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Abstract: Organic solid waste is considered a renewable resource that can be converted by various
technologies into valuable products. Conventional thermophilic composting (TC), a well-studied
and mature technology, can be applied to organic solid waste treatment to achieve waste reduction,
mineralization, and humification simultaneously. However, poor efficiency, a long processing period,
as well as low compost quality have always limited its wide application. In order to overcome these
shortages, hyperthermophilic composting (HTC) has been recently put forward. This paper reviews
the basic principle, process flow, operation parameters, research advances, and application status
of HTC. Compared with the TC process, the shorter composting period and higher temperature
and treatment efficiency, as well as more desirable compost quality, can be achieved during HTC by
inoculating the waste with hyperthermophilic microbes. Additionally, HTC can reduce greenhouse
gas emission, increase the removal rate of microplastics and antibiotic residues, and achieve in-
situ remediation of heavy metal-polluted soils, which greatly improve its application potential for
organic solid waste treatment. This paper also proposes the limitations and future prospects of HTC
technology for a wider application. As a result, this review advances our understanding of the HTC
process, which promotes its further investigation and application.

Keywords: organic solid waste; hyperthermophilic composting; hyperthermophilic microbes; com-
posts; humification

1. Introduction

With rapid population growth and urbanization development worldwide, large
amounts of organic solid waste are produced every day, the efficient treatment and disposal
of which have become one of the most significant issues for many countries. Organic solid
waste mainly consists of sewage sludge, food waste, aquacultural waste, agricultural waste,
and livestock manure [1–3] (Figure 1), the composition of which, in different countries
and areas, heavily depends upon population size and economic development levels [4].
Globally, existing wastewater treatment plants in the USA and Japan generated 6.5 and
2 million tons of dry sewage sludge in 2015, respectively [5], and 33.3% of food produced
worldwide becomes food waste, i.e., an annual loss of about 1.6 billion tons of food [6,7].
The annual production of livestock manure in 27 European member states is approximately
1.4 billion tons, and, in the USA, above 1 billion tons of livestock manure is produced per
year [8]. In China, the production of sewage sludge with 80% water content exceeded
55 million tons in 2015; approximately 3.8 billion tons of livestock manure, 4.9 million tons
of fish processing waste, 180 to 270 million tons of rice straw, and 97.72 million tons of food
waste are produced annually [9–11]. Moreover, the yield of organic solid waste has been
on an upward trend due to economic development and population increase [12–14].
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Figure 1. The categories and components of organic solid waste (images by Yuqi Wu). 

Indeed, organic solid waste is rich in biodegradable organic matter (e.g., proteins, 
carbohydrates, and lipids) and plant nutrients (nitrogen, phosphorus, and potassium), 
which can be considered low-cost and easily available feedstock for resource recycling 
[6,15,16]. However, it also contains a myriad of biorefractory organic matter, such as lig-
nin, cellulose, and semicellulose, as well as toxic substances, including pathogens, heavy 
metals, antibiotic residues, and the associated resistance genes and pesticide residues, as 
shown in Figure 1 [5,17,18]. Therefore, the management of organic solid waste is complex 
given that its heterogeneity, instability, and potential toxicity. If improperly treated, it 
can contribute to soil, water, and air pollution, threaten human health, and even cause 
ecological imbalance. 

In recent years, some researchers have been devoted to exploring high-efficiency 
technologies for organic solid waste management that can achieve environmental sus-
tainability and economic viability simultaneously. Landfill, incineration, anaerobic di-
gestion, and thermophilic composting (TC) are widely implemented technologies for 
organic solid waste treatment [1,19–21]. However, these technologies have various limi-
tations, such as high cost, large land footprint, high process complexity, posthandling of 
residues, and secondary pollution [22,23]. As a newly-developed technology for organic 
solid waste management, hyperthermophilic composting (HTC) has attracted much at-
tention due to its unique advantages, which include high efficiency, convenient process, 
and little posthandling of residues [24,25]; recently, some research papers have been 
published on HTC performance and its mechanisms [26–28]. 

To the best of our knowledge, few published papers have done a comprehensive 
review on HTC based on the latest research results. In this instance, this study attempts 
to compare HTC with conventional technologies for organic solid waste management 
and offer a critical review and comprehensive analysis of HTC, according to the latest 
research findings. In addition, some full-scale demonstration projects of HTC are pre-
sented in the current study. 

