
processes

Article

Improved Hybrid Heuristic Algorithm Inspired by Tissue-Like
Membrane System to Solve Job Shop Scheduling Problem

Xiang Tian 1,2 and Xiyu Liu 1,2,*

����������
�������

Citation: Tian, X.; Liu, X. Improved

Hybrid Heuristic Algorithm Inspired

by Tissue-Like Membrane System to

Solve Job Shop Scheduling Problem.

Processes 2021, 9, 219.

https://doi.org/10.3390/pr9020219

Academic Editor: Luis

Valencia Cabrera

Received: 21 December 2020

Accepted: 21 January 2021

Published: 25 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Business School, Shandong Normal University, Jinan 250358, China; tianxiang08@163.com
2 Academy of Management Science, Shandong Normal University, Jinan 250358, China
* Correspondence: xyliu@sdnu.edu.cn

Abstract: In real industrial engineering, job shop scheduling problem (JSSP) is considered to be one
of the most difficult and tricky non-deterministic polynomial-time (NP)-hard problems. This study
proposes a new hybrid heuristic algorithm for solving JSSP inspired by the tissue-like membrane
system. The framework of the proposed algorithm incorporates improved genetic algorithms (GA),
modified rumor particle swarm optimization (PSO), and fine-grained local search methods (LSM). To
effectively alleviate the premature convergence of GA, the improved GA uses adaptive crossover
and mutation probabilities. Taking into account the improvement of the diversity of the population,
the rumor PSO is discretized to interactively optimize the population. In addition, a local search
operator incorporating critical path recognition is designed to enhance the local search ability of the
population. Experiment with 24 benchmark instances show that the proposed algorithm outperforms
other latest comparative algorithms, and hybrid optimization strategies that complement each other
in performance can better break through the original limitations of the single meta-heuristic method.

Keywords: job shop scheduling problem; hybrid heuristic algorithm; tissue-like membrane system

1. Introduction

The production scheduling system plays a vital role in a specialized manufacturing
system. It is the core of technologies that realize the overall management of the man-
ufacturing system, the optimization of target tasks, and the automation of scheduling
execution. Under the premise of meeting resource and process constraints, formulating
a scientific and reasonable production scheduling plan plays critical role in controlling
finished product inventory, shortening the maximum completion period, and optimizing
machine load. Job shop scheduling problem (JSSP) is recognized as a very challenging
and representative NP-hard problem in scheduling problems [1]. Its application field is
extremely wide, involving aircraft carrier dispatching, airport aircraft dispatching, port
terminal cargo dispatching, automobile processing assembly line, etc.

Since Fisher and Thomson [2] gave three benchmarks of JSSP in 1963, JSSP has attracted
wide attention from many scholars. For more than half a century, many methods for solving
JSSP have been proposed. These methods can be roughly summarized into two categories:
precise methods and approximate methods. Some early research works focused on precise
methods, including branch and bound, mathematical programming [3–5] etc. However,
these precise methods only tend to solve small-scale problems, and the computational
cost on larger-scale problems is unacceptable. As the complexity of JSSPs increases, the
excellent performance of some approximation methods has attracted the attention of
scholars, including priority dispatch [6], shifting bottleneck procedure [7], and meta-
heuristics. Among them, priority dispatch and shifting bottleneck are considered simple
heuristics, and they are undistinguished in terms of effectiveness [8]. Different from
problem-based simple heuristics, meta-heuristics draw inspiration from some random
phenomena in nature and incorporate random factors. These random factors make the
algorithm have a certain probability to jump out of the local optimal and try to develop the

Processes 2021, 9, 219. https://doi.org/10.3390/pr9020219 https://www.mdpi.com/journal/processes

https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-4976-9227
https://doi.org/10.3390/pr9020219
https://doi.org/10.3390/pr9020219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/pr9020219
https://www.mdpi.com/journal/processes
https://www.mdpi.com/2227-9717/9/2/219?type=check_update&version=2

Processes 2021, 9, 219 2 of 18

global optimal solution. Therefore, the problem-independent meta-heuristic algorithms
have been widely used in various fields and have shown considerable performance. Meta-
heuristic algorithms commonly used to solve JSSP include genetic algorithm (GA) [9],
particle swarm optimization algorithm (PSO) [10,11], ant colony optimization algorithm
(ACO) [12], simulated annealing (SA) [13], and tabu search (TS) [14], etc.

