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Abstract: Generally, energy management in smart buildings is formulated by mixed-integer linear
programming, with different optimization goals. The most targeted goals are the minimization of the
electricity consumption cost, the electricity consumption value from external power grid, and peak
load smoothing. All of these objectives are desirable in a smart building, however, in most of the
related works, just one of these mentioned goals is considered and investigated. In this work, authors
aim to consider two goals via a multi-objective framework. In this regard, a multi-objective mixed-
binary linear programming is presented to minimize the total energy consumption cost and peak load
in collective residential buildings, considering the scheduling of the charging/discharging process
for electric vehicles and battery energy storage system. Then, the Pascoletti-Serafini scalarization
approach is used to obtain the Pareto front solutions of the presented multi-objective model. In the
final, the performance of the proposed model is analyzed and reported by simulating the model
under two different scenarios. The results show that the total consumption cost of the residential
building has been reduced 35.56% and the peak load has a 45.52% reduction.

Keywords: smart building; energy management; multi-objective optimization problem; mixed binary
linear programming; Pascoletti-Serafini approach; Pareto front

1. Introduction

Currently, the use of renewable energy resources specifically solar photovoltaic (PV)
panels in buildings are rapidly increasing, which contributes to supply the needed electric
power of the building. Energy generation from PVs directly depends on sun radiation
and weather conditions [1]. Therefore, the using of Battery Energy Storage System (BESS)
and Electric Vehicles (EVs) scheduling usage, could be useful for energy management in
Smart Buildings (SB) context, especially during the period of time that PV is enable to
produce electricity.

So far, extensive research work has been done on the topic of building energy man-
agement in order to schedule renewable energy sources with different goals [2–6] and,
as well as other studies, largely focused on the energy resource, such as the EV [7]. The
model in [8] proposes to minimizes the buildings power demand and its electricity costs
by optimizing the charging and discharging process of Plug-In Hybrid Electric Vehicles
(PHEVs).The restrictions contain limitations for the State of Charge (SoC) of the PHEV
and imposes that the electrical energy is not sold and bought at the same time for or from
power grid. The main goal in the research work [9] is to minimize the daily electricity cost.
Moreover, a stochastic model is presented to forecast the PV generation and building load
demand. An optimal scheduling for a BESS on a Microgrid (MG) application is proposed
in [10] to minimize the operating cost of the MG. The constraints of the deployed model
involve the energy balance and power limitations for the both EVs and BESS. Besides,
binary variables are used in order to assure that storage batteries are not charged and
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discharged at the same time. In Reference [11], by considering the usage of PV generation,
a Mixed-integer Linear Programming (MILP) model is proposed for EVs charging process.
The main purpose of this work is to minimize the consumption energy cost for charging
the EVs from power grid taking into consideration the limitation of power grid capacity.
Vehicle-to-Grid (V2G) as well as a dynamic price scheme are considered as constraints. In
research work presented in [12], an energy management system is proposed to minimize
the peak load power demand in an SB where the contract for each apartment is assumed to
be flexible. In this work, the schedule of the EVs/BESS charge and discharge processes is
optimized using a Mixed Binary Linear Programming (MBLP) model in which the charg-
ing/discharging of EVs and BESS, in each time period, is modeled by binary variables. In
Reference [13], a mathematical model is developed for building energy management that
consisted a BESS, a PV and a fully plug-in EV. The model in this work manage the power
flow between the resources by using a rule-based controller. In Reference [14], a Mixed
Integer Linear Problem (MILP) model is considered in which the PV generation is included
via a forecasting model, and the objective function is to minimize EVs charging cost and
increase the energy consumption from the PV generation. In Reference [15], a Home
Energy Management (HEM) system is considered that contains a small-scale renewable
energy generation and BESS. The model is based on a MILP formulation in which V2G
and demand response strategies are considered. As some recent works in this area, we can
reefer to [16–18].

In this work, a Multi-Objective Mixed-Binary Linear Programming (MOMBLP) formu-
lation is developed, which intends concomitantly to minimize the total energy consumption
cost and peak load consumption. The SB considers the deployment of solar PV panels,
BESS and EVs per each apartment. Moreover, it is assumed the flexibility on contract power
for each apartment considering in this way a single contracted power value to supply all
building facilities. In fact, the main contribution of this work is to optimize the schedule
of charging and discharging process of EVs and BESS by using MOMBLP with the two
mentioned objectives.

