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Abstract: Intractable problems are challenging and not uncommon in Computer Science. The com-
puting generation we are living in forces us to look for an alternative way of computing, as current
computers are facing limitations when dealing with complex problems and bigger input data. Physics
and Biology offer great alternatives to solve these problems that traditional computers cannot. Mod-
els like Quantum Computing and cell computing are emerging as possible solutions to the current
problems the conventional computers are facing. This proposal describes an in vivo framework
inspired by membrane computing and based on alternative computational frameworks that have
been proven to be theoretically correct such as chemical reaction series. The abilities of a cell as a com-
putational unit make this proposal a starting point in the creation of feasible potential frameworks
to enhance the performance of applications in different disciplines such as Biology, BioMedicine,
Computer networks, and Social Sciences, by accelerating drastically the way information is processed
by conventional architectures and possibly achieving results that presently are not possible due to
the limitations of the current computing paradigm. This paper introduces an in vivo solution that
uses the principles of membrane computing and it can produce non-deterministic outputs.

Keywords: membrane computing; bioinformatics; unconventional computing

1. Introduction

This paper presents a new biocomputational paradigm influenced by cell computing
and in particular inspired by Membrane Computing [1,2] called MECOMP.NET. We aim
to exploit eukaryotic cells as processing units to model/predict and quantify in silico
any of their many biological functions measurable in time and intensity using computing
algorithms within MECOMP.NET. The significance of this paper is that it would represent a
quantum leap in the field of biomedicine, as it would accelerate the areas of drug discovery,
disease understanding, and biological process understanding.

Many cellular properties act as biological processing units as they are great conductors,
communicators, and potential parallel processing units [3]. The direct parallelism between
cells and computational processing units is precisely the root of the MECOMP.NET project.
This paper proposal performs an evolutionary jump in comparison with today’s research
in this field by turning cells into computational devices. The emergent properties and
functions of the cells (parallelism, no determinism, electrical conductivity, communication,
and cooperation) can be used for the resolution of computationally intractable problems, not
appropriately solved by conventional methods. The best conventional models that they can
currently do is to obtain approximations. It is clear that for polynomially bounded problems,
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the conventional approach might be optimal. However, complex and computational
intractable problems would be a better fit for biological processing units [4].

The studies cited in this paper show that eukaryotic cells have already demonstrated
potential processing properties. In particular, cell membranes have been proof to work
as single CPU units. A system with 10 billion cells could potentially work as a system
with 10 billion CPUs working together to deal with computational problems. A future
implementation in laboratory settings of a computational system trained to link changes
in parameters (that occur within seconds or minutes after adding an input) to resulting
changes in cellular functions or outputs (that happen within hours or days) is accelerating
research discoveries in an unprecedented way.

MECOMP.NET shows the potential to go beyond classical bio-computing strategies
such as self-reproducing machines [5], cellular automata [6,7], multilayer perceptrons
and neural networks [8,9], genetic algorithms [10,11], adaptive computing [12], bacteria-
based computation [13,14], and artificial cells [15]. Interestingly, these models are not just
speculative or hypothetical, the state-of-the-art in this proposal shows a large number of
studies that solidly support the possibility of creating such systems. The computational
properties of cells are proven, the theoretical computational models are correct, and some
implementations in the lab have already been successfully tested. The proposal builds
upon prior work and focuses on what is still needed to tackle high complexity problems.
Specifically, building a new generation of natural computing based upon the scalable
“minimal biological units” with problem-solving capacity in very different realms.

New problems are generated every day, increasing the need for processing massive
data in a short amount of time. Conventional architectures have been facing the inherent
limitations of the traditional framework for several years. Thus, integrating biological
approaches like MECOMP.NET will be increasingly demanded to satisfy the needs or new
applications in Information Systems.

This paper introduces a systematic cellular computing approach starting by estab-
lishing the principles to be computed to generate robust predictions of high complexity
biological functions. Thus, the first goal is to determine such basic principles to be com-
puted using the minimal computing units. Those principles may be intracellular events,
such as protein modifications (phosphorylation), ion release from organelles (through ion
channels), and protein expression, or cellular functions: proliferation, cell cycle arrest, and
cell death. The second goal is to detect processes of higher complexity that can be used as
circuits or networks of information. The tests in the lab will follow the design of models
that are computationally and theoretically correct.