However, as a classic discrete combinatorial optimization problem, JSSP has its in-
herent stubborn nature. Whether it is classic GA or PSO, a single meta-heuristic method
will always face the problem of premature convergence, and its search performance has
reached its limit. Therefore, after entering the 21st century, more and more scholars are
devoted to studying hybrid optimization strategies in order to integrate the complementary
advantages of different meta-heuristic methods. Zhang et al. [15] proposed a hybrid heuris-
tic algorithm by merging GA and SA. Zhang et al. [16] proposed the famous crossover
operator, i.e., precedence operation crossover (POX), and combined the improved GA
with the local search algorithm. To better achieve a balance between diversification and
intensification, Kurdi [8] merged the island model GA (IMGA) with TS. Abdel-Kader [17]
combines standard PSO and GA to solve JSSP. Zhou [18] fuses the social spider optimiza-
tion algorithm and the differential evolutionary based mutation operator for solving the
JSSP. Peng et al. [19] proposed a MAGATS algorithm that combines multi-agent GA and TS
to solve JSSP. Pongchairerks [20] presented a two-level meta-heuristic method for solving
JSSP, where the upper-level algorithm (UPLA) was a population-based algorithm that
serves as an input-parameter controller of the lower-level algorithm (LOLA). Aiming at
the JSSP, a collective communication hybrid genetic algorithm using distributed processing
is proposed [21].

Membrane systems were formally presented by Păun [22] in 1998. Since then, mem-
brane computing has become an emerging research field in computer science and has
attracted a large number of scholars’ research interests due to its outstanding characteristics
of distribution, parallelism and non-determinism. Membrane computing aims to explore
new computing models from biological cells (especially cell membranes), which is also
called membrane system or P system. Membrane system contains three basic compo-
nents: membrane structure, objects and rules. Up till now, membrane computing models
are mainly summarized into three categories, i.e., cell-like P system [22], tissue-like P
system [23,24], neural-like P system [25]. In recent years, many other variants of mem-
brane systems have been developed in terms of direct membranes [26,27]. In addition, in
the application of indirect membranes, fruitful results have been achieved in the field of
combinatorial optimization such as clustering [28,29] and neural networks [30].

Considering the above statement, this work presented a hybrid heuristic algorithm
inspired by tissue-like membrane system for solving the JSSP. The algorithm framework
combines improved GA, modified PSO, and local search algorithms based on critical paths.
Among them, the communication rules between GA and PSO can increase the diversity
of the population while delaying premature convergence, and local search can further
fine-tune the optimization results. The comparative experiments show that the hybrid
algorithm presented in this study outperforms other latest algorithms. Specifically, the
contributions of this work are listed below.

(1) A new hybrid heuristic algorithm inspired by tissue-like membrane system is pro-
posed for JSSP. The three types of evolutionary rules of the membrane system are
introduced in detail.

(2) Considering to further alleviate the premature convergence of GA, an adaptive
crossover and mutation strategy is proposed.

(3) To realize the full exploration of the entire solution space while enhancing the diversity
of the population, the rumor PSO algorithm [31] is discretized, making it suitable for
solving JSSP which belongs to discrete problem.

(4) Aiming at the results of the above optimization, an algorithm for quickly identifying
critical paths is presented. And based on this algorithm, a local search strategy
is given.

Processes 2021, 9, 219 3 of 18

The remainder of this paper is organized as follow. Section 2 describes the mathe-
matical modeling and disjunctive graph representation of JSSP. Section 3 gives a detailed
description of the proposed hybrid heuristic algorithm inspired by the tissue-like mem-
brane system, including three improved sub-algorithms and the rules of the P system.
Section 4 reports the results of comparative experiments on several sets of benchmark
instances. Section 5 concludes this work with a summary and future research directions.

