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Abstract: Biomass pellets are required as a source of energy because of their abundant and high
energy. The rapid measurement of pellets is used to control the biomass quality during the production
process. The objective of this work was to use near infrared (NIR) hyperspectral images for predicting
the properties, i.e., fuel ratio (FR), volatile matter (VM), fixed carbon (FC), and ash content (A), of
commercial biomass pellets. Models were developed using either full spectra or different spatial
wavelengths, i.e., interval successive projections algorithm (iSPA) and interval genetic algorithm
(iGA), wavelengths and different spectral preprocessing techniques. Their performances were then
compared. The optimal model for predicting FR could be created with second derivative (D2) spectra
with iSPA-100 wavelengths, while VM, FC, and A could be predicted using standard normal variate
(SNV) spectra with iSPA-100 wavelengths. The models for predicting FR, VM, FC, and A provided
R2 values of 0.75, 0.81, 0.82, and 0.87, respectively. Finally, the prediction of the biomass pellets’
properties under color distribution mapping was able to track pellet quality to control and monitor
quality during the operation of the thermal conversion process and can be intuitively used for
applications with screening.

Keywords: fuel ratio; proximate data; NIR hyperspectral imaging; wavelength selection; biomass
pellet; in-line measurement

1. Introduction

Recently, the world requirement for renewable energy has increased [1]. In 2020,
the use of renewable energy increased to 3.9% from the previous year [2]. Biomass is
considered a renewable energy source because it is recycled and reused [3]. The use of
biomass can be environmentally friendly because biomass energy can make a carbon
balance, as burned hydrocarbons can release carbon dioxide (CO2) into the air, and CO2
can rotate again for plant photosynthesis [4]. Therefore, biomass feedstock can be produced
and reused again and again. Biomass is obtained from dedicated energy crops, agricultural
crop residues, forestry residues, wood processing residues, municipal waste, and wet
waste [5]. This means that biomass materials differ in their physical properties, energy
content, and chemical content. Most biomass energy is used as combustion fuel. It is
combusted to generate electricity as a source of thermal energy for an industrial purpose [6].
Therefore, the quality of the biomass needs to be known for the quality control of the
thermal conversion process, as well as for commercial and pellet production.
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At present, the biomass patterns used for combustion include ground biomass,
biomass chips, and biomass pellets. Ground and wood chip biomass are easy to pre-
pare, but they are difficult to store and transport, and their moisture content (MC) is very
variable. However, biomass pellets provide many advantages such as having a consistent
size, lower moisture content, higher calorific density, and convenience of transportation [7].

To confirm the stable development of biomass pellets, the quality of commercial pellets
must be maintained in the production line, which depends on the raw materials used.
Therefore, a rapid and accurate method for determining pellet quality should be used to
select the pellet products that provide a good combustion performance. This can achieve
the efficient utilization of biomass. For commercial purposes, the quality of biomass pellets
must follow international standards, i.e., European standards for pellet quality [8]. The
important parameters of biomass pellets in the production process are density, strength,
and moisture content (MC) [9].

For the utilization of biomass, the parameters of proximate analysis and calorific
value are essential [10]. Biomass pellets with a high level of volatile matter (VM) can be
flammable and could be prepared for pyrolysis and gasification, while biomass pellets with
a high fixed carbon (FC) give high combustion heating [7] and could be used for direct
combustion and slow pyrolysis. The ratio of FC to VM is called the “fuel ratio (FR)” and is
an important parameter used to manage the ratio of syngas and combustion air [11]. From
a study of the burning rate of coal, it was found that coal can be easily burned if the fuel
ratio is lower than 1.5, but it is difficult to ignite if the FR is higher than 1.5. Therefore,
knowledge of the FR can improve the efficiency of thermal energy combustion [12]. Ash
(A) is the residue left after combustion and is a factor used for designing combustion
furnaces [10]. A low A content in biomass material can reduce the cost of disposal [7].