2. Classical Organic Solid Waste Treatment Technologies 
Several conventional technologies have been widely utilized for organic solid waste 

treatment and disposal, including landfill, incineration, anaerobic digestion, and ther-
mophilic composting, as shown in Figure 2. 
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Indeed, organic solid waste is rich in biodegradable organic matter (e.g., proteins, car-
bohydrates, and lipids) and plant nutrients (nitrogen, phosphorus, and potassium), which
can be considered low-cost and easily available feedstock for resource recycling [6,15,16].
However, it also contains a myriad of biorefractory organic matter, such as lignin, cellu-
lose, and semicellulose, as well as toxic substances, including pathogens, heavy metals,
antibiotic residues, and the associated resistance genes and pesticide residues, as shown in
Figure 1 [5,17,18]. Therefore, the management of organic solid waste is complex given that
its heterogeneity, instability, and potential toxicity. If improperly treated, it can contribute to
soil, water, and air pollution, threaten human health, and even cause ecological imbalance.

In recent years, some researchers have been devoted to exploring high-efficiency tech-
nologies for organic solid waste management that can achieve environmental sustainability
and economic viability simultaneously. Landfill, incineration, anaerobic digestion, and
thermophilic composting (TC) are widely implemented technologies for organic solid
waste treatment [1,19–21]. However, these technologies have various limitations, such as
high cost, large land footprint, high process complexity, posthandling of residues, and
secondary pollution [22,23]. As a newly-developed technology for organic solid waste
management, hyperthermophilic composting (HTC) has attracted much attention due
to its unique advantages, which include high efficiency, convenient process, and little
posthandling of residues [24,25]; recently, some research papers have been published on
HTC performance and its mechanisms [26–28].

To the best of our knowledge, few published papers have done a comprehensive
review on HTC based on the latest research results. In this instance, this study attempts to
compare HTC with conventional technologies for organic solid waste management and
offer a critical review and comprehensive analysis of HTC, according to the latest research
findings. In addition, some full-scale demonstration projects of HTC are presented in the
current study.

2. Classical Organic Solid Waste Treatment Technologies

Several conventional technologies have been widely utilized for organic solid waste
treatment and disposal, including landfill, incineration, anaerobic digestion, and ther-
mophilic composting, as shown in Figure 2.
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Figure 2. Conventional technologies for organic solid waste treatment. (A) Landfill; (B) incinera-
tion; (C) anaerobic digestion; (D) thermophilic composting [29]. 

Landfill is the oldest technology for solid waste management, in which various or-
ganic solid wastes are mixed, compressed, dewatered, and dumped into natural or arti-
ficial pits, and then degraded by different microbes. The advantages of this technology 
included easy operation and management, low costs, and large treatment capacity 
[30,31]. However, large land occupation, leachate with heavy metals, ammonia, and re-
fractory organics, greenhouse gas (GHG) emission (mainly including methane and car-
bon dioxide), and poor sanitation have limited its wide application [32,33]. In recent 
years, landfills have been gradually forbidden in more and more countries and areas, 
considering the above disadvantages [6,34,35]. 

Incineration is one of the most common technologies used to treat solid waste 
around the world. Mixed organic solid waste is burned at 800–1000 °C with additional 
fuels, which can achieve the total killing of pathogens, more than 90% of volume reduc-
tion, as well as electricity and heat energy recovery [36]. However, this technology is not 
environmentally friendly or sustainably developed in view of some remarkable disad-
vantages, including high cost and energy demand, GHG and harmful gas (such as diox-
ins and sulfur dioxide) emission, and production of residual ashes rich in heavy metals 
[37–39]. Therefore, incineration-based organic solid waste treatment technology might 
be challenged worldwide. 

Anaerobic digestion (AD) has been widely applied for various organic solid waste 
treatments that can achieve methane recycle, volume reduction, organic degradation, and 
pathogen inactivation simultaneously [40]. Additionally, AD has shown less influence on 
air quality than other technologies and is conducive to minimizing carbon emission [41]. 
Single or mixed organic solid waste can act as a substrate for anaerobic digestion [42,43]; 
thousands of related studies have been published [44–46]. However, it is worth noting 
that some digestates rich in heavy metals, microplastics (MPs), and antibiotic resistance 
genes (ARGs) cannot be directly used for agriculture or forestry and should be further 
disposed of by other methods [47–49]. In addition, high cost, process complexity, and a 
significant loss of plant nutrients also need to be addressed. 