2. Mathematical Modeling and Disjunctive Graph Representation of JSSP

An n×m JSSP can be formally described as follows. There are n jobs and m machines
denoted as J = {J1, J2, · · · , Jn} and M = {M1, M2, · · · , Mm}, respectively. The processing
of each job includes m operations, and each operation is processed on a designated machine.
In other words, the number of machines means the number of operations. There are
sequential constraints between different operations of the same job. There is no precedence
constraint between different jobs. The operation sequence of each job and its processing
time on the corresponding machine are given in advance. The ultimate goal of JSSP is
to seek an optimal schedule to minimize the maximum completion time. The number of
possible solutions for an n×m JSSP is up to (n!)m. In the process of solving the JSSP, the
restrictions or constraints to be followed are described as follows.

(1) At the beginning of processing, any job may be selected for processing.
(2) Once a job starts to be processed on the corresponding machine, no interruption or

preemption is allowed.
(3) At a certain moment, a job can only be processed on one machine.
(4) At a certain moment, a machine can only process one job.
(5) Every job must be processed in a predetermined sequence of operations (i.e., the

machining paths), which traverses all machines exactly once.
(6) The transportation time generated during processing is not considered.

To facilitate the mathematical modeling of JSSP, the notations used and their meanings
are described below.

(1) Oij denotes the j-th operation of the job i, where i ∈ [1, n] and j ∈ [1, m].
(2) pij denotes the processing time of Oij.
(3) TJij represents the cumulative completion time of job i corresponding to operation

Oij.
(4) TMij denotes the earliest cumulative (not including pij) start time of the machine

corresponding to the operation Oij.

Therefore, considering the above, the mathematical model of JSSP can be formally
expressed as follows.

Min(Max
1≤i≤n

(TJim)) (1)

subject to
TJi,j−1 + pij ≤ TJij, for i ∈ [1, n] and j ∈ [1, m] (2)

TMij + pij ≤ TJij, for i ∈ [1, n] and j ∈ [1, m] (3)

TJij ≥ 0, TMij ≥ 0, for i ∈ [1, n] and j ∈ [1, m] (4)

Equation (1) represents the objective function of JSSP, which is to minimize the maxi-
mum completion time, i.e., the makespan. Equation (2) means priority constraints between
different operations of the same job. Equation (3) means that preemption on the same
machine is not allowed. Equation (4) gives the domains of the variables.

Any JSSP can be intuitively represented by its disjunction graph. Figure 1 shows a
disjunctive representation for a JSSP of 3× 3 (3 jobs and 3 machines). The machine sequence
corresponding to the job and the processing time (pij) on the corresponding machine refer to
Table 1. The disjunction graph is a triplet G = (V, A, E), where V = {0, O11, O12, . . . , Onm, 1}
means the set of nodes denoting all operations, 0 and 1 represent the virtual start and
end nodes, respectively. A represents the set of directed conjunctive arcs, which describes

Processes 2021, 9, 219 4 of 18

the precedence constraints between different operations on the same job. In Figure 1, the
conjunctive arcs are marked with a black solid line, and each of the three rows represents
a job, where Oij denotes the j-th operation of the job i. E represents non-directed set
of disjunctive arcs, which describes the resource capacity constraints between different
operations on the same machine. Specifically, E = ∪m

k=1Ek, Where Ek represents a subset
of the disjunctive arcs corresponding to machine k. For example, the operations O11,
O22, and O33 connected by the disjunctive arcs are all processed on machine 3 (M3). The
operations O12, O23, and O32 connected by the disjunctive arcs are all processed on machine
1 (M1). Similarly, the operations O13, O21, and O31 are processed on machine 2 (M2).
Assuming that the number of operations processed on the same machine k is n, then the
number of disjunctive arcs in the subset Ek is C2

n. In other words, the subset Ek is actually a
fully connected clique. The dotted lines of different colors in Figure 1 correspond to the
disjunctive arcs on different machines.