A brief description of MECOMP.NET platform, together with the fundamental func-
tional blocks of cell processing, which are tentatively included in the present scheme are
the following, see Figure 1:

Metabolism (MET)

Supermetabolism (SUP)

Signaling pathway system (SIG)

Transcriptional and epigenetic gene control (TRC)
Ubiquitin protein degradation (DEG)
Cytoskeleton and cellular adhesion (CSK)

Cell cycle regulation (CCR)

Genome profile (GEN)
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Figure 1. MECOMP.NET diagram: it receives metabolic (M) and signaling inputs (S), processes them (11,113, - -, Sipy) In

a single cell unit represented as (MINIE), generating metabolic (M,y;) and signaling outputs (Sext)-

Inside MECOMP.NET (see Figure 1) a look-up table of cellular variables (comprising
all inputs, outputs, and intermediate states) is continuously updated and put into contact
with the population of expressed operators, being part of some of those operators of the ta-
ble itself, as they are modifiable by other operators. The interaction between the population
of expressed operators and the state variables (including modifiable operators) constitutes
the computational core of MECOMP.NET. This operator can be activated by some molecu-
lar components including nutrients (such as fetal bovine serum (FBS)), drugs, promoter
inducers (Doxycyclin), enzymatic substrates (Luciferin), or electrical /electromagnetic sig-
nals [16].

The overarching goal of this work is to provide feasible computational solutions that
overcome current biological limitations to achieve higher scientific discovery rates. A cur-
rent unmet need in scientific research is the prediction of biological outcomes resulting from
a chain of events triggered by biosignals, nutrient processing, drug response, or electrical
signals in a similar way that any of the bioinspired computational models do. Providing
such a framework paves the path for building biology-inferred computers that can po-
tentially deal with relevant questions in biomedical fields that are not intractable, costly,
or time-consuming with current methodologies in a much expedited and efficient way.

2. Background and Prior Work

Synthetic biology has built robust models, and simulated complex circuits, using
in vivo models and thus has become extraordinarily informative for the manufacture of
biological components not naturally occurring (artificial chromosomes), or to scale produc-
tion of natural components (DNA molecules, proteins, etc.) [17]. In the first wave of these
studies, fundamental elements such as promoters, transcription factors, and repressors
were combined to form small, simple modules with specified behaviors. In 1999, W.L. Ditto
created a biocomputer at Georgia Tech that was capable of performing simple additions
with these simple modules. Currently, biological modules include switches, cascades,
pulse generators, oscillators, spatial patterns, and logic formulas [18]. In 2013, biological
transistors were designed to build AND, NOT, and OR biological gates. The latter has been
recently implemented with success [19]. These findings opened a new way of replicating
the conventional CPU units of in vivo materials. The new ways of automatically counting
cell components, such as density, number of regions, calcium molecules, and bacterial
tissue [20], make it very possible to process a vast array of biological outputs and com-
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skin

bine them with conventional models, producing hybrid solutions (in silico and in vivo
integrated systems).

George Paun considered membrane computing processes as basic calculator processes
or basic computing units. The model opened new ways of researching when solving
NP-complete problems by generating theoretical parallel processing units. Membrane
Computing is commonly referred to as Transition P-system and is inspired by biologi-
cal dynamics; however, Transition P-systems have always been used as a computational
model, instead of a biological model. Presently, there are many simulations in silico of
such systems, but unfortunately there are no attempts or approximations of membrane
computing in vivo. There are, however, some implementations of in vivo computing in
related fields, such as cellular computing that uses unicellular organisms called ciliates.
Ciliates, for instance, store a copy of their DNA containing functional genes in the macronu-
cleus, and another encrypted copy in the micronucleus. From the biological point of view,
a plausible hypothesis about the bioware that implements the gene assembly process was
proposed based on template-guided recombination [19].

membrane
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Figure 2. Representation of basic components in a membrane system that could be transformed into a tree shape using

is-compound-of relationships, and an example with object multisets and evolution rules (from left to right).

Formally speaking, a Transition P-system of degree n,n > 1 is a construct Where
V is an alphabet; its elements are called objects; u is a membrane structure of degree
n, with the membranes and the regions labeled in a one-to-one manner with elements
in a given set, see Figure 2; and Transition P-systems evolve accordingly to the evo-
lution rules application in several membranes. An example of the evolution rule is
aab — (a, here) (b, out)(c, here)(c,in). After using this rule in a given region of a mem-
brane structure, two copies of a4 and one b are consumed (removed from the multiset of
that region), and one copy of 4, one of b, and two of ¢ are produced; the resulting copy of
remains in the same region, and the same happens with one copy of c (see Figure 3).

Due to the transformation that transition P-systems have undergone over the years,
some reports discuss deterministic P-systems [21] and P-systems with minimal paral-
lelism [22], and algorithms for applying evolution rules are being improved [23]. In a
report by Arteta et al. [24], a computational model inspired by the aggregation of mem-
brane units is shown to potentially work as a problem resolution solver.
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Figure 3. Dynamics of a P-System, also named evolution. Evolution rules in any membrane can be applied in parallel

provided antecedent constraints belongs to its object multiset. The next evolution step starts when all rules have been

applied in parallel.

