
processes

Article

Parallel Multiset Rewriting Systems with Distorted Rules

Cristina Sburlan † and Dragoş-Florin Sburlan *,†

����������
�������

Citation: Sburlan, C.; Sburlan, D.-F.

Parallel Multiset Rewriting Systems

with Distorted Rules. Processes 2021,

9, 347. https://doi.org/10.3390/

pr9020347

Academic Editors: Luis Valencia

Cabrera, Mario de Jesús Pérez Jiménez

and Agustin Riscos Núñez

Received: 31 December 2020

Accepted: 9 February 2021

Published: 14 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

Faculty of Mathematics and Informatics, Ovidius University of Constanta, 900527 Constanta, Romania;
c_sburlan@univ-ovidius.ro
* Correspondence: dsburlan@univ-ovidius.ro
† These authors contributed equally to this work.

Abstract: Most of the parallel rewriting systems which model (or which are inspired by) natu-
ral/artificial phenomena consider fixed, a priori defined sets of string/multiset rewriting rules whose
definitions do not change during the computation. Here we modify this paradigm by defining level-t
distorted rules—rules for which during their applications one does not know the exact multiplicities
of at most t ∈ N species of objects in their output (although one knows that such objects will appear
at least once in the output upon the execution of this type of rules). Subsequently, we define parallel
multiset rewriting systems with t-distorted computations and we study their computational capabili-
ties when level-1 distorted catalytic promoted rules are used. We construct robust systems able to
cope with the level-1 distortions and prove the computational universality of the model.

Keywords: multiset rewriting systems; promoters; distorted computation; robust computation;
computational universality

1. Introduction

Biological, social, and economic life are governed by different levels of uncertainty
which usually regard the epistemic cases and facts related to incomplete knowledge due
to unknown/faulty information. In general, any partially observable environment can
induce uncertainty (as uncertainty reflects quantitative and qualitative aspects of limited
information about the subject). Modeling uncertainty and embedding it into formal models
is usually done due to lack of knowledge about the studied phenomenon and is often one
of the sources of inaccuracy in computational model simulation, analysis, and validation.
In this respect, a small local imprecision may determine profound effects during the
computation of the model.

When defining a computational model, one might be interested about designing a
“fault/deviation”-tolerant system which performs its intended operation even when some
part of it is faulty, deviated (distorted from the initially assumed correct form), or one
does not know the exact behavior (hence one has to include into the definition presumably
true outcomes). Hence, the issue of building rewriting systems that are able to cope with
uncertainty (at the level of parallelism of the rewriting, or regarding the execution time
of the rewriting rules, or the non-determinism) and solve problems was addressed in
several papers (see [1–6]). Yet another approach to model uncertainty was to dynamically
construct rules at each step during the computation. In this respect we refer the reader
to [7]. Designing a robust system usually means developing a self-stabilizing computation
which is able to “recover” from a specified “fault” by being able to detect the “error” and
drive towards an error-free state (possibly, starting over).

A P system is a computational model inspired by the parallel processes occurring in the
living nature, especially by the bio-chemical reactions happening at the level of cells. Since
its introduction in [8] many variants were proposed in order to capture various aspects of
cellular processes, but their applicability in time proved to be also successful in covering
phenomena raging from social, biological, economical, to ecological processes. Here we

Processes 2021, 9, 347. https://doi.org/10.3390/pr9020347 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3158-0557
https://doi.org/10.3390/pr9020347
https://doi.org/10.3390/pr9020347
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9020347
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/2/347?type=check_update&version=2

Processes 2021, 9, 347 2 of 11

considered the simplified version of catalytic P systems with promoters and/or inhibitors
at the level of the rules (see [9]) which does not take into account the hierarchical membrane
structure—hence we explored the computational capabilities of parallel multiset rewriting
systems with catalysts and promoters/inhibitors whose rewriting rules are distorted during
computations. Intuitively, a distorted multiset rewriting rule expresses the idea that one
knows the participants (objects) in the rewriting process but does not know the exact
outcome (meaning that one knows which are the resulting objects but does not know
their multiplicities). Correspondingly, when defining the computation, one might consider
several levels of distortions as the multiplicities of different species of objects in the output
of an applied rewriting rule might be different than the initially defined ones. We are
interested in defining multiset rewriting systems with 1-distorted computations which are
able to generate the same set of numbers regardless the distortions of the rules applied
during the computation.

In Section 2 we outline the basic notions and results regarding multisets, register
machines, and parallel multiset rewriting systems. Section 3 introduces parallel multiset
rewriting systems with promoters/inhibitors and t-distorted computations. Some results
regarding their computational power are presented. Finally, in Conclusions we discuss
several open problems and future lines of research.

2. Prerequisites

In what follows, we recall the basic notions and notations that will be used in the paper;
we recommend [10] for a comprehensive summary of results from the formal language
theory and other related fields. We also present parallel multiset rewriting systems as a
particular case of P systems (see [11]).