Processes 2021, 9, x FOR PEER REVIEW 4 of 20

0≥ijTJ , 0≥ijTM , for],1[ni∈ and],1[mj∈ (4)

Equation (1) represents the objective function of JSSP, which is to minimize the max-
imum completion time, i.e., the makespan. Equation (2) means priority constraints be-
tween different operations of the same job. Equation (3) means that preemption on the
same machine is not allowed. Equation (4) gives the domains of the variables.

Any JSSP can be intuitively represented by its disjunction graph. Figure 1 shows a
disjunctive representation for a JSSP of 3 × 3 (3 jobs and 3 machines). The machine se-
quence corresponding to the job and the processing time (pij) on the corresponding ma-
chine refer to Table 1. The disjunction graph is a triplet G = (V, A, E), where V = {0, O11,
O12,…, Onm, 1} means the set of nodes denoting all operations, 0 and 1 represent the virtual
start and end nodes, respectively. A represents the set of directed conjunctive arcs, which
describes the precedence constraints between different operations on the same job. In Fig-
ure 1, the conjunctive arcs are marked with a black solid line, and each of the three rows
represents a job, where Oij denotes the j-th operation of the job i. E represents non-directed
set of disjunctive arcs, which describes the resource capacity constraints between different
operations on the same machine. Specifically, k

m
k EE 1==  , Where Ek represents a subset

of the disjunctive arcs corresponding to machine k. For example, the operations O11, O22,
and O33 connected by the disjunctive arcs are all processed on machine 3 (M3). The oper-
ations O12, O23, and O32 connected by the disjunctive arcs are all processed on machine 1
(M1). Similarly, the operations O13, O21, and O31 are processed on machine 2 (M2). Assum-
ing that the number of operations processed on the same machine k is n, then the number
of disjunctive arcs in the subset Ek is 2

nC . In other words, the subset Ek is actually a fully
connected clique. The dotted lines of different colors in Figure 1 correspond to the dis-
junctive arcs on different machines.

Table 1. A 3 × 3 JSSP (job shop scheduling problem).

Operation
J1 J2 J3

Machine ijp Machine ijp Machine ijp

1 3 7 2 5 2 4
2 1 4 3 6 1 2
3 2 2 1 3 3 3

0

O11 O12 O13

O21 O22 O23

O31 O32 O33

1

M1M2 M3

Figure 1. The disjunctive graph representation of a 3 × 3 JSSP (job shop scheduling problem).

3. The Proposed Hybrid Heuristic Algorithm Coupling with Tissue-Like P System
This section will describe the tissue-like membrane system coupling with the pro-

posed hybrid heuristic algorithm. The specific content involved includes the structure of

Figure 1. The disjunctive graph representation of a 3 × 3 JSSP (job shop scheduling problem).

Table 1. A 3 × 3 JSSP (job shop scheduling problem).

Operation
J1 J2 J3

Machine pij Machine pij Machine pij

1 3 7 2 5 2 4
2 1 4 3 6 1 2
3 2 2 1 3 3 3

3. The Proposed Hybrid Heuristic Algorithm Coupling with Tissue-Like P System

This section will describe the tissue-like membrane system coupling with the proposed
hybrid heuristic algorithm. The specific content involved includes the structure of the
coupled membrane system, the three improved sub-algorithms corresponding to the
structure, and the related evolution-communication mechanism.

3.1. The Coupled Tissue-Like P System

The cell-like membrane system studies the computer theory of a single cell, while
the tissue-like membrane system explores the mechanism by which multiple cells freely
placed in the same environment cooperate and communicate with each other to complete
calculations. The membrane structure of the tissue-like membrane system is a net structure.
Figure 2 shows the membrane structure of the coupled membrane system.

Processes 2021, 9, 219 5 of 18

Processes 2021, 9, x FOR PEER REVIEW 5 of 20

the coupled membrane system, the three improved sub-algorithms corresponding to the
structure, and the related evolution-communication mechanism.

3.1. The Coupled Tissue-Like P System
The cell-like membrane system studies the computer theory of a single cell, while the

tissue-like membrane system explores the mechanism by which multiple cells freely
placed in the same environment cooperate and communicate with each other to complete
calculations. The membrane structure of the tissue-like membrane system is a net struc-
ture. Figure 2 shows the membrane structure of the coupled membrane system.