Thermophilic composting is a convenient and long-standing biological technology 
conducted under aerobic conditions; it transforms organic solid waste into agricultural 
resources, i.e., organic fertilizer or soil amendment, and is able to achieve pathogen inac-
tivation and waste volume reduction [50,51]. Compared with other conventional tech-
nologies, TC has the advantages of low cost, easy operation, and less solid residues 
[52,53], and numerous full-scale TC projects for organic solid waste treatment have been 
implemented worldwide. For example, TC is widely used for the treatment of organic 
waste from chicken production chains in Brazil [54]. However, it is worth noting that 
long processing periods, low quality of composts, large nitrogen loss, GHG and various 
organic sulfur compound emissions, limited pathogen inactivation efficiency, as well as 
poor sanitation have become bottlenecks for TC [23,55,56], all of which are largely at-
tributed to limited temperature and the thermal intolerance of the native microbes [57]. It 
seems that TC cannot act as a feasible solution for organic solid waste management in 
high urbanized areas and cities. 
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Landfill is the oldest technology for solid waste management, in which various organic
solid wastes are mixed, compressed, dewatered, and dumped into natural or artificial pits,
and then degraded by different microbes. The advantages of this technology included
easy operation and management, low costs, and large treatment capacity [30,31]. However,
large land occupation, leachate with heavy metals, ammonia, and refractory organics,
greenhouse gas (GHG) emission (mainly including methane and carbon dioxide), and
poor sanitation have limited its wide application [32,33]. In recent years, landfills have
been gradually forbidden in more and more countries and areas, considering the above
disadvantages [6,34,35].

Incineration is one of the most common technologies used to treat solid waste around
the world. Mixed organic solid waste is burned at 800–1000 ◦C with additional fuels,
which can achieve the total killing of pathogens, more than 90% of volume reduction,
as well as electricity and heat energy recovery [36]. However, this technology is not
environmentally friendly or sustainably developed in view of some remarkable disad-
vantages, including high cost and energy demand, GHG and harmful gas (such as diox-
ins and sulfur dioxide) emission, and production of residual ashes rich in heavy met-
als [37–39]. Therefore, incineration-based organic solid waste treatment technology might
be challenged worldwide.

Anaerobic digestion (AD) has been widely applied for various organic solid waste
treatments that can achieve methane recycle, volume reduction, organic degradation, and
pathogen inactivation simultaneously [40]. Additionally, AD has shown less influence on
air quality than other technologies and is conducive to minimizing carbon emission [41].
Single or mixed organic solid waste can act as a substrate for anaerobic digestion [42,43];
thousands of related studies have been published [44–46]. However, it is worth noting that
some digestates rich in heavy metals, microplastics (MPs), and antibiotic resistance genes
(ARGs) cannot be directly used for agriculture or forestry and should be further disposed
of by other methods [47–49]. In addition, high cost, process complexity, and a significant
loss of plant nutrients also need to be addressed.

Thermophilic composting is a convenient and long-standing biological technology
conducted under aerobic conditions; it transforms organic solid waste into agricultural
resources, i.e., organic fertilizer or soil amendment, and is able to achieve pathogen inactiva-
tion and waste volume reduction [50,51]. Compared with other conventional technologies,
TC has the advantages of low cost, easy operation, and less solid residues [52,53], and
numerous full-scale TC projects for organic solid waste treatment have been implemented
worldwide. For example, TC is widely used for the treatment of organic waste from chicken
production chains in Brazil [54]. However, it is worth noting that long processing periods,
low quality of composts, large nitrogen loss, GHG and various organic sulfur compound
emissions, limited pathogen inactivation efficiency, as well as poor sanitation have become
bottlenecks for TC [23,55,56], all of which are largely attributed to limited temperature and
the thermal intolerance of the native microbes [57]. It seems that TC cannot act as a feasible
solution for organic solid waste management in high urbanized areas and cities.
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3. Hyperthermophilic Composting Mechanisms
3.1. Comparison between Hyperthermophilic Composting and Thermophilic Composting