A common approach to solve numerically multi-objective optimization problems
is based on scalarization approach. Scalarization methods transform a multi-objective
problem into a series of parameter dependent single objective problems. The solution of
each of these problems, each corresponding to a different value of the parameters, is a
solution of the multi-objective problem that called Pareto point. Well-known methods
based on scalarization approach are weighted-sum (WS) method [19], the ε-constraint
(EC) method [20], the normal-boundary intersection (NBI) [21–23], normal-constraint (NC)
approach [22], weighted Tchebycheff (WT) method [24] and the Pascoletti-Serafini (PS)
method [25,26]. In Reference [26], it is demonstrated that the PS method is more general
while WS, EC, WT and NBI are special cases of the PS method. That is why authors
purposed the PS method to solve MOMBLP in order to calculate the Pareto Points for two
implemented objective function.

The remainder of this paper is organized as follows. In Section 2, a brief review of
the multi-objective optimization problem is presented and the PS method is described.
Section 3 refers the problem statement and the proposed MOMBLP model for SB. The case
study and simulation results are described in Section 4. And finally, the last Section 5
provides the concluding remarks .

2. Multi-Objective Optimization Problem and Some Preliminaries

In this section, a brief review of the basic notations and definition of Multi-Objective
Optimization Problem (MOOP) is given. Here, the following MOOP with r objective
function is considered.

MOOP
{

min f (x) = [ f1(x), · · · , fr(x)],
s.t. x ∈ Ω,

(1)
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where the Ω = {x ∈ Rn | g(x) ≤ 0, h(x) = 0, g ∈ Rm, h ∈ Rk} is called feasible set and
the image of Ω under the objective function f (x) is known Objective Space.

When r ≥ 2, the objective space is not naturally ordered. However, It is possible to
define partial orderings. As commonly done for multi-objective problems, here the concept
of Pareto optimality is used. Before introducing the Pareto optimality, some definitions are
required to be identified:

Dominance: Two feasible points x̂, x̄ ∈ Ω for the MOOP (1) are considered. It is said
that the solution x̂ dominates the solution x̄, and it can be written that x̂ ≺ x̄, if for all
i ∈ {1, · · · , r}, we have fi(x̂) ≤ fi(x̄), and there is at least one j ∈ {1, · · · , r} such that
f j(x̂) < f j(x̄). Now, the Pareto optimality is defined by using the Dominance order.

Pareto Minimizer(Pareto Point): A feasible point x∗ ∈ Ω is called a Pareto minimizer
of MOOP (1) if there is no feasible points x ∈ Ω such that x ≺ x∗. If the feasible point
x∗ ∈ Ω is a Pareto minimizer, then f (x∗) is called a non-dominated point.

Pareto Front: The image by f of the set of all Pareto minimizers of (1) is called the Pareto
front (or efficient set).

Ideal Point: For each i = 1, · · · , r, let x∗i ∈ Ω be an optimal solution of the following
single objective optimization problem. Now, the vector a∗ = [ f1(x∗1), · · · , fr(x∗r )] is called
an ideal point of the MOOP (1). {

min fi(x),
s.t. x ∈ Ω.

(2)

Typically, multi-objective optimization problems are solved by scalarization methods
based on the reformulation of multi-objective optimization problems into a set of parameter
dependent single objective optimization problems. Pareto points of the multi-objective
optimization problems are generated by solving each of these single objective optimization
problems corresponding to different parameters. Pascoletti-Serafini (PS) Scalarization
approach is one well-known and more general of such methods [25–27]. A short overview
of PS method is given in this section. In this regards, the MOOP (1) is considered. The PS
scalarization method reformulates the MOOP (1) to the following single objective problem:

SP(a, r)


min τ,
s.t. a + τr− f (x) ≥ 0,

x ∈ Ω, τ ∈ R,
(3)

with parameters a, r ∈ Rr. To simplicity,it is assumed that r = 2 and we apply the method
for bi-criteria problems. The Pareto front of MOOP (1) is obtained by solving the associated
SP(a, r) problem for different parameters (a, r) that the parameter a is considered on the
line a ∈ {y| y = εx∗1 + (1− ε)x∗2 , ε ∈ [0, 1]}. Note that x∗1 and x∗2 are the optimal solutions
of problem (2) with r = 2. In Reference [26], the sufficient and necessary conditions for
optimal Pareto points of MOOP are given and also show that all Pareto points derived
from MOOP can be obtained by PS scalarization.