Cell 3

LSM

Cell 1

GA

Cell 2

PSO Environment

Rule 1:
(1, u/v, 2)

Rule 1:
(1, u/v, 2)

Rule 2:
(1, u/λ , 3)

Rule 3:
(3, u/λ , 0)

Figure 2. The structure of the coupled membrane system.

The formal expression of a coupled tissue-like P system with degree 3 is given below.

),,,,,,,,,(0321321 isynRRRRO ′=Π σσσ , (5)

where:
(1) O is a finite set of non-empty objects, in which the elements, that is, objects, are indi-

viduals in the population.
(2))3,2,1(=iiσ stands for cell, in which there are different objects and evolution rules.
(3) Ri represents the evolution rule corresponding to cell i. Evolution rules are used to

improve individuals in a population. The evolution rule is expressed in the form u →
v, which means that the object u, that is, the individual in the population, evolves into
the object v according to specific rules.

(4) R’ denotes a finite set of communication rules between different cells, which is used
to transfer objects between cells, in the form (i, u/v, j), i ≠ j, i, j = 1, 2, 3, *, Ovu ∈ .

(5) syn = {(1, 2), (2, 1), (1, 3)} ⊆ {1, 2, 3} × {1, 2, 3} represents the set of channels between
cells in the coupled membrane system, as shown by the arcs with arrows in Figure 2.

(6) i0 = 3 means that cell 3 is the output membrane of the coupled P system.
In the above membrane structure, the evolution rules in cell 1, cell 2 and cell 3 are

respectively three improved sub-algorithms. The general procedure of the proposed cou-
pled membrane system is described below.
Step 1: The initial population is produced in cell 1, and the initial population size is N.

Initially, cell 2 and cell 3 are both empty.
Step 2: The initial N individuals are saved for subsequent evaluation, and their copies

are sent to cell 2 according to communication rule 1.
Step 3: The improved GA and the modified rumor PSO are used as evolution rules in

cell 1 and cell 2, respectively. Here, the evolution within cell 1 and cell 2 can be re-
garded as two independent internal loops to improve the initial population.

Figure 2. The structure of the coupled membrane system.

The formal expression of a coupled tissue-like P system with degree 3 is given below.

Π = (O, σ1, σ2, σ3, R1, R2, R3, R′, syn, i0), (5)

where:

(1) O is a finite set of non-empty objects, in which the elements, that is, objects, are
individuals in the population.

(2) σi(i = 1, 2, 3) stands for cell, in which there are different objects and evolution rules.
(3) Ri represents the evolution rule corresponding to cell i. Evolution rules are used to

improve individuals in a population. The evolution rule is expressed in the form u→ v,
which means that the object u, that is, the individual in the population, evolves into
the object v according to specific rules.

(4) R′ denotes a finite set of communication rules between different cells, which is used
to transfer objects between cells, in the form (i, u/v, j), i 6= j, i, j = 1, 2, 3, u, v ∈ O∗.

(5) syn = {(1, 2), (2, 1), (1, 3)} ⊆ {1, 2, 3} × {1, 2, 3} represents the set of channels between
cells in the coupled membrane system, as shown by the arcs with arrows in Figure 2.

(6) i0 = 3 means that cell 3 is the output membrane of the coupled P system.

In the above membrane structure, the evolution rules in cell 1, cell 2 and cell 3 are
respectively three improved sub-algorithms. The general procedure of the proposed
coupled membrane system is described below.

Step 1: The initial population is produced in cell 1, and the initial population size is N.
Initially, cell 2 and cell 3 are both empty.

Step 2: The initial N individuals are saved for subsequent evaluation, and their copies are
sent to cell 2 according to communication rule 1.

Step 3: The improved GA and the modified rumor PSO are used as evolution rules in cell 1
and cell 2, respectively. Here, the evolution within cell 1 and cell 2 can be regarded as
two independent internal loops to improve the initial population.

