi

+
6
∑

i=5

t1
i +t2

i
λi
≤ T,

a0 + a1x1 + a2x2 +
6
∑

i=3
ai
(
x1

i − x2
i + γi

)
+

8
∑

i=7
ai ln

(
x1

i − x2
i + γi

)
≥ R1,

a0 + a1x1 + a2x2 +
6
∑

i=3
ai
(
x1

i − x2
i + γi

)
+

8
∑

i=7
ai ln

(
x1

i − x2
i + γi

)
≤ R0,

c0 + c1t1 + c4 ln t4 +
3
∑

i=2
ci
(
t1
i − t2

i + si
)
+

6
∑

i=5
ci ln

(
t1
i − t2

i + si
)
≤ 5,

x1
i − x2

i + ri ≥ li, i = 3, 4, · · · , 8,
x1

i − x2
i + ri ≤ ui, i = 3, 4, · · · , 8,

t1
i − t2

i + si ≥ Li, i = 2, 3, 5, 6,
t1
i − t2

i + si ≤ Ui, i = 2, 3, 5, 6,
x1

3 − x2
3 + r3 = t1

5 − t2
5 + s5,

x1
6 − x2

3 + r6 = t1
3 − t2

3 + s3,
x1 = r1,
x2 = r2,
t1 = s1,
t4 = s4,
x1

i , x2
i ≥ 0, i = 3, 4, · · · , 8,

t1
i , t2

i ≥ 0, i = 2, 3, 5, 6.

(31)

We used SLSQP in Python to solve the model. Some adjustments to the sample with a
loss reduction of 30% were in Table 10.

Table 10. Adjustments to the sample with a loss reduction of 30%.

Sample R0 R1 Adjusted R1 Loss of Decline N Nmax

1 90.600 89.220 89.778 40.4% 126 45
2 90.500 89.320 89.684 30.9% 126 48
3 90.700 89.320 89.897 41.8% 126 50
4 90.400 89.020 89.613 43.0% 125 46
5 89.600 88.320 88.819 39.0% 125 35
6 91.000 89.590 90.218 44.5% 126 40
7 90.400 89.200 89.628 35.6% 126 37
8 90.500 89.200 89.744 41.9% 126 40
9 90.400 89.300 89.639 30.8% 125 43

10 90.200 88.800 89.440 45.7% 126 34
11 90.200 88.900 89.421 40.1% 127 38
12 90.200 88.900 89.420 40.0% 126 29
13 89.200 87.700 88.415 47.6% 124 34
14 86.800 85.400 86.014 43.8% 125 36
15 87.800 86.100 86.947 49.8% 127 52
16 88.400 86.700 87.539 49.4% 125 49
18 88.000 86.490 87.112 41.2% 127 54
20 88.800 87.590 87.957 30.3% 127 48
21 88.100 86.590 87.250 43.7% 126 41
23 89.600 87.990 88.742 46.7% 125 48
24 89.000 87.590 88.139 39.0% 125 47
25 89.300 87.890 88.455 40.1% 125 45
26 89.200 87.690 88.364 44.6% 127 41
27 88.700 87.290 87.851 39.8% 125 46
29 89.700 88.290 88.835 38.7% 124 38
30 89.200 87.990 88.354 30.1% 126 38
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Where, N represents total number of adjustments, Nmax denotes the number of adjust-
ments of the variable with the largest number of adjustments.

Note that in the model, the larger the T, the more samples can reach the 30% loss
reduction. The T value is usually set according to practical experience. In this study, it
was set to 120. After calculation, we found that 245 of the 325 samples achieved 30% loss
reduction, that is, 78.2% reached the target, indicating that a good effect was achieved.

We randomly selected 10 samples with a loss reduction greater than 30% and compared
the product RON before and after optimization to obtain Figure 4.

Figure 4. Comparison diagram of product RON before and after optimization.

The operation scheme of the main variables of some samples whose loss reduction
was greater than 30% is provided in Table 11.

Table 11. Operation scheme of some samples.