3. Problem Description and Mathematical Model

In this work, a residential building is considered which contains Photo Voltaic (PV)
generation panels, Electric Vehicles (EVs) and a Battery Energy Storage System (BESS). The
main purpose in this paper is to find out the best charging and discharging scheduling
process for both EVs and BESS, in order to minimize the energy consumption cost from
power grid as well as smoothing peek load consumption in the considering time-period.
To achieve these proposal goals some assumption in SB are previously considered:

• Solar photovoltaic production is considered for self-consumption but with the possi-
bility of selling the surplus to the power grid;

• It is considered that each EV leaves and arrives to the building once a day. All EVs
are connected to the electric network as soon as they get home.
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• The arrival and departure times are known and for each EV the initial SoC is known
at the arrival time. The EV battery can be charged/discharged between arrival and
departure.

Now, the considering problem is formulated by a MOOP with two objective functions
(r = 2). In order to describe the model, the used parameters and decision variables are
summarized in Tables 1 and 2.

Note that in Table 2, the binary variables αEV(i, j) and βEV(i, j) are used to define the
charging and discharging state of j-th EV in i-th time-slot. αEV(i, j) = 1 (βEV(i, j) = 1) means
that the battery of j-th EV is charging (discharging) in time-slot i. The binary variables
αBE(i) and βBE(i) are similarly used for charging/discharging state of BESS. Moreover, if
j-th EV is out of SB in time-slot i, then the variable SEV(i, j) is meaningless and should not
be considered in the model. On the other hand, the index i of SEV(i, j) is considered in{

1, . . . , I
}

. Indeed, for simplicity in presentation, authors considered index i ∈
{

1, . . . , I
}

for SEV and and this will be taken into account when formulating the objective function
and restrictions.

Table 1. Parameters of the model.

Parameter Index Description

I Number of time-slots per Time-Study
τ Time-slot duration (hour)
J Number of apartments (or EVs) in the building
Tin

EV(j) j ∈
{

1, . . . , J
}

, The number of period-time in which j-th EV enters to the parking
Tout

EV (j) j ∈
{

1, . . . , J
}

, The number of period-time in which j-th EV leaves the parking
Smax

EV (j) j ∈
{

1, . . . , J
}

Maximum allowable State of Charge(SoC) of j-th EV
Sinitial

EV (j) j ∈
{

1, . . . , J
}

, The initial SoC of j-th EV at the beginning departure in Tin
EV(j)

Smin_out
EV (j) j ∈

{
1, . . . , J

}
, The minimum allowable SoC for j-th EV at exit time

Smax
BE Maximum SoC for BESS

Sinitial
BE Initial SoC for BESS at the beginning of time-period

PSB(i) i ∈
{

1, . . . , I
}

Total power demand of SB at period i
PPV(i) i ∈

{
1, . . . , I

}
Total generated power by PV at period i

Pmax
G (i) i ∈

{
1, . . . , I

}
Maximum power that can got from Grid at time-slot i

Cbuy
G (i) i ∈

{
1, . . . , I

}
Purchased electricity cost from grid in i-th time-slot

Csell
G (i) i ∈

{
1, . . . , I

}
Sell electricity cost to grid in i-th time-slot

Pch
EV(j) j ∈

{
1, . . . , J

}
Active power related to the charging process of the j-th EV

Pdiss
EV (j) j ∈

{
1, . . . , J

}
Active power related to the discharging process of the j-th EV

Ech
EV(j) j ∈

{
1, . . . , J

}
The charge efficiency ofj-th EV

Ediss
EV (j) j ∈

{
1, . . . , J

}
The discharge efficiency of j-th EV

Pch
BE(i) i ∈

{
1, . . . , I

}
Active power of the charging process of the BESS in period i

Pdiss
BE (i) i ∈

{
1, . . . , I

}
Active power of the discharging process of BESS in period i
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Table 2. Decision variables of the model.

Variable Type Index Description

αEV(i, j) {0,1} i ∈
{

1, . . . , I
}

, j ∈
{

1, . . . , J
}

j-th EV charging process in period i
βEV(i, j) {0,1} i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
j-th EV discharging process in period i

αBE(i) {0,1} i ∈
{

1, . . . , I
}

BESS charging process in period i
βBE(i) {0,1} i ∈

{
1, . . . , I

}
BESS discharging process in period i

SEV(i, j) R+
0 i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
SoC of the j-th EV at the start of period i

SBE(i) R+
0 i ∈

{
1, . . . , I

}
SoC of the BESS at the start of period i

PG(i) R+
0 i ∈

{
1, . . . , I

}
Active power extracted from the grid in period i

PG�BE(i) R+
0 i ∈

{
1, . . . , I

}
Active power of charging the BESS by grid in period i

PG�EV(i, j) R+
0 i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
Active power of charging the j-th EV by grid in period i

PEV�B(i, j) R+
0 i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
Active power of discharging of j-th EV to SB in period i.