Step 4: Individuals that have evolved and updated in cell 2 are sent back to cell 1 according
to the exchange rule 1. In other words, after reaching the upper limit of the number
of internal iterations, 3N individuals will be collected in cell 1.

Step 5: All individuals in cell 1 are sorted in descending order of fitness value and duplicate
individuals are removed. According to the elitist strategy, the population size is
maintained as N. The resulting N individuals are used as the initialization of the next
generation population.

Step 6: The process from Step 2 to Step 5 can be regarded as an external iteration. Repeat
steps 2 to 5 until the number of external iterations is met. Then the N individuals
finally obtained in cell 2 are sent to cell 3 according to the exchange rule 2.

Processes 2021, 9, 219 6 of 18

Step 7: Use the improved local search method (LSM) in cell 3 to improve N individuals.
Repeat this step until the termination condition is reached.

Step 8: According to rule 3, the individual with the best fitness value is output to the
environment as the final result.

The next few sub-sections will introduce three improved sub-algorithms in detail,
which correspond to the evolution rules in the three cells.

3.2. Evolutionary Rule of Objects in Cell 1

The evolutionary rule in cell 1 is the improved GA. This subsection will specifically
give the strategies adopted by the improved GA, including encoding and initialization,
selection strategies, and adaptive crossover and mutation.

3.2.1. Encoding and Initialization

The existing encoding methods for solving JSSP include job-based, operation-based,
and machine-based and so on. Considering the pros and cons of different encoding
schemes, operation-based coding is better than others, and it has received the most ex-
tensive attention in solving JSSP [19]. For an n× m JSSP, its operation-based encoding
method can be expressed as JN1 − JN2 − · · · − JNn×m, where JNi ∈ [1, n] represents the
job number. The j-th appearance of job i indicates the j-th operation of job i, namely, Oij.
Each job number appears exactly m times. Initially, random permutation is performed
on the n×m integers from 1 to n×m, and then the sequence is executed element-level
modulo n to take the remainder. This ensures that each job number appears exactly m times
and forms an operation-based encoding. The advantages of this encoding scheme are:

a. The solutions generated during initialization are all feasible solutions.
b. Arbitrary arrangement of gene positions in chromosome sequence can still obtain

feasible solutions, which is easy for mutation operation.
c. Easy to decode.

Take the chromosome encoding 1-3-2-2-1-3-3-1-2 of a simple 3 × 3 JSSP as an example,
where the machine sequence corresponding to the job and the processing time (pij) on the
corresponding machine refer to Table 1. The first number ‘1’ indicates the 1st operation of
job 1; the second number ‘3’ means the 1st operation of job 3; the fourth number ‘2’, i.e.,
the 2nd appearance of job 2, indicates the 2nd operation of job 2. As mentioned above, the
i-th appearance of the same job number means the i-th operation of this job. According
to the information provided in advance in Table 1, it is easy to decode and calculate the
makespan of any encoding sequence. The completion times of jobs 1, 2 and 3 are 13, 18,
and 18, respectively. Therefore, the makespan of this chromosome sequence is 18. Figure 3
below shows the scheduling Gantt chart corresponding to this encoding sequence. The
same job processed by different machines are identified with the same color.

Processes 2021, 9, x FOR PEER REVIEW 7 of 20

O11

O31 O21

O12 O32

O13

O22 O32

O23

4 9 15 18

M1

M2

M3

13

Figure 3. Gantt chart for the encoding sequence 1-3-2-2-1-3-3-1-2.

3.2.2. Fitness Function and Selection Strategy
The fitness function is used to measure the quality of individuals in the population,

usually it is a function related to the optimization goal. Taking into account the natural
law of “survival of the fittest”, the higher the fitness of the individual, the higher the prob-
ability of survival. Therefore, the fitness function in this work is defined as

makespan
xf 1)(= , (6)

where x represents an individual in the population.
On the basis of keeping the population size of each generation unchanged, in order

to ensure the stable improvement of the overall quality of the population, this work adopts
a roulette wheel selection strategy. For any individual xj, the probability P(xj) to be selected
is calculated according to the following formula.