2.1. Multisets, Distorted Multisets, and Related Concepts

An alphabet is a finite set of symbols Σ = {a1, a2, . . . , an}, Σ 6= ∅. A string over Σ
is a finite sequence of juxtaposed symbols from Σ, i.e., w = b1 . . . bk, such that bi ∈ Σ,
for all 1 ≤ i ≤ k. The empty string is denoted by λ. Σ∗ represents the set of all strings
over Σ. The Parikh vector associated with a string w ∈ Σ∗ is ΨΣ(w) = (|w|a1 , . . . , |w|an).
The Parikh image of a language L ⊆ Σ∗ is denoted by ΨΣ(L) = {ΨΣ(w) | w ∈ L}. Given a
family of languages FL, by NFL (PsFL, respectively) we denote the family of length sets
(Parikh images, respectively) of the languages from FL. We denote by ET0L the family of
languages generated by ET0L systems and by RE the family of recursively enumerable
languages. It is known that NET0L ⊂ NRE (see [12]).

A multiset over Σ is a mapping M : Σ → N. Given a ∈ Σ, the number M(a) is
called the multiplicity of a in M. The support of M is supp(M) = {a ∈ Σ | M(a) 6= 0}.
If supp(M) = ∅ then M is the empty multiset. Here, we will represent a multiset M as
the string aM(a1)

1 aM(a2)
2 . . . aM(an)

n (any permutation of this string can also represent M).
The empty multiset is represented by λ.

If M1, M2 : Σ → N are two multisets then the union of M1 and M2, denoted by
M1 + M2, is the multiset M : Σ → N such that M(a) = M1(a) + M2(a), for all a ∈ Σ.
The relative complement of M2 in M1, denoted by M1 \ M2 is the multiset M : Σ → N
such that for any a ∈ Σ, M(a) = M1(a)−M2(a) if M1(a) > M2(a) or M(a) = 0, otherwise.
We say that M1 is included in M2, namely M1 ⊆ M2, if M1(a) ≤ M2(a), for all a ∈ Σ.
Let w = aM(a1)

1 aM(a2)
2 . . . aM(an)

n ∈ Σ∗ be a multiset and k ∈ N. Then we define the scalar

multiplication as k ∗M = ak·M(a1)
1 . . . ak·M(an)

n .

Given w = aM(a1)
1 aM(a2)

2 . . . aM(an)
n ∈ Σ∗ a multiset and aj ∈ Σ, 1 ≤ j ≤ n, then we

denote by rmaj = aM(a1)
1 . . . aM(an)

n \ a
M(aj)

j (remove the species indicated by aj from w).

Processes 2021, 9, 347 3 of 11

Definition 1. Let w = aM(a1)
1 aM(a2)

2 . . . aM(an)
n be a multiset and 1 ≤ t ≤ card(supp(M)).

A level-t strong distortion of w is a multiset

w̃ = aM(a1)+j1
1 . . . aM(an)+jn

n

such that for all 1 ≤ i ≤ n the following conditions are satisfied:

• ji ∈ Z, M(ai) + ji ≥ 0, if M(ai) 6= 0, (1)
• ji = 0, if M(ai) = 0,

and at most t elements from {j1, . . . , jn} are not 0.
If in the relation (1) the inequality is strict, that is M(ai) + ji > 0 if M(ai) 6= 0, then the

distortion is called weak.

Remark 1. A weak distortion is a particular case of a strong one. More precisely, if w is a
multiset and w̃ a level-t weak distortion of w, then supp(w) = supp(w̃) and card(supp(w−
w̃)∪ supp(w̃−w)) ≤ t. On the other hand, in case of strong distortions, the assertion supp(w) =
supp(w̃) is not necessarily true.

Example 1. Let Σ = {a, b, c, d} be an alphabet and w = a10b20c30 ∈ Σ∗ be a multiset. Then
supp(w) = {a, b, c} and the followings are examples of distorted multisets.

level-1 weak distortion: a10b20c30, a1b20c30, a10b25c30

level-2 weak distortion: a10b20c30, a10b1c30, a10b1c100

level-3 weak distortion: a10b20c30, a1b1c30, a1b100c100

level-2 strong distortion: a10b20c30, a10c30, c100

We denote by distt(w) the set of all level-t distortions of w.

Remark 2. Assuming that w ∈ Σ∗ is a multiset such that card(supp(w)) = k > 0, then
distt(w) ⊆ distt+j(w) for any 1 ≤ t ≤ k and j ≥ 0 such that t + j ≤ k.

A multiset rewriting rule is a pair (u, v) where u and v are multisets over Σ, u 6= λ.
Typically, such a rule is written as r : u → v, where r is a label through which one can
uniquely identify the rule in a set of rules. Given a rule r : u → v, let le f t(r) = u and
right(r) = v.