However, the traditional measurement methods mentioned above, though accurate
are time-consuming because of their complexity and lead to labor and chemical costs. This
means that the biomass quality cannot be checked before the commercial and operation
of the thermal conversion process (such as combustion, pyrolysis, and gasification). Ad-
ditionally, pellet quality cannot be followed up because the measurement method cannot
be checked in real time. Therefore, a rapid measurement that can be applied for in-line
measurement is necessary. The parameters of proximate data should always be checked
during the operation of energy conversion systems. Therefore, in-line measurement is
essential because it allows the operators to know the qualities of a pellet on a real-time basis.
In the case of the user, knowing the quality of biomass in real time during combustion can
improve the management of possible effectiveness [7] and biomass loading.

Nowadays, near infrared (NIR) spectroscopy is used in the quality the measurement of
biomass, such as for the MC and calorific value (CV) of the biomass pellets of rice stalks, rice
husks, mahogany wood, tea trees, tropical wood, pine wood, rubber wood, and mixtures
of wood material [13]; the pyrolysis characteristics of milled bamboo [14]; the proximate
data and lignocellulose components (cellulose, semi-cellulose, and lignin) of corn stover
using near infrared spectroscopy (NIRS) [15]; the MC, CV, A and carbon content (C) of
Miscanthus and short rotation coppice Willow (SRCW) biomass [16]; and biomass pellet
(wood, Miscanthus, and herbaceous energy grasses) quality indices (moisture, carbon, and
ash contents and gross calorific value) [17]. It has been noted that NIR spectroscopy can be
applied to assess the composition of analytes. This is an indirect method of measurement,
and its accuracy cannot be equal to that of the laboratory method [18,19]. The application
of NIR is acceptable if the error does not exceed the control limit.

An NIR hyperspectral image can be used like NIR spectroscopy, but it has the ad-
vantage of high resolution and can be represented in the form of a mapping distribution,
because its precision is based on pixel resolution. Two-dimensional NIR spectroscopic
imaging is applied for predicting the quality of biomass pellets, such as the CV and proxi-
mate data of biofuel pellets [13]; predicting the gaseous and particulate matter emissions
of pine wood pellets [20]; and assessing the MC, specific energy, and feed rate of pelleting
biomass feedstock [21]. It has thus been recommended as having the potential for applica-
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tion in the biomass pelleting industry for real-time measurement to improve the efficiency
of the system [21]. However, NIR hyperspectral image spectroscopy also has many factors
that influence its precision and accuracy, especially the model development process, which
requires improvement. In model development, wavelength and spectral pretreatments
must be matched with the analyte. If the model creation process is suitable, the model can
provide a high accuracy [13]. The wavelength selection is very important for improving
the model’s capabilities. Geoffrey et al. [22] stated that the correct wavelength can increase
the temporal resolution and maintain acceptable levels of uncertainty in the predicted
value. In the industrial context, optimal wavelength selection can reduce the number of
wavelengths but can maintain their accuracy, which is preferable for industrial settings
equipped with low-cost spectrometers [23]. Several spectra variables are selected from the
full wavelength region and can be applied to develop a simple spectrometer system to
detect the characteristics of the material of interest [24,25]. The main contribution of the
application of NIR hyperspectral imaging could be in enabling the application of a machine
learning algorithm to find the optimal wavelength selection and improve its ability based
on spectral pro-processing.

The main objective of this research was to predict the FR and proximate data of
commercial biomass pellets using NIR hyperspectral imaging. The sub-objectives included
to compare the model performance developed from different spatial wavelengths (among
full wavelength, interval successive projections algorithm (iSPA), and internal genetic
algorithm (iGA) wavelengths) and spectral pretreatment methods (including raw, the first
derivative (D1), second derivative (D2), and standard normal variate (SNV)), as well as to
select the optimal prediction models. This research will benefit biomass pellet trading and
thermal conversion processes by achieving better efficiency and an improved pelletization
process at the stage of drying or storing the raw material.

2. Materials and Methods
2.1. Investigated Parameters

The main part of this study was based on estimation of selected important parame-
ters of biomass pellets in terms of their suitability for energy production. Therefore, the
investigated parameters (FR, VM, FC, and A) were determined at the stage of assessing the
suitability of biomass for energy purposes and for conversion into biofuel. The standard-
ized biomass pellet samples, with standardized parameters such as a specific density of
about 1000 kg/m3, mechanical durability of about 95%, and moisture content <10%, were
used in experiments to determine the FR, VM, FC, and A. This uniformity facilitates the
measurement of NIR hyperspectral imaging and the selected parameters.