Ad Hoc Hardware Solutions

The implementation occurs directly on hardware tools designed especially for that pur-
pose (usually FPGA technology). In this scenario, Pdun reminds us: “The implementation
of a P-system in an electronic computer is not an implementation itself but a simulation”.
So far, parallel hardware does not exist. Simulations lose the main advantages of the
P-systems [1,2,25]. Other researchers [26] show the model and the design, but it does not
go beyond a P-system’s implementation. Petreska et al. [27,28] described the first imple-
mentation of hardware for FPGA. Here, it is possible to input all the parameters involved
in P-systems. However, the system is deterministic, which falls short of the requirements.
Thus, it is the first implementation merely in hardware, but it is not deterministic. More-
over, the hardware is only possible to be used for a particular P-system. What is needed is
to use universal hardware ready to be used with any P-system. There are also some ideas
about a non-deterministic proposal of universal hardware for any P-system through FP-
GAs [29]. The introduced hardware ensures non-determinism and universality. However,
the application of evolution rules is not a massively parallel process. Nguyen et al. [30]
provide a solution that looks like the one proposed in [28], with the main difference being
that it is possible to implement parallelism efficiently over reconfigurable hardware.

Solutions based on ad hoc with universal hardware models need software devel-
opment (low-level programming language most of the time) that will be running over
hardware components. Those components are designed specifically for that purpose.
They will have similar characteristics to the microcontrollers present in smart cards.

No P-system has been implemented in vivo, but some cell computing of membrane-
related models has been very close. In 1994, Adleman accomplished the first experimental
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close connection between molecular biology and computer science [31]. He described
how a small instance of a computationally intractable problem might be solved via a
massively parallel random search using molecular biology methods. A recent study [32]
demonstrated that the steep transmembrane ion gradients in eukaryotes are critical for
receiving and processing environmental information. Information is received when some
perturbation causes the protein gates in transmembrane ion channels to open. This feature
is essential to induce electronic signals into membrane units and propagate them within the
eukaryotic cell and opens a solid possibility of integrating some biological models within

in silico solutions.
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Figure 4. The graphical representation of a P system which outputs square numbers into the environment [25] (left)

and multiplication [33] (right).

Biological P-systems will play an essential role in creating biological computers [1,2,25].

3. Membrane Computing: Integration in Cell Computing

Cell computing started as a framework and a simulation in silico of cell processing
as a whole. This framework was proven to be theoretically correct, and the simulations
have been successful as stated in the state-of-the-art. Based on in vivo computing simula-
tions, in vivo implementations (in lab) have been successfully done. They represent a real
implementation and there are several applications already in place (see state-of-the-art).
Membrane computing is related to the cells computing paradigm, although very specific.
This model was proven by George Pdun as a theoretically correct computational model,
and there are numerous simulations as previously stated. However, there is no imple-
mentation of this specific paradigm in a laboratory setting. The chances to create massive
non-deterministic in vivo models of parallel processors inspired in membrane computing
are relatively high, as there are successful implementations of closed related models such
as cell computing. A prior study demonstrated [32] that cells have proven to be able to
integrate the communication between biological units and in silico-based devices, which
opens the door to create hybrid (biological in silico) computers and boost the chances of
the overall success of MECOMP.NET.

4. Problem-Solving Characteristics

This artificial chemistry and the signaling and scalability procedures, along with the
characteristics of the different membrane processing-inspired software is to be of great
relevance. MECOMPNET incorporates the emerging functions covered by networks
of membrane models with a more sophisticated aggregation of membranes (MCA) [24].
From a long-term perspective, the most suited problems to be initially addressed by the
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new paradigm are those of combinatorial optimization. These are usually present in Nu-
merical Analysis, Deep Learning algorithms, Massive Data applications, and intractable
computational problems, as the well-known knapsack problem, which arises in differ-
ent fields: Combinatory, Complexity Theory, Cryptography, and Applied Mathematics.
The problem is known to be NP-complete which means no algorithm can be both correct
and fast (polynomial-time) for all cases. Besides, there are several applications of cell
computing [23,34]. These are applications of hybrid simulations of cell computing success-
fully proving the correctness of the method. Besides, there is other related research on
effective analysis of Bioinformatics data in different formats [35-38] and big data [39,40].
The evaluation of the complexity and universality characteristics of MECOMPNET as a new
computational paradigm implies examining computational relationships and convergences
of MECOMP.NET with cellular automata, evolutionary agents, and the Turing machine.
These systems are evaluated in terms of algorithmic convergence as a transformation of
emergent properties of the proposed architecture.

5. Methodology

Our proposal can be divided into four main methodological blocks which contain
phases that at times will be developed in parallel: biological analysis (phases 2, 4, and 5),
computational simulations (phases 1, 3, and partly 4), and evaluation plan (phase 6).