Given a multiset w ∈ Σ∗ and a multiset rewriting rule r : u → v, we say that r is
applicable to w if le f t(r) ⊆ w. Similarly, a multiset of multiset rewriting rules rk1

1 . . . rkl
l is

applicable to w if ∑
1≤i≤l

ki ∗ le f t(ri) ⊆ w.

Given a set of multiset rewriting rules R, a multiset w ∈ Σ∗, and a multiset of rules
ρ ∈ R∗, we say that ρ is maximally applicable to w if

• ρ is applicable to w;
• ρ + r1 is not applicable to w for all r ∈ R.

For a multiset of rules ρ = rk1
1 . . . rkl

l ∈ R∗ we define

• input(ρ) = ∑
1≤i≤l

ki ∗ le f t(ri);

• output(ρ) = ∑
1≤i≤l

ki ∗ right(ri).

2.2. Register Machines

A register machine is a tuple M = (n,P , l0, lh) where n ≥ 1 is the number of registers
(each register stores a natural number), P is a finite set of instructions bijectively labelled
by elements from the set lab(P) = {l0, . . . , lk−1}, l0 ∈ lab(P) is the initial label, and lh ∈
lab(P) is the final label. There are three types of instructions:

Processes 2021, 9, 347 4 of 11

• li : (add(r), lj, lk) where li ∈ lab(P) \ {lh}, lj, lk ∈ lab(P), 1 ≤ r ≤ n, increments the
value stored by the register r and non-deterministically proceeds to the instruction
labelled by lj or lk;

• li : (sub(r), lj, lk) where li ∈ lab(P) \ {lh}, lj, lk ∈ lab(P), 1 ≤ r ≤ n, if the value stored
by register r is 0 then proceeds to the instruction labelled by lk, otherwise decrements
the value stored by register r and proceeds to the instruction labelled by lj;

• lh : halt stops the machine.

M is called deterministic if lj = lk for all increment instructions li : (add(r), lj, lk) ∈ P .
M starts with all registers containing the value 0 and runs the program P , firstly

executing the instruction with the label l0. Considering the content of register 1 for all
possible computations of M which end with the execution of the instruction labelled
lh : halt, one obtains the set generated by M (denoted here by N(M)).

The following result is due to Minsky [13].

Theorem 1. For any recursively enumerable set Q ⊆ N there exists a non-deterministic register
machine with 3 registers generating Q such that when starting with all registers being empty, M
computes and halts with k in register 1, and registers 2 and 3 being empty iff k ∈ Q.

The result mentioned in Theorem 1 stands true also for deterministic register machines
accepting sets of numbers. More precisely, such a register machine starts by having the
number k ∈ N in register 1 (all the other registers being empty) and accepts k if the
computation halts, executing the instruction labelled lh : halt. As above, three registers are
sufficient to accept any recursively enumerable set.

2.3. Parallel Multiset Rewriting Systems

A parallel multiset rewriting system (in short, a PMR system) represents a simplifica-
tion of a membrane system whose hierarchical tree structure of membranes is reduced to
one node (region)—see [11,14] for more details. More formally, a parallel multiset rewriting
system with promoters/inhibitors and catalysts is a construct Π = (Σ, ∆, C, P, I,R, w0) where Σ
is an alphabet of symbols (objects), ∆ ⊆ Σ is the output alphabet, C ⊆ Σ is the set of catalysts,
P ⊆ Σ is the set of promoters, I ⊆ Σ is the set of inhibitors, R is a set of multiset rewriting
rules (which can be catalysed/promoted/inhibited), and w0 is the initial multiset of objects.

A rule r ∈ R is of the form r : a → α (non-cooperative) or r : ca → cα (catalytic)
where a ∈ Σ \ C, α ∈ (Σ \ C)∗, and c ∈ C. The rules of mentioned types can be promoted
(or inhibited, respectively), hence one defines promoted non-cooperative rule r : a→ α|p,
where p ∈ P (inhibited non-cooperative rule r : a → α|¬i, where i ∈ I, respectively) and
catalytic promoted rule r : ca→ cα|p, where p ∈ P (catalytic inhibited rule r : ca→ cα|¬i,
where i ∈ I, respectively).

As described in the preamble of the Section 1, a multiset of rules ρ ∈ R∗ is applicable
to a multiset of objects w ∈ Σ∗ if there are enough objects in w to trigger all the rules from
ρ with their corresponding multiplicity and, in case of promoted (inhibited) rules, if the
specified promoters (inhibitors) are in w (are not in w). The applicable multiset of rules ρ is
maximal if there is no applicable multiset of rules ρ′ ∈ R∗ to w and such that ρ ⊂ ρ′ (in the
multiset sense).