2.2. Sample

A total of 140 biomass pellet samples were obtained from the wood pellet indus-
try. Biomass pellets including filter cake (11 pellets), Leucaena leucocephala (9 pellets),
bamboo (9 pellets), cassava rhizome (15 pellets), bagasse (14 pellets), sugarcane leaves
(15 pellets), straw (15 pellets), rice husk (14 pellets), eucalyptus bark (11 pellets), Napier
grass (13 pellets), and corn cob (14 pellets) were used for the experiments. The pellets used
as test material were assumed to have a moisture content in the range of 6–10%. Therefore,
the model developed assumed the MC as a constant that did not affect the obtained results.
The biomass was pelletized using a pelletizer machine (KN-D-200, Tianjin, China), and the
pellets were kept in a zipper bag and stored at room temperature 25 ± 2 ◦C.

2.3. NIR Hyperspectral Image Measurement

Figure 1 shows the pellet placed on a sample holder, made from acrylic sheet: a
translucent plastic sheeting with a size of 14 × 20 cm. The sample holder was then placed
on a plastic box, its bottom painted black and sized 14 × 20 × 15 cm, as a different
color from the pellet sample to make it easy to indicate the region of interest (ROI). The
measurement systems are shown in Figure 2, including an NIR hyperspectral camera
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(Imspector N17E; Specim, Finland), a CCD camera (Xeva 992; Xenics Infrared Solutions,
Leuven, Belgium), two 500 W tungsten halogen lights (Lowel Light Inc., Hauppauge, NY,
USA), control software (Specim’s LUMO Software Suite; Spectral Imaging Ltd., Oulu,
Finland), 320 pixels (with a resolution of 30 µm per pixel) in the x-axis and 497 pixels in the
y-axis. The sample was scanned using a wavelength range between 900 and 1700 nm, with
a spectral resolution of 3.2 nm and a translation stage at a speed of 10 mm/s.

Figure 1. Biomass pellet samples placed on a sample holder.

Figure 2. Apparatus of near infrared (NIR) hyperspectral imaging systems.

After scanning, the relative reflectance (R) of the sample was then calculated as
Rsample−Rdark
Rwhite−Rdark

[26], where Rsample, Rdark, and Rwhite are the intensity reflectance of the sample,
dark reference, and white reference, respectively. R was implemented for modelling, which
is the independent variable.

2.4. Reference Methods

After scanning, each pellet sample was ground and then used to determine the analyte
including the FR, VM, FC, and A. These were determined through TGA (TG 209 F3 Tarsus,
Netzsch, Germany). The ground biomass pellets of approximately 20 mg were placed in
a cup of aluminum oxide (Al2O3), and the sample was heated with temperatures from
30 to 900 ◦C, with a heating rate of 10 K/min and an O2 flow rate of 20 mL/min. After
combustion, the thermogravimetric (TG) curve was presented as a line plot between mass
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and temperature. The percentage of VM, FC, and ash was determined by considering
the slope to slope method, the so-called slope method. The TG profile and differential
thermogravimetric (DTG) profiles were obtained using Proteus 6.0.0 (Netzsch Software,
Gerätebau GmbH, Nordstadt, Germany). The fuel ratio was calculated as:

Fuel ratio =
FC
VM

(1)

To check the precision of the reference method, the standard error of laboratory (SEL)
of VM, FC, and A examined and were calculated as [27]:

SEL =

√
∑n

i=1
(
D − D

)2

n − 1
(2)

where D is the difference between duplicates, D denotes the average difference between

duplicates,
(

∑n
i=1 D2

n

)
, and n denotes the number of samples. The SEL defines the standard

deviation of the difference value between duplicates. The SEL is used to calculate the
maximum coefficient of determination (R2

max) [27], as follows:

R2
max =

SD2
y − SEL2

SD2
y

(3)

where SDy is the standard deviation of the reference value in the calibration set and R2
max

has a maximum in (R2) if there is no error in spectral acquisition [27]. R2
max depends on

the SDy and SEL. A lower R2
max means the sample reference method should be improved

or, in other words, the reference method is not accurate [27].