5.1. Phase 1

A theoretical study, modeling, and formalization of membrane computing (initial
simulation): Any biological network, either at the “cellular” or “tissue” level shows an
evolvable development and differentiation, and that is what will be simulated in this phase.
In this phase, simulations in ISLISP and Haskell 7.6 (Haskell.org Inc., P.O. Box 1206, New
York, NY 10159-1206, USA) are running to identify the different states the system will
evolve with the membrane computing principles; this helps to design the in vivo system
algorithms. This design is essential, as it establishes the basis of creating a computational
paradigm in the lab.

5.2. Phase 2

Bioinformatics implementation of simulations to the biomolecular processes in vivo:
The standard model is not fully replicable in the lab. Adapting the theoretical framework
according to the biological rules that the cell regions are limited is the goal of this phase.
An exhaustive study of standard rules, finding the feasible biological inputs and outputs,
is needed to apply it and to adapt it to the lab requirements. An abstraction of these
basic properties is set up the guidelines for the creation of a minimal set of cellular units.
Cellular components are considered either active or passive and we will use production
rules (molecular, cellular, and tissue operators, enzymatic and self-assembly operators,
and so on) to measure the interaction between these components and the outcomes with
some similarities to the way P-systems evolve.

5.3. Phase 3 (Laboratory Experimentation)

Implementation of biological rules (input, evolution process, output, and execution
time): The knowledge needed for the correct advancement of this phase is extracted from
a deep analysis of the components and interactions that take place in cell membrane
units found in phase 2. Based on the evolving patterns found in the previous phase,
this stage focuses on the massive testing of those rules that include the previously detected
evolving patterns. The goal of this phase is to find and recording information vectors (input,
evolution rules, output, and computation time). At the end of this phase, the experimenter
reports a large number of computation rules that respond to the evolving patterns found in
phase 2. The experimenter will focuses on the rules that can be fully replicated from the
transition P-Systems.
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Examples of potential programmable rules to test in the lab are below. These rules
are defined in a similar way to the evolutionary rules within the Membrane Computing
computational paradigm. These have been tested in the lab. Initially, the biological rules
extracted from a membrane system in Figure 4 are simulated to obtain square numbers and
basic multiplications. The dosage of FBS (or the amount of EE electrical signals) is measured
to obtain a similar behavior of the evolution rules in Figures 5 and 6. The application of
these reactions helps to define the proper evolution rules in biological systems.

Cellular membrane #1
Testintg nutrients — aabe
s b3 — [14?)5
a — (a,ing)
ac — &

Cellular membrane #2
Testintg nutrients — bbe

c — (d, out)

b—b

Cellular membrane #3

Testintg nutrients — ccbba

dd — (a,ing)
a— (a,ing)
ac — 4

c — (b,ing)
a— (a,ing)b
c— (c,ing)

Figure 5. A three-membrane system brings a simple membrane system designed to calculate a random number.

Cellular membrane #1
Testintg nutrients — bbbb

bv = evd > v — u

euw — bud >u — v

Cellular membrane #2

Testintg nutrients — aaaav

au — u
dd — (a,ing)
ac — 0

av — v
a — (a,ing)b
a — (a,ing)

Figure 6. Two-membrane systems designed to multiply the number of b’s and a’s.

Initially, the tests consider application rules and multisets of objects from a membrane
computing framework. The first in vivo attempt will simulate in the lab the transition
P-system that returns a random value. See below examples of reactions for the initial study.
The multisets elements a4, b are defined to represent nutrients. The elements to be tested for
these objects (ab, c) are organic, Na™, H", O, and Ca, and inorganic, Fe, Se, and Zn, these
are represented as “nutrients”.

5.4. Phase 4

Synthesis of biomolecular/biocomputational interconnections of the recorded pro-
cesses: Once all the rules have been tested, we prioritize those with structural similarity to
the membrane computing model; some of the rules above are filtered out to consider the de-
velopment of complex problems solving systems. Then, we train the system into different
contexts or different descriptive levels and apply it to complex problems to establish a more
advanced approach allowing the analyses of problems at different stages, from the least
concrete to the most practical. These rules are classified into feasible for membrane rule,
computational feasible, non-feasible. This phase is essential for the development of the
project as determines the performance and the ability to build programmable cellular units.
Based on the dosage of FBS, the intracellular signaling and the principles of bioinspired
computing techniques (the biological rules) dictate the evolution of the membrane units.
The system then reads output signals (by quantifying elements within the membrane
regions) and links them to input signals. The evolution rules are reprogrammed based on
the way the cells consume the nutrients; they are simulated by adding stimuli previously
defined and chosen in phases 1 and 2 and observing in what quantity this affects the input
objects. This step is essential to induce the right amount of signals that determine the
evolution rule.
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5.5. Phase 5 (Laboratory Experimentation)