It is worth mentioning that catalysts inhibits the parallelism of the system (as they are
counted as any other objects) while the promoters/inhibitors only guide the computation
(as the presence/absence of a promoter/inhibitor in the multiset of objects makes the
corresponding promoted/inhibited rules to be available for application as many times
as possible).

The system Π evolves by applying a maximal multiset of rules to the initial multiset
(configuration), then applying iteratively another maximal multiset of rules to the multiset
obtained in the previous step (i.e., the next configuration) and so on. In other words a
transition between configurations C1 and C2 of Π is determined by an application of a

Processes 2021, 9, 347 5 of 11

maximal multiset of rules in parallel. More precisely, if ρ is a maximal multiset of rules on
C1, then C2 = C1 \ input(ρ) + output(ρ).

A computation of Π is a sequence of configurations such that the first configuration in
the sequence is the initial configuration and between each two consecutive configurations
there exists a transition (which is determined by an application of a maximal multiset of
rules). A computation is successful if this sequence is finite, namely there is no rule appli-
cable to the objects present in the last configuration–in this case, the number or the Parikh
vector corresponding to the multiset of objects from ∆ present in the last configuration of
Π is considered to be the result of the underlying computation. By collecting the results of
all successful computation of Π one gets the set of numbers/vectors of numbers generated
by Π; they will be denoted by N(Π) and Ps(Π), respectively.

The familly of all sets of numbers (vectors) of numbers generated by PMR systems
with a list of features f ∈ {ncoo, catk, pro, inh} (indicating the usage of non-cooperative
rules, catalytic rules with at most k catalysts, promoters, and inhibitors, respectively) is
denoted by NOP(f) (or PsOP(f), respectively).

It is known that NOP(ncoo, pro) = NOP(ncoo, inh) = NET0L and
NOP(cat, pro) = NOP(cat, inh) = NRE (see [15]).

3. Towards “Distorted” Computations

Given a non-cooperative multiset rewriting rule r : a→ α, a t-level distortion of r is a
multiset rewriting rule r̃ : a → α̃ where α̃ ∈ distt(α). Similarly, given a catalytic multiset
rewriting rule r : ca → cα, a t-level distortion of r is a multiset rewriting rule r̃ : ca → cα̃
where α̃ ∈ distt(α). Distorted non-cooperative or catalytic rules can be promoted or
inhibited as described above.

A parallel multiset rewriting system with promoters and/or inhibitors with
a t-distorted computation, where t > 0 (in short a PMRDt system)
Πt = (Σ, ∆, C, P, I,R, w0) has all the components defined as for a PMR system but with the
semantics of the computation modified in the following way. To compute a step leading
to a configuration Cj+1 from a configuration Cj (that is, to perform a transition between
configurations), Πt non-deterministically selects a maximal applicable multiset of rules ρ
and for each instance r of a rule in ρ, Πt applies a t-level strong distortion of r but such that
at least one such application is weak for any given species of rules in ρ.

For example, let the selected multiset of rules be ρ = rk1
1 . . . r

kj
j . Accordingly, for the

species of rules ri, 1 ≤ i ≤ j, there will be ki applications of the (distorted) rule ri that Πt
has to perform. Among these applications, at least one of them has to be a weak t-level
distortion of ri (while the rest of them might be weak or strong distortions of ri).

As defined for a PMR system, Πt starts from the initial configuration and performs
transitions between configurations (consequently, yielding a sequence of configurations).
The computation produces an output if this sequence of configurations is finite (that is,
the last configuration in the sequence is the halting configuration in which no rule is
applicable anymore).

By N(Πt) (and Ps(Πt), respectively) we denote the set of numbers (or vectors, re-
spectively) of numbers generated by Πt. By NOPd=t(f) (or PsOPd=t(f), respectively) we
denote the family of all sets of numbers (vectors) of numbers generated by PMRD systems
with a list of features f ∈ {ncoo, catk, pro, inh} and t-distorted computations.

A PMRD system Πt, t ≥ 1, is called to be permissive to distortion if, in any given
configuration during the computation, no matter how a t-level distortion r̃ of each instance
of a rule r in the multiset of applicable rules ρ is selected, Πt generates the same set of
numbers/vectors.

Example 2. In order to better explain the functioning of a PMRD1 system
Π1 = (Σ, ∆, C, P, I,R, w0), assume that R = {r1 : a → bd, r2 : ca → ce} and Π1 is in
configuration C = ca3. Then one can notice that there exist two maximal applicable multisets of
rules to C, namely r3

1 and r2
1r2.

Processes 2021, 9, 347 6 of 11

The system Π1 is “highly non-deterministic” as it has to apply level-1 distorted rules. Here
we present few (among many others) next configurations obtained by applying the multiset of rules
r3

1 on C (recall that in this case we have to apply 3 times the level-1 distorted rule r̃1; at least one of
them has to be a weak level-1 distortion of r1 while the rest of them can be strong): cbd, cbd3, cb3d,
cb10d3, cb10d11, etc.