2.5. Model Development and Validation

Figure 3 shows the flow chart of model development for the prediction of FR, VM,
FC, and A using NIR hyperspectral imaging. The ROI in a pellet sample was collected
by removing the background using principal component analysis (PCA). A thresholding
method was used to separate the pixels of the pellet from the background. The spectra of
the ROI of each pellet were averaged to one spectrum, which was used as a representative
spectrum of the pellet, and this data were used for model construction [28,29]. To examine
the best model, different spatial wavelength ranges and spectral pretreatments were studied.
The raw spectrum and preprocessed spectra including the D1, D2, and SNV methods [30,31]
were investigated. For example, the D1 and D2 were able to eliminate the baseline offset
problem. The SNV could decrease multiplicative scattering effects [23,32]. The spectra pre-
treatment helped to increase the model accuracy. Either a full wavelength (256 wavelengths)
or spatial wavelength was selected using a machine learning algorithm; SPA with 12, 25,
50, 100, and 150 wavelengths and GA with 12, 25, 50, 100, and 150 wavelengths [33] were
investigated. The calibration models were developed using partial least squares (PLS)
regression and validated using leave-one-out cross-validation [34].

After the best model was created, it was tested again to confirm whether this model
could be used for future samples. The total samples were divided into a calibration set (75%
of total samples) and prediction set (25% of total samples), and then they were validated
again using the validation set. This information could be used, and NIR hyperspectral
image analysis was carried out using MATLAB (R2019b, 40846673).
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Figure 3. Flow diagrams for prediction of fuel ratio (FR), volatile matter (VM), fixed carbon (FC), and
ash (A) by hyperspectral imaging. ROI: region of interest.

2.6. Visualisation of FR, VM, FC, and A in the Distribution Map

The calibration model developed from optimal conditions was applied to evaluate the
analyte value of the pellet samples. Each reflection spectrum corresponding to each pixel
was multiplied with the regression coefficient (B) obtained from the calibration model to
calculate the predicted value, and it was represented as a 2D array of pixels. The predicted
value of each pixel was calculated as ypre = x × B, where x is the matric of the relative
reflectance of each sample. The predicted value of each pellet (Ypred) was calculated as

Ypre =
∑n

1 ypre
n , where n denotes the number of all pixels.

Therefore, the predicted FR, VM, FC, and A were illustrated in a 2D image levelled
into different colors as a distribution map. This levelling color information can be used for
visualizing the pellet quality in process and control.

After the prediction, the model’s ability was then determined in the statistical term
of the coefficient of determination of the prediction set (R2), and the ratio of the standard
error of prediction to the standard deviation of prediction (RPD) was calculated as:

R2 = 1 −
∑(yi − ypre)

2

∑(yi − y)2 (4)

RPD =
SD
SEP

(5)
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SEC or SEP =

√√√√√√∑n
1

(
yi − ypre −

∑n
1

(
yi−ypre

)
n

)2

n − 1
(6)

where yi, ypre, y, SD, SEC, and SEP denote the measured value, predicted value, average
measured value, standard deviation of the measured value, standard error of calibration,
and standard error of prediction, respectively. The predicted results were excellent if
R2 > 0.90 and RPD > 3, it was a good prediction if 0.81 < R2 < 0.90 and 2.5 < RPD < 3, it only
permitted approximate predictions if 0.66 < R2 < 0.80 and 2.0 < RPD < 2.5, and it poorly
predicted if R2 < 0.66 and RPD < 2 [35–37].

3. Results and Discussion
3.1. NIR Spectra

Figure 4 shows the average D2 spectra of this study of biomass pellets. For the
reflectance value, negative peaks of the D2 spectra were considered as the important peaks
of the absorption of the vibrated matter of interest. The derivative spectra could occur for
peaks that overlapped. The different biomass types gave spectra with similar structures.
However, the high negative peaks observed in the D2 relative reflectance values were
found to be 940 nm, and the spectra changed with the type of pellet, which is the structure
of the C-H third overtone and is associated with C-H and CH2 [38]. The average D2
spectrum of rice husk showed a peak at 1100 nm, corresponding to the C-H structure and
associated with the C-H aromatic [38]. The rice husk had a low reflectance value at 1250
nm, and that of the filter cake was high at 1390 nm, representing the structure of SiOH [38],
which indicated that it was possible that the filter cake had more SiOH in its ash. The
wavelength at 1520 nm was the vibration band of the structure of N-H (first overtone)
and was associated with N-H -CONH2 [38], while 1630 nm was the vibration band of the
structure of C-H (first overtone) and associated with C-H=CH2 [38].