Design of the initial biological membrane-based minimal unit: Based on phase 3, the
design of the processing is relatively complex. Programmable rules are the seed of the
evolutionary development of a P-system in vivo. Those rules along with the stimuli and
nutrients, working as objects, are part of the unit. As the changes of the different regions
(part of phase 2) are recorded in detail, when different stimuli are given, additional features
can be embedded in the unit further on. Thus, this phase also opens new possibilities
to future adding to the membrane system in vivo. For this purpose, we use abstractions
of active components (membrane, proteins, enzymes, etc.). These components will be
gathered in the functional design to be implemented. Configuration’s process in this
context is based on performing a search of components previously included in a catalog
and complying with the initial conditions.

5.6. Phase 6

Testing of the unit with rule elements of the cellular functions selected during the design
process: This phase considers the results of implementing the structure (regions/functions)
nutrients/objects and rules that have been found in phase 3. Every potential is tested a
minimum number of ten times to offer the same results, although the non-determinism
feature embedded in the P-system will also be tested in vivo. From the theoretical point of
view, defining structures that offer the expected output regardless of the evolution rules are
also explored as membrane computing by itself is a limited framework and a full replica
in vivo is practically impossible [41]. The development of the computation paradigms for
high-performance distributed computing as well as the need for increased computational
power to solve complex problems is the key that inspires this phase. The tests are done to
bring resolution to simple problems such as multiplications by adding two inputs.

6. Evaluation and Results

The proposal has been evaluated based on the following criteria: Evaluation of the
selected rules: evaluation of the system is done in terms of algorithmic convergence as
a function of emergent properties of the proposed architecture. A crucial related aspect
will be a refinement of the software that will support emerging processes of multicellular
systems. The in-lab synthesis of ad hoc “minimal biological units” is studied as a different
proof of theoretical designs and software simulations. The tests are done with trial-and-
error attempts and will consist of three main phases.

Rule detection for a processing unit: Rules include programming the cells, observing
the changes in different levels (components, objects proliferation, density, and many other
changeable attributes within eukaryotic cells), timing the process, and reporting the results.
Timing, parallel degree of transformations, and quantification of transformations are crucial,
and we will relate them successfully with three dosages of the applicable drugs: inducers.

During the evaluation, the rules defined in phase 3 have been tested to detect the possi-
ble biological processing units. The rules that do not contribute to anything programmable
are discarded. The rules that simulate evolutionary rules in computational models are
tested first.

A rule has been considered to be part of a biological processing unit if and only if the
following hold.

¢ Timing of returning output is acceptable in comparison with traditional comput-
ing paradigms.

®  The process occurring in the cell transformation that produces the output in parallel.

e [t is possible to find the relation between the component changes and the inten-
sity/amount/number of stimuli used (drugs, electrical signals, or inducers) to stimu-
late the unit.

Evaluation of the unit: Once the rules are identified and tested, the integrative model
is created and the concept of the minimal processing unit is generated. The evaluation
consists of repeating the procedure input/outputs) according to a looping parameter (1),
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initially defined as p = 10,000. This variable determines the number of times (initially
10,000) an input transformed into an output according to the selected evolution rules.
The goal is to identify the deterministic degree of the models and to verify the same rules,
with the same stimuli (dosage of FBS, inducers, or EE signals) and same inputs produce
expected outputs, and therefore the test leaves the building process of the processing units.
The potential units we have initially considered as biological CPU units are not healthy
cells but leukemic cells, mainly due to their proliferation rate that can boost the simulation
performances. The three B cell leukemia cell lines that are used during this study are
NALM-16, Beck-1732, and MHH-CALL2 (The NALM-16, Beck-1732, and MHH-CALL2
cell lines were obtained from Dr. Ernesto Diaz-Flores [42]). All three leukemia cell lines
belong to the subgroup of hypodiploid leukemia. Their duplication time is about 24 h when
grown in RPMI culture medium in the presence of exogenous L-Glutamine and 10% Fetal
Bovine Serum (FBS) at 37 degrees Celsius and 5% CO,. These cells were used in a recent
publication studying their genome and protein profiles, proliferation rates, and response to
multiple drugs as faithful models of hypodiploid leukemia [42].