Similarly, if on configuration C is applied the multiset of rules r2
1r2 then some examples of

next configurations are: cebd, cebd10, ce10b5d3, etc. Recall that in this case a single weak level-1
distortion of r2 was applied; additionally, it was applied one weak level-1 distortion of r1 and one
strong level-1 distortion of r1.

Example 3. We sketch an example of a distorted P System with promoters and one catalyst which
is able to generate the non-semilinear set {2n | n ≥ 1}. A common approach to generate this set of
numbers is to consider several rules whose iterative applications determine the system to double the
number of an object (at each iteration); in addition, the constructed system has to provide the rules
to break out the cycle, hence to end the computation.

As some of the techniques employed in what follows were also used to prove the equivalence
between distorted P systems with mentioned features and register machines, here we only detail the
rules that, starting from a configuration cXYa2k

, determine the system to reach the configuration
cXl1 a2k+1

, where l1 ≥ 1. The general idea employed in this example is to use the catalyst c to
sequentially double the number of symbols a into a, checking at the same time if the distortion does
not affect the number of target objects a produced during the application of the rules. The rules are
grouped according to the moment of their execution.

step 1 X → X1|a step 3 cb→ co|b step 5 X3 → #|b
ca→ caab|X b→ b b→ λ
Y → Y1 X2 → X3

step 2 cb→ cb|X1 step 4 X3 → XY|o #→ #

X1 → X2 b→ b
X → t|Y1 o → λ
Y1 → λ

In the first step, the distorted rule ca → caab|X is applied only once because the current
multiset contains only one copy of object c. In this case, the level-1 distortion can affect either the
number of output objects a or the number of output objects b. Using level-1 distorted catalytic rules
and promoters, one can effectively check if the number of objects b is greater than 2 (hence one can
determine if b was actually the subject of distortion). This is done in the steps 2 and 3 by the rules
cb → cb|X1 and cb → co|b (the last rule being applied only if there were more objects b present
in the second configuration, hence implying that b was the subject of distortion). It follows that,
in case the object o is generated, then the promoters X and Y are produced, hence the rewriting of
another object a can start over. Proceeding in this way for all the objects from the initial multiset
cXYa2k

one gets in the last configuration 2k+1 copies of the object a. It is important to highlight
that in case all the objects a were rewritten, in the first step only the rule Y → Y1 is executed; in the
second step all the object Y1 are deleted by the rule Y1 → λ and the computation halts.

Finally, in order to generate the set {2n | n ≥ 1} one has to provide the rules that rewrite all
the objects a in their corresponding counterparts a. This can be done using a similar technique to the
one presented above (that is, by sequentially rewriting a into a by using a level-1 distorted promoted
catalytic rule and checking if the distortion did not affect the multiplicity of the output objects a).

The following result shows that the class of sets of numbers generated by PMRD
systems with level-1 distorted non-cooperative multiset rewriting rules is at most equal to
the class of sets of numbers generated by ET0L systems.

Processes 2021, 9, 347 7 of 11

Theorem 2. NOPd=1(ncoo, pro) ⊆ NET0L.

Proof. Let us consider a PMRD1 system Π1 = (Σ, ∆, C, P, I,R, w0) with promoted non-
cooperative multiset rewriting rules (C = I = ∅) and with 1-distorted computation.
Without loss of generality we may assume that all the rules of Π1 are promoted (recall that
a non-cooperative multiset rewriting rule a→ β ∈ R can be written as a→ β|a). Hence, let

R = { r1 : b1 → b
s(1,1)
(1,1) . . . b

s(1,k1)

(1,k1)
|p1 ,

r2 : b2 → b
s(2,1)
(2,1) . . . b

s(2,k2)

(2,k2)
|p2 ,

. . .

rn : bn → b
s(n,1)
(n,1) . . . b

s(n,kn)
(n,kn)

|pn }

As mentioned in Section 2 we know that NOP(ncoo, pro) = NET0L, hence it is suffi-
cient to construct a PMR system Π = (Σ, ∆, C, P, I,R, w0) with promoted
non-cooperative multiset rewriting rules (C = I = ∅) that simulates the computation
of Π1.