Figure 4. Average spectra from 11 types of the second derivative of various biomass pellets.

Similar results were also reported by Yang et al. [39] for mature bamboo (two years
old) and juvenile bamboo (one month old), with many absorption bands in the wavelength
region of 1100–2500 nm, including peaks at approximately 1473, 1925, 2095, 2267, and
2328 nm. Similar results were also reported by Feng et al. [16], where a large variability in
reflectance values was negatively observed among different biofuel pellets for some NIR
regions. The negative position of reflectance was specific at 1200, 1350, and 1450 nm [13].
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3.2. Reference Value

Table 1 shows the statistical properties of all the biomass pellets, including FR, VM,
FC, and A. FR, VM, FC, and A were in the ranges of 0.301–0.677, 39.2–66.77%, 12.83–35.23%,
and −0.09–41.57%, respectively. Figure 5 shows the average FR, VM, FC, and A of the
biomass pellets. The proximate data of the biomass pellets varied with different varieties.
The results were similar to what was reported by Feng et al. [16]. VM was the major
component of the dried biomass samples. The VM ranged from 68.72% to 89.04%, A ranged
from 0.26% to 15.94%, and FC varied from 10.39% to 21.22%.

Figure 5. The (a) fuel ratio (FR, db%), (b) volatile matter (VM, db%), (c) fixed carbon (FC, db%), and (d) ash content (A, db%)
of the 11 varieties of biomass pellets.

Table 1. The statistical data of fuel ratio (FR), volatile matter (VM), fixed carbon (FC), and ash (A) of
all biomass types obtained by a TGA analyzer.

Parameters N Max Min Mean Range SD

FR, db% 140 0.68 0.30 0.51 0.38 0.07
VM, db% 140 66.77 39.20 56.71 27.57 5.17
FC, db% 140 35.23 12.83 28.89 22.40 4.17
A, db% 140 41.57 1.40 7.42 40.17 8.01

Table 2 shows the SEL and R2
max of the measured values. The SEL equaled 0.01, 0.65,

0.33, and 1.02 for FR, VM, FC, and A, respectively. The R2
max values of FR, VM, FC and A

were 0.98, 0.99, 0.99, and 0.98, respectively. The SEL and R2
max are required before model

development [40–42] because these parameters help to decide whether any model can
be developed. If the SEL is very high, the reference method is not precise. The reference
method must be re-checked; for example, it is necessary to check the scientist’s skill, work
instructions, chemicals, material used, and methodology [14].
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Table 2. The standard error of laboratory (SEL) and maximum coefficient of determination (R2
max)

of fuel ratio (FR), volatile matter (VM), fixed carbon (FC), and ash (A).

Parameter SEL R2
max

FR, % 0.01 0.98
VM, % 0.65 0.99
FC, % 0.33 0.99

Ash, % 1.02 0.98

3.3. Result of Model Development

Table 3 shows the effective performance of the model in the prediction of FR, VM,
FC, and A based on different spatial wavelengths, numbers of wavelengths, and spectral
preprocessing techniques, where the models were validated using full cross-validation.

Table 3. The result of optimal wavelength selection conducted with full wavelength, interval
successive projections algorithm (iSPA) wavelength, and interval genetic algorithm (iGA) wavelength.
PLS: partial least squares.