As can be observed in Figure 7, only the ABT-263 drug (a Bcl-2 inhibitor, orange)
reduced viability to a large extent with concomitant induction of cell death. From a
computational standpoint, those graphs indicate how a value representing the proliferation
status of cells at 24 h modulated via a stimulus (drug) that operates as an add/subtract
function to the protein levels are easily computed.
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Figure 7. Integrated biochemical characterization with viability/survival assays in hypodiploid
ALL. (A) Cytobank heatmap representing a signaling profiling panel of phospho- and total protein
levels (columns) in individually xenografted leukemias from LH and NH subtypes (rows). Levels
of phospho- and total proteins were normalized to healthy donor control cells (HM ctrl). Yellow,
increased levels; blue, decreased levels. (B,C) NALM-16 cells were cultured for 24 h in the presence
of increasing concentrations of inhibitors (PP2, INCB-18424, GDC-0941, PP-242, PD-0325901, and
ABT-263) and effects were measured using cell proliferation (B) and apoptosis levels (C) using ATP-
luminescence (CellTiter Glo) or caspase-3/7 activation assays, respectively [42] The main counters
for the computational study are displayed in (B) cell proliferation and (C) ATP-Luminescence. These
counters are selected for the implementation of the membrane system, as the variance in the values
make them a good fit for evolving during the evolution process of the membrane system. Reproduced
with permission from Ernesto Diaz-Flores, Cancer Research, published by American Association for
Cancer Research, 2019 [42].
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6.1. Results Turning Cells into Computational Units by Training MECOMP.NET with Biological
Processing Inputs and Outcomes According to P Systems Evolution Rules

This stage deals with measuring cellular proliferation based on rapid changes in
fluorescence. Cells are continuously processing information by transducing external stimuli
into a chain of intracellular signaling. That produces a response that encompasses multiple
processes: protein synthesis, cell proliferation, cell death, etc. Cells can be engineered
to harbor reporter fluorescent tags that have been induced upon stimulation, allowing
to tracking of multiple cellular and biological processes. Immortalized cells are used in
research laboratory settings to study multiple processes from understanding cancer cell
behavior to drug responses, stimuli responses, and so on. The leukemic cells to be used
in this study have been tagged to express either fluorescence tags or luminescence tags
to track a series of biological processes. These immortalized tagged leukemic cells are
mini-processors responding to a series of stimuli.

Experimental procedure: For the work proposed here, we will use Nalm-16, an im-
mortalized B cell leukemia, (1,2), as well as two other B-ALL cell lines (Beck-1732 and
MHH-CALL2) as CPUs.

*  Experimental set up (A)

- Serum induced proliferation

—  Input: nutrients (Fetal bovine serum (FBS))

—  Output: proliferation (reporters: Ki67, ATP production)

- Readout method: Flow cytometry analysis (Ki-67) (fluorescence), Cell titer glo
(ATP) (luminescence)

- Methodology: Cells will be arrested from proliferation by depriving them of
serum (FBS) for 2 h. Cells will be seeded at 1 million per experimental well in
a 6-well plate, and FBS will be added in a dose-response manner, from 0.01%
to 10%. Percentage of ATP (linearly correlated to proliferation) will be recorded
every 30 min for 6 h and then at 12, 24, 48, and 72 h.

—  Determine how early events (% ATP, Ki67) determine the cell proliferation and se-
lect the most accurate readout method. Evolution rule A — A", where n is a
non-deterministic variable, A is the cell count, and m evolution rule determined
by ATP and FBS dosage. The P-system for this experiment is depicted in Figure 8.

\

Am

A— A"

A" — out

- /

Figure 8. Membrane system with a Skin membrane, two evolution rules, and a multiset of objects.

In every evolution step, the multiset of objects either expands or outputs an increased number
of objects.

The proliferation rate determines the growth the of the cells population non-
determinisitically defined by FBS. When applying the same amount of FBS, the cell
population increases. Using the Membrane Computing terminology, we will say that when
the evolution rule 1 is applied the multiset of objects gets always larger, with a variation in



Processes 2021, 9, 511

12 of 17

the increase size. In the experiment, it is noticeable that the cells count grows, but not with
a constant growing rate. This rules out the design of the multiplying P-system. However,
the way that the cell number increases is very similar to the accumulators in loops, where
in every round the accumulator gets updated with a new value (a new value is added,
but not necessarily the same one).

The experiment provides with a method for simple addition; however, the inherent
non-deterministic character of the system makes it doing it in a different way a basic
calculator does.

e  Experimental set up (B)

- Drug-induced cell death

—  Input: Bcl-2 (survival) inhibitor (ABT-199)

—  Output: cell death (reporters: Caspase-3)

- Readout method: Active Caspase by Caspase Glo assay (Promega)

-  Methodology: Cells will be seeded at 1 million per experimental well in a 6-well
plate. ABT-199 will be added in a dose-response manner from 0.01 uM to 10 uM.
Caspase levels will be recorded every 30 min for 6 h and then at 12, 24, 48,
and 72 h. Similarly to the previous experiment, the design of the Membrane
system is identical with a replacement of the main evolution rule.