Let us consider the finite sets Σ′ = {a | a ∈ Σ}, Σ′′ = {a | a ∈ Σ}.
We define

Σ = Σ ∪ Σ′ ∪ Σ′′

∪ {ri, r(i,j) | 1 ≤ i ≤ n, 1 ≤ j ≤ ki} ∪ {t, S, X, X, Y, Y}

Also, let the following morphisms be:

• h′ : Σ→ Σ′, defined by h′(a) = a, for all a ∈ Σ;
• h′′ : Σ→ Σ′′, defined by h′′(a) = a, for all a ∈ Σ′;

The set of rules P is defined as follows:

• for 1 ≤ i ≤ n, the following rules (type 1) are added to P:

bi → h′(bi)tri|pi

• for 1 ≤ i ≤ n, 1 ≤ j ≤ ki, the following rules (type 2) are added to P:

ri → r(i,j)|t

• for 1 ≤ i ≤ n, the following rules (type 3) are added to P:

h′(bi)→ h′′
(
rmb(i,1)(b

s(i,1)
(i,1) . . . b

s(i,ki)

(i,ki)
)
)

t|ri

. . .

h′(bi)→ h′′
(
rmb(i,ki)

(b
s(i,1)
(i,1) . . . b

s(i,ki)

(i,ki)
)
)

t|ri

• for 1 ≤ i ≤ n, 1 ≤ j ≤ ki, the following rules (type 4) are added to P:

r(i,j) → h′′(b(i,j))r(i,j)t

r(i,j) → h′′(b(i,j))rit

Processes 2021, 9, 347 8 of 11

• the following rules (type 5) are added to P :

S→ SXY|t
X → X

Y → λ|t
X → λ

Y → Y|X

• the following rules (type 6) are added to P:

h′′(a)→ at|Y for all a ∈ Σ

t→ λ

Rules of type 5 indicate a “control” branch in the computation of Π that is executed in
parallel with the main branch responsible for the simulation of the level-1 distorted rules
applied by Π. The cycle S→ SXY|t produces at each step the objects X and Y, but only if
an object t is present in the respective configuration of Π. The object t is produced during
the applications of the rules from the main branch (also, in the main branch, the objects from
Σ are rewritten programmatically into their corresponding counterparts by the morphisms
h′ and h′′). It is worth mentioning that in the case that the object t is not produced (recall
that if present in a configuration, t is deleted by the type 6 rule t→ λ) the cycle S→ SXY|t
is interrupted, hence Y will be produced (the rule Y → λ|t cannot run because the object
t is missing; this allows the execution of the rule Y → Y|X). The object Ywill determine
the rewriting of the type-6 rules h′′(a)→ at|Y for all the symbols a ∈ Σ from the current
configuration (hence the simulation can start over).

The main branch simulates the applications of the (distorted) rules of Π as follows.
Firstly, the rules of type bi → h′(bi)tri|pi are applied. Their role is

• to “paint” the objects that trigger the application of a multiset of rules of Π in a given
configuration;

• to produce a “witness” object t indicating that a simulation of an application of a rule
is in progress; the object t will forbid the generation of Y in the control branch;

• to produce a “selector” object ri– an object that will be used to select which distorsion
of the simulated rule has to be applied.

Consequently the selector ri is rewritten by the type 2 rules into r(i,1), . . . , r(i,ki)
. An ob-

ject r(i,j) is used as a promoter to indicate the species of objects that will be affected by the
distortion in rule i (namely b(i,j))

Correspondingly, the rule of type 3 is executed:

h′(bi)→ h′′
(
rmb(i,j)(b

s(i,1)
(i,1) . . . b

s(i,ki)

(i,ki)
)
)

t|r(i,j)

As described before, the “witness” object t prevents the generation of Y in the con-
trol branch.

Next, the rules of type 4 are executed. The rule r(i,j) → h′′(b(i,j))r(i,j)t represents a cycle
which generates objects h′′(b(i,j)). Due to non-determinism, the cycle can be interrupted
by the rule r(i,j) → h′′(b(i,j))rit. In this way, after the end of applications of sequences of
rules for all possible cases (recall that one has to simulate a multiset of distorted rules of
Π) the resulting configuration will contain the “painted” objects by morphism h′′ (and no
object r(i,j)). At that time, because the object t is not generated anymore, the control cycle
produces object Y. This will determine the execution of the rules h′′(a)→ at|Y for all a ∈ Σ,
hence the simulation can start over.

The simulation continues in the same manner until Π1 stops (in the last configuration
of Π1 no rule can be applied). Correspondingly, Π stops as well because the rules of type 1
cannot be triggered.

Processes 2021, 9, 347 9 of 11

Consequently we conclude that NOPd=1(ncoo, pro) ⊆ NET0L.

The following result proves that parallel multiset rewriting systems with level-1
distorted rules are Turing universal.

Theorem 3. NOPd=1(cat1, pro) = NRE.

Proof. We prove the result by double inclusion. NRE ⊇ NOPd=1(cat1, pro) is assumed
true by Turing-Church Thesis. The opposite inclusion, namely NOPd=1(cat1, pro) ⊇ NRE,
is proved by simulating a register machine M = (n,P , l0, lh). Starting from the definition
of M one can construct a PMRD1 system Π1 = (Σ, ∆, C, P, I,R, w0) as follows:

Σ = {ai | 1 ≤ i ≤ n} ∪ {l, l, Al , Bl , | l ∈ lab(P)}
∪ {Xl , Xl , Xl , Yl , Yl , Yl | l ∈ lab(P)} ∪ {#};

∆ = {ai | 1 ≤ i ≤ n};
C = {c};
P = {Bli , Xli , Xli , Xli , Yli | li ∈ lab(P), li label of add instruction}
∪ {li, Xli , Yli | li ∈ lab(P), li label of sub instruction};

I = ∅;

w0 = cl0.