Parameters N Method Wavelength Pretreatment lv R2
cal R2

val SEC SECV

FR, %
140 Full-PLS 256 raw 8 0.71 0.63 0.04 0.04
140 iSPA-PLS 100 D2 9 0.78 0.72 0.03 0.04
140 iGA-PLS 25 D2 10 0.72 0.66 0.04 0.04

VM, %
140 Full-PLS 256 D1 8 0.89 0.86 1.74 1.95
140 iSPA-PLS 100 SNV 8 0.90 0.88 1.67 1.85
140 iGA-PLS 100 raw 9 0.89 0.86 1.75 1.96

FC, %
140 Full-PLS 256 SNV 9 0.88 0.85 1.59 1.82
140 iSPA-PLS 100 SNV 8 0.85 0.81 1.78 2.01
140 iGA-PLS 50 SNV 10 0.83 0.77 1.91 2.23

Ash, %
140 Full-PLS 256 SNV 9 0.93 0.91 2.18 2.48
140 iSPA-PLS 100 SNV 7 0.92 0.91 2.36 2.62
140 iGA-PLS 50 D2 9 0.90 0.87 2.69 3.02

iSPA interval successive projections algorithm; iGA genetic algorithm; raw raw spectra; SNV standard normal variate;
D1 first derivative; D2 second derivative; SEC standard error of calibration; SECV standard error of cross-calibration.

Figure 6a–d shows the result of the PLS model developed from different spectra pre-
treatments and numbers of iSPA wavelengths, including 12, 25, 50, 100, and 150 wavelengths,
for the prediction of FR, VM, FC, and A, respectively. The results showed that the optimal
model for predicting FR could be developed using D2 spectra and the selected 100 wave-
lengths. Meanwhile, VM, FC, and A could be developed using SNV spectra coupled with
100 wavelengths because this provided a low standard error of cross-calibration (SECV).

Figure 6. Cont.
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Figure 6. Wavelength selected by iSPA for 12, 25, 50, 100, and 150 wavelengths in prediction of (a) fuel ratio (FR, %),
(b) volatile matter (VM, %), (c) fixed carbon (FC, %), and (d) ash content (A, %).

Figure 7a–d shows the results of the model generated using different spectra pretreat-
ment methods and wavelengths selected from the iGA wavelengths, including 12, 25, 50,
100, and 150 wavelengths. The most effective model for predicting FR was developed
using D2 spectra coupled with 25 wavelengths, where the SECV was 0.043% (Figure 7a).
The optimal model for predicting VM was developed using raw spectra coupled with
100 wavelengths, where the SECV was 1.96% (Figure 7b). The optimal model for predicting
FC was developed using SNV spectra coupled with 50 wavelengths, where the SECV was
2.23% (Figure 7c). The optimal model for predicting A was developed using D2 spectra
coupled with 50 wavelengths, where the SECV was 3.02% (Figure 7d).

Figure 7. Wavelengths selected by iGA for 12, 25, 50, 100, and 150 wavelengths in prediction of (a) fuel ratio (FR, %),
(b) volatile matter (VM, %), (c) fixed carbon (FC, %), and (d) ash content (A, %).
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When comparing the full wavelengths, iSPA wavelengths, and iGA wavelengths,
the iSPA was the best wavelength selection method because it provided the lowest SECV.
Therefore, the most effective model could be developed with iSPA, 100 wavelengths, D2
spectra, and nine latent variables for the FR model; iSPA, 100 wavelengths, SNV spectra,
and eight latent variables for the VM model; iSPA, 100 wavelengths, SNV spectra, and
eight latent variables for the FC model; and iSPA-100 wavelengths, SNV spectra, and seven
latent variables for the A model.

To confirm the accuracy, the PLS model was re-calculated and validated with the test
set method, as the best result shows in Table 4 (selecting the best model from Table 3).
The model of FR provided R2, SEC, and SEP values of 0.75, 0.04, and 0.03, respectively.
The VM model gave R2, SEC, and SEP values of 0.82, 1.62, and 2.10%, respectively. The
FC model had R2, SEC, and SEP values of 0.81, 1.82, and 1.80%, respectively. Meanwhile,
the A model provided R2, SEC, and SEP values of 0.88, 2.27, and 2.53%, respectively. The
SEP values were very similar to the SEC values, which means that these models had no
over-fitting and that the NIR models were effective. In the author’s opinion, with a low
SEP of approximately 7.8% of the range of reference value (0.03 of 0.38) for FR, 7.6% of the
mean value (2.10% of 27.57%) for VM, 8.0% of the mean value (1.8% of 22.40%) for FC, and
6.2% of the mean value (2.53% of 40.17%) for A, all of which were less than 10%, the model
was acceptable for the approximation of the FR, VM, FC, and A of biomass pellets.