Variable State 5 32 72 101 133 173 208 235 264 313

x3
Original 649.341 649.651 652.010 650.353 648.496 698.963 748.972 752.160 735.709 849.255

New 688.459 689.943 673.658 693.481 680.361 714.732 780.464 781.161 776.337 879.403

x4
Original 427.132 425.923 421.054 427.430 426.620 426.620 428.348 424.131 425.028 424.969

New 410.000 410.000 410.000 410.000 410.000 410.000 410.000 410.000 410.000 410.000

x5
Original 401.752 414.780 514.261 377.199 452.605 550.321 448.482 464.489 411.784 454.247

New 650.000 650.000 650.000 650.000 650.000 650.000 650.000 650.000 650.000 650.000

x6
Original 64.960 61.005 64.001 67.419 56.947 64.552 61.733 67.671 50.020 66.559

New 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000

x7
Original 215.227 216.749 167.173 210.013 225.360 190.146 174.339 202.865 206.900 171.674

New 250.000 250.000 222.727 246.926 234.211 240.377 224.549 246.049 250.000 215.856

x8
Original 366.214 413.725 410.599 426.298 402.040 431.804 311.955 377.150 359.226 396.256

New 357.878 394.361 410.599 426.298 349.257 431.711 311.955 377.150 326.958 396.256

t2
Original 30.114 35.913 32.248 33.647 29.621 33.853 32.254 31.203 34.217 34.640

New 30.114 35.913 32.248 33.647 29.621 33.853 32.254 31.203 34.217 34.640

t3
Original 64.960 61.005 64.001 67.419 56.947 64.552 61.733 67.671 50.020 66.559

New 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000 40.000

t5
Original 649.341 649.651 652.010 650.353 648.496 698.963 748.972 752.160 735.709 849.255

New 688.459 689.943 673.658 693.481 680.361 714.732 780.464 781.161 776.337 879.403

t6
Original 27.151 26.585 27.375 26.097 26.352 31.078 30.957 24.442 29.668 27.450

New 27.151 26.585 27.375 26.097 26.352 31.078 30.957 24.442 29.668 27.450

It can be seen from Table 11 that t2 and t6 need not to be adjusted, while x4,x5,x6,t3
are optimal in the fixed state regardless of which sample.
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Their feature descriptions are summarized into Table 12.

Table 12. Features of variables in the optimal operation scheme.

Feature Variable Value

Stable
x4 410
x5 650

x6 = t3 40

Unstable
x3 = t5 /

x7 /
x8 /

Unadjusted t2 /
t6 /

From the above results, we can briefly summarize the optimal operation scheme. For
any sample, adjust S-ZORB.TE_2103.PV, S-ZORB.FT_9002.DACA, S-ZORB.TE_5004.DACA
to 410, 650, 40 respectively. S-ZORB.FC_2801.PV, S-ZORB.TE_2501.DACA, S-ZORB.
TXE_3201A.DACA need be adjusted differently depending on the initial state. And there
is no need to adjust S-ZORB.TE_1203.PV, S-ZORB.PDC_2702.DACA.

4. Conclusions

This research was conducted on the basis of four years’ data from Sinopec Gaoqiao
Petrochemical, including 325 samples, 354 operation sites of the FCC gasoline refining
desulfurization unit, and 367 variables. Data preprocessing was first carried out on these
data. Then, the main variables were selected from 367 operational variables through grey
correlation analysis and Pearson correlation analysis. Then, according to the selected major
variables, the RON loss prediction model was established by multiple regression analysis,
and the model was verified. The same method was used to predict S content. Notably, x3
and t5 are the same variable and x6 and t3 are also the same variable, so there is a certain
correlation between product RON and S content in the production process. In the end,
under the condition that the S content would be no more than 5 µg/g, the reduction in
RON loss was more than 30%, and the operating conditions after the optimization of the
major variables were obtained.

We presented a new systematic method for determining an optimal operation scheme
for minimising RON loss and operational risks. For the data with highly nonlinear and
strongly coupled, it was preprocessed first, dimension reduction and regression prediction
were carried out, finally an optimization model was established to solve the optimization
scheme. With the system we’ve built, just input data that needs to be improved, operation
scheme to reduce RON loss can be output.

This system can be applied to the dimensionality reduction, prediction, and operation
scheme optimization of data with the same properties. The regression model in the paper
can be used to fields related to forecasting, such as medical care, geography, finance, and
industry. The optimization model is suitable for optimizing model parameters, seeking
extreme values, and so on. The optimization model is based on the regression model, which
can well solve most of the problems that require modeling or optimization due to data
clutter, such as the establishment of a bank credit information system, the measurement of
the effectiveness of biomedical reagents, etc.
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FCC fluid catalytic cracking
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PHD Doctor of Philosophy
LIMS Laboratory Information Management System
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SLSQP Sequential Least Squares Programming
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