The set of rulesR is defined in the following way:

• for each increment instruction li : (add(r), lj, lk) we add the following rules toR:

li → Ali Bli li → lj|Xli
cAli → carliXli |Bli li → lk|Xli
Bli → λ Yli → Yli
Ali → λ|Xli Yli → Yli
cXli → cXli Yli Yli → λ

cXli → cXli |Xli li → #|Yli
#→ #

• for each decrement instruction li : (sub(r), lj, lk) we add the following rules toR:

car → cXli |li Yli → Yli
li → liYli li → lk|Yli
li → lj|Xli Yli → λ

Xli → λ

• for the halt instruction lh : halt the rule clh → c is added toR.

In this simulation, the number stored by register i, 1 ≤ i ≤ n, of M will be represented
as the multiplicity of the object ai. The computation starts from configuration cl0 (as the
register machine starts its computation having all the registers empty).

In general, a configuration of Π1 (which corresponds to a configuration of M) is a
multiset of objects of type clk

i as1
1 . . . asn

n . The object li represents the label of the next rule to
be executed by M, hence that have to be simulated by Π1 (recall that the multiplicity of li
can be greater than one as Π1 runs with level-1 distorted rules).

In case the instruction that has to be simulated is the increment instruction li :
(add(r)lj, lk), then Π1 will execute in the first step the rule li → Ali Bli (which will rewrite
all the existing objects li) and in the second step the rules cAli → carliXli |Bli and Bli → λ

(this is done to enforce the execution of the rule cAli → carliXli |Bli exactly one time in a
simulation of an instruction of M).

Processes 2021, 9, 347 10 of 11

In the next step, rule Ali → λ|Xli is used to clean-up all the remaining (if any) symbols
Ali . Meanwhile, one has to check if the object ar was not affected by the distortion during
the application of the level-1 distorted rule cAli → carliXli |Bli . This is done by using the
“dummy” object Xli ; more precisely, if Π1 detects that in the current multiset there are
several objects Xli then this means that the distorted rule cAli → carliXli |Bli produced
exactly one symbol ar (that is, the distortion affected the multiplicity of Xli) hence the
system has to proceed to the generation of the next label lj or lk. Correspondingly, if Π1
executes in consecutive steps the rules

cXli → cXli Yli

cXli → cXli |Xli

it follows that the object Xli is produced and from here on the generation of objects lj

or lk will take place (as one of the rules li → lj|Xli or li → lk|Xli will run; it is also worth to
mention that although there is exactly one object li, after applying the above mentioned
rules there might exist multiple copies of objects lj or lk, respectively).

However, due to distortion it might happen that cXli → cXli |Xli is not executed (mean-
ing that other symbol than Xli was the subject of distortion while
cAli → carliXli |Bli was applied or the distortion on the species Xli did not produce strictly
more than one object). If this is the case, then the object Yli will be rewritten (in several

steps) into Yli and it will be used as a promoter in rule li → #|Yli . Once the object # is
generated the rule #→ # will run forever, consequently yielding no result.

If the instruction that has to be simulated is the decrement instruction
li : (sub(r)lj, lk) then Π1 executes the rule li → liYli and possibly car → cXli Yli |li. If the
current configuration contains at least one object ar, then one instance of the object ar is
deleted by the last mentioned rule. It is worth to point out that in the first step all the
objects li are rewritten by the rule li → liYli , hence car → cXli Yli |li can be executed only
once (as being promoted by li). Next, in the second step, the rules li → lj|Xli , Xli → λ and
Yli → Yli are executed, hence the object lj (corresponding to the label of the next register
machine instruction) is generated. The object Yli will be deleted later on by the rule Yli → λ.

On other hand, if the rule car → cXli Yli |li is not executed because there are no objects
ar in the current configuration, then in the first step only the rule li → liYli will be executed.
In the second step the rule Yli → Yli will run. Finally, in the third step the rules li → lk|Yli
and Yli → λ will generate the object lk (corresponding to the label of the next register
machine instruction).

Finally we are pointing out that in case the object lh is produced then Π1 stops.
We also emphasize that the construction of the PMRD1 system presented in the proof

of Theorem 3 can be easily modified to simulate an arbitrary deterministic register machine
which accepts a set of numbers. Moreover, the constructed system Π1 is permissive to
1-level distortions.

Consequently we conclude that NOPd=1(cat1, pro) = NRE.