PPV�B(i) R+
0 i ∈

{
1, . . . , I

}
Active power from PV to SB in period i

PPV�BE(i) R+
0 i ∈

{
1, . . . , I

}
Active power from PV to BESS in period i

PPV�G(i) R+
0 i ∈

{
1, . . . , I

}
Active power from PV to grid in period i

PBE�G(i) R+
0 . i ∈

{
1, . . . , I

}
Active power from BESS to grid in period i

Formulation of MOOP

In this section, a MOOP model is formulated for residential building considering
two objective functions. The first objective function f1 intends to minimize the total
consumption energy cost as

f1 = min{
I

∑
i=1

(
PG�B(i) + PG�BE(i) +

J

∑
j=1

PG�EV(i, j)

)
Cbuy

G − (4)

I

∑
i=1

(
PPV�G + PBE�G +

J

∑
j=1

PEV�G(i, j)

)
Csell

G }.

In (4), the first summation represents the total amount of electrical energy bought
from power grid used by SBs, BESS and EVs. The second summation in (4) corresponds
the total amount of electrical energy that it is injected by PVs, BESS and EVs to the external
power grid.

And the second objective function f2, represented in (5), minimizes the peak load
consumption of the SB. In this regards, the following objective function was defined:

f2 = min
{

max
i∈I

PG(i).
}

(5)

By defining the slack variable z, the objective function (5) is reformulated as

f2 = min z,

PG(i) ≤ z (6)

z ≥ 0.

In general, the proposed MOOP model for SBs is represented by Equations (7a)–(7p).
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Minimize J = [ f1, f2], (7a)

S.t. SEV(i + 1, j) = SEV(i, j) +
[

PG�EV(i, j)Ech
EV − (PEV�G(i, j) + PEV�B(i, j))/Ediss

EV

]
, i ∈

{
1, . . . , I − 1

}
(7b)

SEV(1, j) = Sinitial
EV (j), j ∈

{
1, . . . , J

}
, (7c)

PG�EV(i, j) ≤ αEV(i, j)Pch
EV(j)τ, i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
(7d)

PEV�G(i, j) + PEV�B(i, j) ≤ βEV(i, j)Pdiss
EV (j)τ, i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
(7e)

0 ≤ SEV(i, j) ≤ Smax
EV (j), i ∈

{
1, . . . , I

}
, j ∈

{
1, . . . , J

}
, (7f)

SEV(Tout
EV (j)− 1, j) ≥ Smin_out

EV (j), j ∈
{

1, . . . , J
}

, (7g)

SEV(i, j) = 0, j ∈
{

1, . . . , J
}

, i ∈
{

1, . . . , Tin
EV(j)− 1

}
∪
{

Tout
EV (j) + 1, . . . , I

}
, (7h)

αEV(i, j) + βEV(i, j) ≤ 1, i ∈
{

1, . . . , I
}

, j ∈
{

1, . . . , J
}

, (7i)

SBE(i + 1) = SBE(i) +
[
(PG�BE(i) + PPV�BE(i))Ech

BE − (PBE�G(i) + PBE�B(i))/Ediss
BE

]
, i ∈

{
1, . . . , I

}
, (7j)

Smin
BE ≤ SBE(i) ≤ Smax

BE , i ∈
{

1, . . . , I
}

, (7k)

PG�BE(i) + PPV�BE(i) ≤ αBE(i).Pch
BEτ, i ∈

{
1, . . . , I

}
, (7l)

PBE�G(i) + PBE�B(i) ≤ βBE(i)Pdiss
BE τ, i ∈

{
1, . . . , I

}
, (7m)

αBE(i) + βBE(i) ≤ 1, i ∈
{

1, . . . , I
}

, (7n)

0 ≤ PG(i) ≤ Pmax
G , i ∈

{
1, . . . , I

}
, (7o)

PG(i) ≤ z, z ≥ 0. (7p)