Table 4. The result of the best PLS regression model using iSPA wavelengths for the prediction of
various biomass pellets in the calibration set and the validation set.

Parameters
Calibration Set Validation Set

PLS Factor N R2 SEC n r2 SEP RPD Bias

FR, % 9 106 0.76 0.04 34 0.75 0.03 1.97 0.01
VM, % 8 106 0.91 1.62 34 0.82 2.10 2.46 0.10
FC, % 8 106 0.86 1.82 34 0.81 1.80 2.32 −0.39

Ash, % 7 106 0.93 2.27 34 0.88 2.53 3.17 −0.44
R2: coefficient of determination of calibration; r2: coefficient of determination of validation; N: number of samples;
PLS: partial least squares; SEC: standard error of calibration; SEP: standard error of prediction; RPD: ratio of
prediction to deviation.

The scatter plots of the measured and predicted values of the validation set are shown
in Figure 8a–d for FR, VM, FC, and A, respectively.

Figure 8. Cont.
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Figure 8. Scatter plots of measured value versus predicted value of 34 biomass pellets in the prediction of (a) fuel ratio (FR,
%db), (b) volatile matter (VM, %db), (c) fixed carbon (FC, %db), and (d) ash content (A, %db).

After comparison to other works, the result was seen to be similar to that of
Feng et al. [16], who reported that the SPA-PLSR model predicted the VM, FC, and ash
with R2

cal values of 0.90, 0.85, and 0.94, respectively. Our accuracy showed a similar result
to that of Sirisomboon et al. [43], who predicted the VM, FC, and A content of bamboo
chips using Fourier Transform - Near Infrared (FT-NIR) spectroscopy, using a model that
provided R2 values of 0.81, 0.81, and 0.86, respectively.

3.4. Result Visualisation of FR, VM, FC, and A in the Distribution Map

Distribution maps representing a linear color scale that defines the differences in the
FR, VM, FC, and A levels are shown in Figure 9. Figure 9a shows raw relative reflectance
images of some biomass pellet types before prediction. The linear color scale in each pixel
was predicted and then converted into color. The predictive distribution maps converted
into 2D NIR images of FR, VM, FC, and A are shown in Figure 9b–e, respectively. The
highest predicted values are shown by red, the middle values are shown by green, and the
lowest values are shown by blue. Blue indicates that the predicted value was zero, which
was found in the background. Other colors in the linear color scale varied according to
the level of the predicted value. This visualization for the distribution of pellet properties
could be suitable and intuitive for online industry application.

Figure 9. Predictive distribution maps of pellet quality of different biomass pellet types predicted
by the iSPA-PLS model; (a) raw image, (b) predicted FR, (c) predicted VM, (d) predicted FC, and
(e) predicted A.
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4. Conclusions

The in-line prediction of the FR and proximate data of commercial biomass pellets
using NIR-hyperspectral imaging was investigated. Standardized samples of commercial
biomass pellets were collected for the experiment because of their unified form, comparable
density, and mechanical durability, meaning that these factors did not affect the results of
the model. The different spatial wavelengths, including full wavelength, iSPA and iGA
wavelengths, and different spectra pretreatments, were studied. The optimal model for all
parameters could be developed using iSPA-100 spatial wavelengths with D2 for FR and
SNV spectra for VM, FC, and A. In practical applications, we could reduce the number of
wavelengths from 256 to 100, which would reduce the cost of the line scanning spectrometer.
The result demonstrated that good accuracy could be achieved in the prediction of FR,
VM, FC, and A, suitable for application for quality screening. Therefore, the prediction
of biomass pellets’ property distribution maps could enable the control of the thermal
conversion process and be intuitive for online industry applications. For example, a
distribution map could be easily visualized and utilized at the stages of the drying, storage,
and maybe mixing of raw materials. However, in order to further increase the model’s
accuracy, it should be developed with several types of biomass, e.g., woody, herbaceous,
and fruit biomass. The model can be improved in the future to be used for classification
in the standard EN ISO 17225-1, according to which the range of measured parameters in
these groups can be specified to create this classification.
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