The feature comparison between HTC and TC is shown in Table 1. Among these
parameters, temperature is one of the most significant parameters during the composting
process; it should be monitored throughout the process [58]. For the conventional TC
process, the maximum temperature ranges from 50 to 70 ◦C, which limits the performance
of organic decomposition, pathogen inactivation, as well as humification degree. By inocu-
lating the waste with hyperthermophilic microbes, the maximum temperature during the
composting process can exceed 80 ◦C and last for 5–7 days without an external thermal
source because of the process called HTC. There were four stages during HTC: the tempera-
ture rising stage, the hyperthermophilic phase, the thermophilic phase and the maturation
stage. Due to the development of a hyperthermophilic microbial community during HTC,
this can lead to an improvement in organic biodegradation efficiency, composting efficiency,
and sanitation situations. In addition, pathogen killing efficiency is enhanced in HTC due
to the extremely high temperature. For the same reason, nitrification and denitrification
processes can hardly take place, and organic nitrogen is either converted to ammonium
or an undigested form, leading to less loss of nitrogen [59]. In addition, the initial C/N
ratio is also a critical parameter to enhance microbial activity and optimize the composting
process; the germination index (GI), a commonly used variable to evaluate the maturity of
composts, is shown in Table 1.

Table 1. Feature comparison of hyperthermophilic composting (HTC) and thermophilic composting
(TC) for organic solid waste treatment.

Characteristic HTC TC Ref.

Maximum temperature (◦C) >80 50–70 [59,60]
Average temperature (◦C) 70 40 [59,60]
Thermophilic period (d) ≥80 ◦C, 5–7 d ≥50 ◦C, 5–7 d [60]
Composting period (d) 15–25 30–50 [60]

Low C/N (<10) for start-up Easy Hard [57]
Compost maturity GI a ≥ 95% GI ≥ 65% [60]

Pathogens inactivation rate High Low [60]
Waste weight reduction (%) 52.4 45.9 [57]

Moisture loss (%) 58.9 53.4 [57]
Organic matter loss (%) 66.8 63.8 [57]

Nitrogen loss (%) 26.2 31.0 [57]
26.1 44.2 [27]

Odor NH3, less NH3, H2S, SO2, more [60]
Operation cost Low High [57]

a Germination index.

3.2. Hyperthermophilic Inoculants and Microbial Community Structure

Hyperthermophilic microbes act as promoters during HTC, which can promote or-
ganic solid waste mineralization and humification and release thermal energy through
their metabolism. Many researchers have been dedicated to exploring hyperthermophilic
inoculants, and some inoculants have been available for many years. YM bacteria, belong-
ing to Bacillus, was discovered by Yamamura Masaichi and has obtained patent certification
in China (No. ZL 02826097. X) and been applied to a large-scale HTC plant for sewage
sludge treatment [61]. According to the study [61], the mixture ratio of solid YM bacteria
and sewage sludge is about 2 on the basis of weight. Liquid hyperthermophilic inoculants
produced by GeoGreen Innotech Co. Ltd., Beijing, China, have been utilized for various
organic solid waste treatments in full-scale HTC plants [60]. In the study of Cui et al. [27,62],
0.5% liquid inoculants, on the basis of weight, were mixed with chicken manure and rice
husks; desirable composting performances were achieved. In addition, DY bacteria, dis-
covered by Tong Zhu from Northeastern University in China, has been utilized in some
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full-scale HTC projects and can promote humification remarkably (information obtained
from communication with engineers and internet communities [63]).

The microbial community of HTC is heterogeneous and differs from one locality or
phase to another; it is based on multiple interactions and interdependencies among the
participating species and organisms [64]. Recently, the microbial community structure
associated with HTC has been deeply investigated by means of modern microbiological
technology to reveal the composting mechanisms. The family Thermaceae, belonging
to the Deinococcus-Thermus phylum, which is able to survive under hyperthermophilic
conditions, is predominant during the hyperthermophilic and thermophilic phases. As a
result, Thermus within the family Thermaceae has been found as the dominant community; it
can produce large quantities of enzymes, e.g., hydrolytic enzymes and catalases, which can
adapt to extremely high temperatures and exceed the upper growth limit of most microbes.
Another dominant family during the thermophilic phase is Thermoactinomycetaceae, which
can produce large amounts of dehydrogenase, polyphenol oxidase, and urease. Planifilum,
a thermophilic genus belonging to Thermoactinomycetaceae, is another predominant genus
during the thermophilic phase. The families Bacillaceae and Sulfobacillaceae have also been
detected frequently during the HTC process. During the maturation phase, the genus
Actinomadura within Thermomonosporaceae and Sphingobacterium within Sphingobacteriaceae
have been found as the predominant communities [58].