We recall that the decision variables of the above model is presented in Table 2.
According to this table, we find that for I days and J apartment, the number of decision
variables is (9+ 5J)I + 1. In the above model, Equation (7b–i) represent the EVs constraints
in which (7b) shows the SoC updating of EVs in each time slots due to EVs charging
and discharging process, knowing initial charge state condition (7c). The Equation (7d)
describes the maximum charging value for EVs. Note that, the binary variable αEV(i, j)
in this equation shows the charging state of the j-th EV in the i-th time-slot. In addition,
the maximum EVs discharging value is presented in (7e) in which discharging state of
j-th EV in i-th time-slot is presented by binary variable βEV(i, j) . The capacity of each EVs
during the time period and in the last time slot are defined by Constraints (7f) and (7g)
respectively. In time slot i ∈

{
1, . . . , Tin

EV(j)− 1
}
∪
{

Tout
EV (j) + 1, . . . , I

}
, the j-th EV is outside

of the building and the charging and discharging process does not occurs. In this regards,
the Equation (7h) is considered in this time-slot. And finally the Constraints (7i) ensure
that the charging and discharging of EVs do not occur at the same time. Note that, If any
tenant (j) does not have an Electric Vehicle, it is possible to consider it in the model by
Smax

EV (j) = 0.
In similar process, the Equations (7j)–(7n) represent the BESS constraints in which the

updating SoC process of BESS is presented by Equation (7j) with known initial value and
the equations (7k) limits the capacity of BESS. The Equations (7l) and (7m) describe the
maximum value of charge/discharging process of BESS in which the binary variables αBE(i)
and βBE(i) present the charge/discharging state of BESS in time slot i. Moreover, the bound
constraints for consuming energy from external power network is considered by (7o).

4. Case Study

In this section, a residential building containing 15 apartments and three PV sources
generation with a capacity 3.68 kW is considered as a case study that each apartment
has one Electrical Vehicle. The value of the mentioned parameters in the model (7), such
as power demanded value from apartments PSB, the PVs generated power PPV and ar-
rival/departure time of EVs Tin

EV/Tout
EV are recorded for each 15 minutes.

Real data bases concerning load consumption and PV generation were used. There are
always problems with databases, which is required a data pre-processing phase in order
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to “clean” the database. It was identified that some recorded data were missed. In order
to fill in the lack of data values, and in this way, to enable the use of database for study, a
regression model and an adjacent interpolation approaches were implemented.

In the proposed optimization model (7a)–(7p), any time-period (in days) can be
selected. However, to sake of simplicity in the numerical simulation, the results of the
model for one day and τ = 0.15 minutes, consequently, the time-slot has I = 24× 4 = 96
time-slots.

Moreover, as already mentioned, it was assumed that the residential building is
equipped by an BESS and each apartment has one EV with the following characteristics

Smax
EV = 27.2 kW h, Pch

EV = 3.7 kW, Pdiss
EV = 3.33 kW (8)

Smax
BE = 50 kW h, Pch

BE = 6.3 kW, Pdiss
BE = 5.67 kW. (9)

In addition, the initial State of Charge (SoC) is considered Sinitial
BE = 0 and the initial SoC of

EVs at the arrival time Sinitial
EV (j) are set randomly .

Simulation Results

Before applying the PS approach for (7), it is required to find out the ideal point a. In
this sense, the CPLEX solver was used in order to solve the single objective optimization
problem (2). The limiting weights ε = 0 and ε = 1 are considered to characterize the
optimal solution of single-objective problems in relation to the problem (7) as shown in
(10) and (11):

ε = 0, [ f1(x∗1), f2(x∗1)] = [39.031 7 EUR, 8.599 0 kW h], (10)

ε = 1, [ f1(x∗2), f2(x∗2)] = [54.891 9 EUR, 4.703 3 kW h]. (11)

Note that, when ε = 0, the single-Objective problem is solved in order to minimize
the total energy cost(the optimal achieved value is 39.031 7 EUR). when ε = 1, the single-
Objective problem is solved in order to minimize the demanded peak load (the optimal
achieved value is 4.703 3 kW h).

So, the idea point for MOOP problem (7) is to obtain a = [ f1(x∗1), f2(x∗2)] =
[39.031 7 EUR, 4.703 3 kW h].

Now, the PS approach in Section 2 is applied for problem (7) with direction r = [1, 1].
The approximation of Pareto front is reported in Figure 1. For better vision, the objective
functions f1 and f2, as a function of ε ∈ [0, 1], are plotted in Figure 2.