—  Determine how time and intensity of Caspase induction at early time points
predicts long-term cell death induction. Evolution Rule A" — A, where n is a
non-deterministic variable, A is the cell count, and m evolution rule determined
by ABT-99 and Promega.

The experiment provides with a method for simple subtraction; however, the in-
herent non-deterministic character of the system makes it doing it in a different
way a basic calculator does.

6.2. Experimental Setup: Relay System

This experimental module uses cells that have been engineered by the experimenter to
express an inducible CRISPRi system [43] (Creative Biogene, 45-1 Ramsey Road, Shirley, NY
11967, USA). The CRISPRi system allows blocking the expression of any gene inside a cell.
The researcher has access to a library of over 12,000 genes to choose from. The expression
of an essential gene (Bcl-2) will be blocked. Cells were first engineered to express the
inducible CRISPRI cassette. This cassette has a doxycycline-inducible Tet expression, a red
fluorescent (mCherry) tag, and a ribonucleoprotein complex (dCas-9-KRAB). After adding
exogenous doxycycline, both the effector dCas9-KRAB and the tag are expressed. This
dCas9 effector is responsible for blocking any gene of interest. As a safeguard, and to
prevent the risk of accidentally blocking the expression of any non-intended gene in the cell,
this system requires the presence of another gene-specific construct (guide RNA) that will
guide dCas9-KRAB to the locus of the gene of interest. The experimenter has engineered
cells to express both constructs being the guide-RNA-specific for the survival gene Bcl-2.
Thus, it requires the addition of exogenous Doxycycline to express dCas9-KRAB that,
through the guide provided by the Bcl-2 guide RNA, will go to the genomic locus of the
Bcl-2 gene and selectively inactivate the expression of Bcl-2.

The Bcl-2 gene is essential for the survival of the three cell lines above mentioned.
Without Bcl-2, the process of apoptosis (programmed cell death) will be started in the cell
at around 8 h, resulting in the death of the cells between 12 and 24 h. However, within the
first hour upon inactivation of the Bcl-2 gene, the apoptosis machinery gets started with
the rapid activation of Caspase 3. Caspase-3 activation can be detected with a great level of
sensitivity using a Caspase-Glo luminescence assay.

Methodology:

e Input: 0.3 mg Doxycycline

¢ Output 1: mCherry fluorescence (from dCas9-KRAB expression) within seconds to
minutes; output 2: luminescence from Caspase 3 within minutes.

¢ Plasmid information
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-  pHR-TRE3G-KRAB-dCas9-p2a-mCherry. This construct provide an inducible
CRISPRi cassette (see https:/ /www.addgene.org/60954/ (accessed on 8 May 2012).).

- PU6-sgRNA with EFlalpha Puro-T2A-BFP. This construct provides the target
locus (see https:/ /www.addgene.org/60955/ (accessed on 8 May 2012).) for the
product of the prior plasmid.

*  Goal: We will be able to determine the intensity of mCherry signal, how it amplifies
over time, and the associated luminescence intensity of active Caspase. Both mea-
sures will be recorded using a dual fluorescence/luminescence Tecan plate reader.
The intensity is constantly measured and it varies according to a random normalized
distribution. Below there is a sample of a sequence of signal intensities captured as
output and normalized by the MinMaxScaler function, see Table 1.

Table 1. Sample of a sequence of signal intensities captured as output and normalized by the MinMaxS-
caler function.

Obtained Value

0.009173482905401653
0.08795852394045727
0.22070324396749302768
0.3009564373236056715
0.1369705775243437201
0.06725518234982978949
0.00135104242234343248291
0.40945947152720324285
0.98775276745812343241
0.2106503392442342326
0.50411794275372344296
0.7141285480523443806
0.323362550789823423439
0.772251883198453433346
0.8947120410823423572
0.982603883598234428
0.34438307832664154605
0.34828934532349023208
0.6542392344384726058
0.932407808023402215
0.9598512367857497
0.223198239023497486
0.682921740234320202
0.8502694852342394734
0.89324584922344746
0.3552141814234356327
0.67201710294032342309
0.4322342343873911752223
0.6314661023432474233462
0.108053954768242343831
0.901582234230658772993
0.6871116663243946124
0.8664159148262345153
0.040208114087262434324
0.7907823452440830576
0.9830167234232302717
0.24379081474323423136
0.24983990528142353754
0.45571435994241243116
0.002117514325896167313
0.040086586894410026
0.659815686044232144
0.368768656599938237
0.588077512946463449
0.07206175658728346324
0.53548662860923895551
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The sequence has been tested with the Monobit Frequency test, providing evidence of
a low correlation or lack of patterns in the generation of the numbers. The membrane
system design corresponds to the P-system calculating a random output include in [1,2].