3.3. Operation Parameters and Process Flow

The performance of HTC is affected by initial water content, pH, C/N, organic com-
position, mechanical aeration rates, artificial turning rates, and temperature, among which
initial water content and C/N of organic solid waste and mechanical aeration rate are the
most important parameters [65,66]. According to previous studies, the optimal operation
parameters for HTC include an initial C/N of 10, an initial water content of 50%, and a
mechanical aeration rate of 20 m3/(t·h) [60].

The process flow of HTC is illustrated in Figure 3. Firstly, a single type or a mixture
of organic solid waste is pretreated to adjust the initial water content and C/N, and then
hyperthermophilic inoculants are added. In the composting tank, mechanical aeration
and artificial turning are conducted periodically, and organic mineralization and humifica-
tion can be achieved through the hyperthermophilic microbes’ metabolism. During the
composting process, gases, including N2O, CO2, and NH3, are collected in order to avoid
secondary pollution to the environment. At the end of composting, the final product (com-
post) is collected and then further processed into humus, acting as agricultural fertilizer,
and part of the compost is recycled to act as the inoculant.
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4. Hyperthermophilic Composting Research and Application
4.1. Compost Formation from Various Organic Solid Wastes

In China, several large-scale HTC plants have been built and operating steadily for
many years; their process flow is shown in Figure 4. For example, there is an HTC plant for
sewage sludge treatment located in Beijing, China, of which the daily processing capacity
is 600 t; after 15–20 days of composting, the final product can be applied as soil amendment



Processes 2021, 9, 675 6 of 11

in gardens. In 2013, a full-scale HTC project for cattle manure treatment was carried out
in Jaozuo, China, where 40 t cattle manure can be treated and 10 t of superior compost
is produced daily. Moreover, the average temperature during the cattle manure HTC
process is above 80 ◦C, and very little odor and leachate are released throughout the
process [60]. However, the treatment capacity of this cattle manure HTC process needs to
be further improved.
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4.2. Decreasing Greenhouse Gas Emission

Large amounts of anthropogenic GHG emission are a serious issue for conventional
TC, especially nitrous oxide (N2O). The microbial-participated denitrification process
is regarded as the most important source of N2O emission in the composting system.
N2O contributes about 300 times more to global warming potential than an equivalent
mass of CO2. During the HTC process, a reduction in N2O emission of up to 90% was
achieved compared to TC in a full-scale plant in the study of Cui et al. [62]. Mechanism
analysis indicated that the nitrification rate and the N2O formation rate decreased due
to inhibition of the abundance of bacterial amoA and norB genes under extremely high
temperature conditions during HTC; NO2

–-N and NO3
–-N levels decreased, leading to N2O

emission decreasing. Additionally, statistical analysis indicated that the extremely high
temperature was the primary reason for lower N2O emissions in HTC, and physicochemical
characteristics in TC, including water content, pH, electrical conductivity, NH4

+–N, and
total nitrogen, were the main factors for higher N2O production.

4.3. In Situ Biodegradation of Microplastics

Microplastics (MPs) have attracted much attention in recent years due to the potential
threat to the ecological environment and human and animal health. Organic solid waste
derived from aquatic and terrestrial environments contains large amounts of MPs. Land
application as fertilizer or soil amendment is the conventional method for organic waste
management that might introduce large amounts of organic solid-waste-based MPs to
the soil. Therefore, it is time to put forward an efficient technology to treat organic
solid-waste-based MPs. Chen et al. [68] conducted a full-scale HTC process to treat sewage-
sludge-based MPs, and 43.7% of the MPs were in-situ removed after 45 days of operation.
The mechanism analysis was conducted through a bench-scale HTC experiment using
HTC inoculum with a polystyrene–microplastic (PS–MP) addition. The results showed
that 7.3% of PS–MPs could be degraded at 70 ◦C in 56 days, a more than 6.6-fold increase
compared to TC. During the HTC process, hyperthermophilic bacteria, mainly including
Thermus, Bacillus, and Geobacillus, make a great contribution to PS–MP biodegradation due
to efficient bio-oxidation and biodegradation effects.