4. Conclusions

Many mathematical models proposed to capture natural/artificial phenomena can be
represented by using discrete input–output maps. In this paper we defined multiset rewriting
systems with t-distorted computations. These types of P systems were proposed to reflect
the uncertainty related with non-exact knowledge of the parallel rewriting processes (which,
in particular, can model bio-chemical, physical, economical sociological, or other types of
phenomena) for which one knows the inputs but does not know the exact outputs. To this
aim we defined level-t distorted multiset rewriting rules which assumes that, if applied in a
derivation step of a PMRD system, the multiplicities of at most t species (non-deterministically
selected) of the objects in the output are not known. We succeeded to find an upper bound for

Processes 2021, 9, 347 11 of 11

the computational power of PMRD systems with level-1 distorted non-cooperative promoted
rules, namely we succeeded to prove that NOPd=1(ncoo, pro) ⊆ NET0L. On the other hand,
when level-1 distorted catalytic promoted rules (with one catalyst) are used, the model proves
to be computationally universal.

There are several problems left open. A promising research line regards the usage of
other rewriting formalisms and types of rules. For example, although it was mentioned in
this paper, the case of PMRD systems with inhibited rules was not investigated. However,
for this types of PMRD systems we conjecture the existence of similar results (namely
NOPd=1(ncoo, inh) ⊆ NET0L and NOPd=1(cat1, inh) = NRE). Moreover, the cases when
d > 1 are also left open. Yet another research topic regards an extensive study of systems
which are permissive to distortions. In this respect one might also consider developing
ultimately confluent systems with distorted rules (see [9]).

Author Contributions: C.S.: Conceptualization, formal analysis; D.-F.S.: Conceptualization, investi-
gation, writing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alhazov, A.; Freund, R.; Ivanov, S.; Pan, L.; Song, B. Time-freeness and Clock-freeness and Related Concepts in P systems. Theor.

Comput. Sci. 2020, 805, 127–143. [CrossRef]
2. Cavaliere, M.; Sburlan, D. Time and Synchronization in Membrane Systems. Fundam. Inform. 2005, 64, 65–77.
3. Csuhaj-Varjú, E.; Freund, R.; Sburlan, D. Modeling Dynamical Parallelism in Bio-systems. Lect. Notes Comput. Sci. 2006, 4361,

330–351.
4. Freund, R. Asynchronous P Systems and P Systems Working in the Sequential Mode. Lect. Notes Comput. Sci. 2005, 3365, 36–62.
5. Sburlan, D. Clock-free P systems. In Proceedings of the Fifth Workshop on Membrane Computing, Milan, Italy, 14–16 June 2004;

pp. 372–383.
6. Song, B.; Pérez-Jiménez, M.J.; Pan, L. An efficient time-free solution to SAT problem by P systems with proteins on membranes.

J. Comput. Syst. Sci. 2016, 82, 1090–1099. [CrossRef]
7. Alhazov, A.; Freund, R.; Ivanov, S. P Systems with Randomized Right-hand Sides of Rules. Theor. Comput. Sci. 2020, 805, 144–160.

[CrossRef]
8. Paun, G. Computing with Membranes. TUCS Tech. Rep. Turku Cent. Comput. Sci. 1998, 208, 1–39.
9. Alhazov, A.; Sburlan, D. Ultimately Confluent Rewriting Systems. Parallel Multiset–Rewriting with Permitting or Forbidding

Contexts. Lect. Notes Comput. Sci. 2005, 3365, 178–189.
10. Rozenberg, G.; Salomaa, A. (Eds.) Handbook of Formal Languages; Springer: Berlin, Germany, 1997.
11. Paun, G.; Rozenberg, G.; Salomaa, A. (Eds.) The Oxford Handbook of Membrane Computing; Oxford University Press: London,

UK, 2009.
12. Rozenberg, G.; Salomaa, A. The Mathematical Theory of L Systems; Academic Press: New York, NY, USA, 1980.
13. Minsky, M. Computation: Finite and Infinite Machines; Prentice Hall: Upper Saddle River, NJ, USA, 1967.
14. The P Systems Website. Available online: http://ppage.psystems.eu/ (accessed on 26 December 2020).
15. Sburlan, D. Further Results on P Systems with Promoters/Inhibitors. Int. J. Found. Comput. Sci. 2006, 17, 205–221. [CrossRef]

http://doi.org/10.1016/j.tcs.2018.09.009
http://dx.doi.org/10.1016/j.jcss.2016.03.008
http://dx.doi.org/10.1016/j.tcs.2018.07.016
http://ppage.psystems.eu/
http://dx.doi.org/10.1142/S0129054106003772

	Introduction
	Prerequisites
	Multisets, Distorted Multisets, and Related Concepts
	Register Machines
	Parallel Multiset Rewriting Systems

	Towards ``Distorted'' Computations
	Conclusions
	References