The relevance of generating a computational model of CRISPR has great implications
not only from the computational standpoint, but also from the biological standpoint.
CRISPR has seen the fastest implementation in research laboratories worldwide. Providing
researchers with a mathematical model that could be used to predict or quantify genome
editing using CRISPR in any system and with any gene would be of utmost relevance and
may be subjected to rapid and wide applicability.

7. Conclusions

This paper has been nested within a multidisciplinary effort, understood as the set
of activities, services, and programs that are meant to support and provide solutions that
will help society in specific areas such as Biocomputing, Computational Biology, and /or
Unconventional Computing. The work done in the lab has shown that it is possible to obtain
random outputs and very simple additions for biological units that use basic powered
evolution rules. The use of leukemic cells also offers an advantage in the growth and
creation of biological units due to their high proliferation rate. The trials have proven
that nondeterministic biological processing units are possible and basic operations can be
performed in an alternative way to traditional computers. The results open a door for the
creation of more complex units.

Full implementation of a complex MECOMP.NET with a massive amount of nondeter-
ministic evolution rules for different biological inputs would provide contributions in the
five following areas: parallel computing, new computational paradigms, complex problem
resolution, applications in bioinformatics, and cybersecurity applications.

The paper has focused on the development of new types of biocomputational sys-
tems, predictive tools for exploring combinations of differentiation signals, development
of hybrid systems, theoretical developments in computer science and technology from soft-
ware development to ad hoc hardware, and new approaches to problem-solving, espe-
cially regarding combinatorial optimization problems. A common theme envisioned for
MECOMP.NET for a multidisciplinary impact will be to provide a new way of under-
standing the relationship between biology and computer science, creating hybrid systems
first and possibly full biologically-driven devices later, depending on how the biological
devices respond to the integration. In light of this, one of the most important long-lasting
outcomes of MECOMP.NET would be the development of a new category of dynamic,
interactive modeling systems, which can be used as an integrative tool for understanding,
discussing, and helping to manage complex computational problems. Potential implica-
tions that are obvious and relatively easy to achieve after completion of a complex version
of MECOMP.NET include the following.

A real random number generator: The conventional random generator used in sim-
ulations, data analytics, and even in some encrypted development is based on RAND
libraries that are inherently deterministic and based on seed numbers manipulated by
complex functions (ICG or LCG) to obtain pseudorandom numbers. The simulation in
P-System architectures has shown that it is possible to produce a random number based on
the random selection of evolution rules. This behavior is a replica of some of the random
outputs a cell can produce based on the same stimuli (input). In summary, accomplishing
this goal will have an impact in fields like cybersecurity, as it will eliminate the possibility
of predicting the next random value in a sequence as a part of the encrypting key, and
Data Science (offering a more reliable distribution of random populations). Simple P-
systems are defined to do this. Our experiment has shown the existence of random outputs
(quantifiable luminescence flashes) based on given inputs (fixed amount of Doxycycline).

A minimal processing biological unit: Without considering the performance of a
membrane-based biological unit, building a minimal one is achievable and can be a new
way of processing information. The massively parallel character of the transition P-systems,
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brought to the lab, will theoretically offer a considerable reduction in terms of time when
the input n (objects/nutrients) increases, producing outputs in polynomial time N* for
some & > 1. Each unit is represented as a cellular region with sub-regions/membranes
and it is independent and autonomous units that can process low-level operations such as
arithmetic, multiplications, or random. The trials presented here have been able to prove
that a minimal processing unit can be constructed in the lab that performs create random
numbers and performs simple arithmetic operations as in the variance of the intensity
of the fluorescent processes or the cells count within the system. Further work will be
needed to adjust more models to the known P-systems and to boost the performance,
as the complexity for these basic operations in traditional computers is lower. The main
advantage of the unit vs. the traditional computers is that the generation of randomness is
more accurate, as the conventional ones are only able to generate pseudorandom outputs.

Hybrid unit: The next step for this project will be adding biological counters such as
flow cytometers or image analyzers that can potentially get the outputs of the biological
unit, process/digitize them, and send the signals to conventional CPUs. This will undoubt-
edly have an impact on society. A long-lasting effect of MECOMP.NET success is to open a
particularly innovative direction that during the last thirty years has not been sufficiently
developed, despite the highly qualified research performed by several scarcely connected
groups with expertise in Natural Computing such as Membrane Computing.

In summary, this study have been able to demonstrate a basic biological unit that with a
single amount of evolution rules inspired in transition P-systems, have been able to produce
random outputs and small additions, which in the long term could generate a revolution
in areas that require massive data processing in real-time. Regardless of the performance
and feasibility of a more complex and efficient design, this can be a good keystone for the
creation of more advanced biological units inspired by membrane computing.
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