4.4. Remediation of Heavy-Metal-Polluted Soils

Traditionally, large amounts of organic solid waste are disposed of in landfills, al-
though this process always causes serious environmental pollution through leachates,
among which heavy metals are a serious threat to the surrounding environment. Develop-
ing efficient technologies to treat organic solid waste and alleviate heavy metal pollution
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simultaneously has attracted much attention recently. In the study of Tang et al. [69], Cu(II),
acting as a representative heavy metal, was utilized to investigate the complexation of
Cu(II) to humic acids (HAs) derived from HTC, TC, and raw sewage sludge. Results
showed that the order of complexation ability, from high to low, was HTC-derived HAs,
TC-derived HAs, and sewage sludge-derived HAs, which was attributed to a higher hu-
mification degree and the faster response of carboxyl and phenols to Cu(II)-binding with
HAs from HTC. Therefore, compared to TC and sewage sludge, HTC is more efficient in
Cu(II)-polluted soil remediation.

In the study of Chen et al. [70], Thermus thermophilus (T. thermophilus) FAFU013 was
inoculated to HTC of Pb(II)-polluted solid biowaste. After 40 days of HTC with T. ther-
mophilus FAFU013 inoculation, the most insoluble residual fractions of Pb increased by
16.0% (from 76.5% to 92.5%), which was approximately 3 times higher than that of the TC
group; this indicated a remarkable Pb passivation by the hyperthermophilic microbes.

4.5. Removal of Antibiotic Residues and Antibiotic Resistance Genes

The threat of antibiotic residues to the natural environment has become a critical
worldwide issue in recent years. Researchers have been devoted to developing effective
methods to treat organic waste with antibiotic residues and antibiotic resistance genes
(ARGs) to alleviate environmental pollution. HTC has been proven to be an efficient
technology to achieve the reduction of antibiotic residues and ARGs from organic solid
waste. For example, HTC effectively removed 95.0% of tylosin antibiotic fermentation
residues and 75.8% of related ARGs; these results were attributed to a decrease in the
abundance of antibiotic resistance plasmids and related host bacteria [71]. In the study of
Liao et al. [72], HTC and TC were conducted to evaluate the removal efficiency of ARGs
and mobile genetic elements (MGEs), and the related mechanisms were investigated. The
results showed that the removal rate of ARGs and MGEs during HTC was 89%, which
was much higher than that during TC (49%). The mechanism analysis indicated that the
stability of ARGs and MGEs were negatively affected by the extremely high temperature,
and MGE reduction played a vital role in ARG removal in HTC.

5. Implication and Future Perspectives

Based on the above analysis, it is indicated that HTC shows remarkable advantages
over conventional technologies for organic solid waste treatment, including easy operation,
resource recycling, little residue and odor emission, and a short processing period. In
particular, HTC can effectively decrease GHG emission, in situ degrade MPs, remediate
Cu(II)/Pb(II)-polluted soils, and remove antibiotic residues and ARGs, the results of
which are far superior to conventional TC, as shown in Figure 5. However, there are still
some problems that need to be addressed before HTC’s wide application. Firstly, HTC
has been applied to sewage sludge, livestock manure, and agricultural waste treatment;
however, studies on its application to food waste and aquacultural waste management
are scarce. It was well known that lipids, oils, or salinity-rich solid waste as composting
substrates can cause system instability [6]; this needs further investigation. Secondly,
organic mineralization is accelerated during the HTC process, while the organic content in
the composts inevitably decreases, leading to fertilizer efficiency loss. In this situation, it
is crucial to keep the balance between composting efficiency and compost nutrients [61].
Thirdly, the performances of other heavy metal (Zn, Cd, Cr, Ni, and As)-polluted soil
remediation during the HTC process should be further investigated. Fourthly, the safety
of hyperthermophilic microbes with regards to humans, animals, and agricultural plants
should be verified. Moreover, technoeconomic analysis is essential for a novel technology
before large-scale application.
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serve as potential feedstock for composting. This review offers a comprehensive analysis
of the newly-developed hyperthermophilic composting. Compared with conventional
technologies for organic solid waste management, HTC has the advantages of low cost,
easy operation, little residue and odor emission, and high efficiency, and its final product
can act as a desirable agricultural resource. More importantly, HTC showed better perfor-
mance on reduction of GHG emissions, remediation of heavy metal-polluted soils, and
removal of MPs and antibiotic residues compared to TC; this has attracted much attention.
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