The Figure 1 shows the variation of the both objective function according to the
variation of parameter ε ∈ [0, 1] in the PS method. And, Figure 2a depicts the distance
between each point of the Figure 1 (Pareto points) with the ideal point (identified in
Figure 1) in order to find the best point. Figure 2b,c show the changes of each objective
function relative to the changes of parameter ε ∈ [0, 1] in the PS method.

In order to find the most appropriate Pareto point, the overall of Pareto front is
optimized by using the objective function K = ||( f1, f2) − a||2 , that is, measuring the
distance of each Pareto point with the ideal point. Function K as a function of ε ∈ [0, 1] is
reported in the left side of Figure 2. It can be seen that the objective function K reaches its
minimum value at K = 0.292 2 that is attained at ε = 0.834 with following results

ε = 0.834, f1 = 39.2349 EUR, f2 = 4.9134 kW h, Computation Time = 1.1015 s. (12)
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Figure 1. The obtained Pareto front for problem (7).

Figure 2. (a) Distance of Pareto Points from the Ideal Point, (b) Objective Function f1 respect to ε, (c) Objective Function f2

respect to ε.

The electrical energy consumption from external power grid, the generated power
by PVs, the building power demand and the used energy for charging/discharging EVs,
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corresponding to ε = 0.834 are plotted in Figure 3. Moreover, the interactions among
energy resources are specified by different colors.

In Figure 3, it is possible to see the obtained results for one day. Figure 3a represents
the electrical energy that is supplied from external power grid. Figure 3b represents
the generation energy from PV panels. Figure 3c depicts the consumption load profile
concerning the residential building. Figure 3d represents the obtained EV’s charging and
discharging process, taking into consideration the use of the BESS, PV and external power
grid. Figure 3e shows the obtained BESS charging and discharging process results.
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Figure 3. Trace of power among Grid, Building’s apartments, Photo Voltaics (PVs), Electric Vehicles (EVs) and Battery
Energy Storage System (BESS) corresponding to ε = 0.834.

As shown in Figure 3, in some step-times, some PV generated power is used for
charging EVs’ and BESS. the EVs and BESS are discharged in order to reduce the consumed
power from external power grid and at the other time-slots. Moreover, all the PV generated
power used by smart building, that is for charging BESS (if it is available), to charge EVs
or to supply the electrical consumers. During the off-peak hours, costumers are supplied
mainly by external power grid, EVs and also a little slight contribution from BESS. Mainly,
during the off-peak hours, EVs are charged from external power grid and they are also
charge by BESS and PV during Half-peak hours. The contribution from EV to supply
the building occurs at off-peak hours. The BESS takes advantage from the PV generation
source and contribute to charge EVs and to supply some energy building demand.

Finally, in order to show the efficiency of the proposed model, the obtained results
(total consumption costs and the maximum value of the demanded load) were compared
with the reference case study that neither considered the flexibility of contracted power for
each apartment nor the EVs discharging process [12]. The compared results are reported in
Table 3.
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Table 3. Comparison of Proposed Model (MOMBLP) with Reference Case Study for 1 day from
external Supplier.

Total Cost (EUR) Peak Load (kW h)

MOMBLP Model 39.2349 4.9134
Reference Case Study [12] 60.8838 9.0190

According to the obtained results, shown in Table 3, it is possible to verify a signif-
icant reduction in both objective functions. Moreover, the total consumption cost of the
residential building has been reduced 35.56% and the peak load has reduced 45.52% in
comparison with the reference case study [12].

5. Conclusions

Traditionally, each residential consumers has its own electrical contract power. This
approach proposes the flexibility of the customer contracted power taking into considera-
tion the energy management resources, namely, photovoltaic generation, battery energy
storage system and electrical vehicles usage. A multi-objective mixed binary linear problem
(MOMBLP) is suggested to model the proposed idea in order to minimize building peak
load consumption and also aiming to reduce the total cost of the building from external
consumption power grid. Note that, The binary variables in the proposed MOMBLP are
used to find automatically the scheduling of the charging and discharging process of the
BESS and EVs. Their proposed approach considered that apartments have flexibility of the
contract power that is, the building has just one contract power. In order to validate the
model, a real residential building was considered that contains 15 apartments, solar PVs
generation panels, EVs from each apartment and a BESS. The PS scalarization method was
used to solve the proposed Multi objective optimization problem since then it is a general
method for solving multi-objective problems. The obtained Pareto front and the objective
functions respected to ε is reported. A new objective function is defined to search over
the Pareto front and discover the appropriate Pareto point. Finally, the building energy
resources are obtained showing the contribution of each one.
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