=

=
N

i
ijj xfxfxP

1

)()()(, (7)

When evaluating the fitness of each generation of the population, the elitism strategy
is incorporated. This frees the optimal individual from the destruction of operations such
as crossover and mutation, and directly replaces the worst individual in the next genera-
tion.

3.2.3. Adaptive Crossover and Mutation Operation
The crossover operation is considered as the backbone of GA, and its purpose is to

inherit the characteristics of the parental solutions to generate two offspring solutions. In
order to reduce the computational cost, it is always hoped that the offspring solutions
produced after the crossover are feasible solutions. Based on the above two considera-
tions, this study uses the POX operator to perform the crossover operation. The specific
operation steps of POX operator are as follows.
Step 1: All jobs are randomly separated into two non-empty subsets, denoted as JS1

and JS2. The initial population is produced in cell 1, and the initial population size is
N. Initially, cell 2 and cell 3 are both empty;

Step 2: Copy the job numbers contained in the job subset JS1 (JS2) in the parent chro-
mosome P1 (P2) directly to the child C1 (C2), and keep their position and order;

Step 3: Copy the job numbers contained in the job subset JS2 (JS1) in the parent chro-
mosome P2 (P1) to the child C1 (C2), just keep their order unchanged.
Take the chromosome encoding with 4 jobs as an example, suppose JS1 = {1, 4}, JS2 =

{2, 3}, then the newly generated child C1 after crossover is shown in Figure 4. In the same
way, after a crossover operation, a child C2 will also be generated.

Figure 3. Gantt chart for the encoding sequence 1-3-2-2-1-3-3-1-2.

3.2.2. Fitness Function and Selection Strategy

The fitness function is used to measure the quality of individuals in the population,
usually it is a function related to the optimization goal. Taking into account the natural law

Processes 2021, 9, 219 7 of 18

of “survival of the fittest”, the higher the fitness of the individual, the higher the probability
of survival. Therefore, the fitness function in this work is defined as

f (x) =
1

makespan
, (6)

where x represents an individual in the population.
On the basis of keeping the population size of each generation unchanged, in order to

ensure the stable improvement of the overall quality of the population, this work adopts a
roulette wheel selection strategy. For any individual xj, the probability P(xj) to be selected
is calculated according to the following formula.

P(xj) = f (xj)/
N

∑
i=1

f (xi), (7)

When evaluating the fitness of each generation of the population, the elitism strategy
is incorporated. This frees the optimal individual from the destruction of operations such as
crossover and mutation, and directly replaces the worst individual in the next generation.

3.2.3. Adaptive Crossover and Mutation Operation

The crossover operation is considered as the backbone of GA, and its purpose is to
inherit the characteristics of the parental solutions to generate two offspring solutions. In
order to reduce the computational cost, it is always hoped that the offspring solutions
produced after the crossover are feasible solutions. Based on the above two considerations,
this study uses the POX operator to perform the crossover operation. The specific operation
steps of POX operator are as follows.

Step 1: All jobs are randomly separated into two non-empty subsets, denoted as JS1 and
JS2. The initial population is produced in cell 1, and the initial population size is N.
Initially, cell 2 and cell 3 are both empty;

Step 2: Copy the job numbers contained in the job subset JS1 (JS2) in the parent chromosome
P1 (P2) directly to the child C1 (C2), and keep their position and order;

Step 3: Copy the job numbers contained in the job subset JS2 (JS1) in the parent chromosome
P2 (P1) to the child C1 (C2), just keep their order unchanged.

Take the chromosome encoding with 4 jobs as an example, suppose JS1 = {1, 4}, JS2 = {2, 3},
then the newly generated child C1 after crossover is shown in Figure 4. In the same way,
after a crossover operation, a child C2 will also be generated.

Processes 2021, 9, x FOR PEER REVIEW 8 of 20

2 213 24 31 4 1 3 4

1 124 31 32 4 3 2 4

2 213 24 31 4 13 4

P1

P2

C1

Figure 4. Demonstration of POX (precedence operation crossover) operator.

The purpose of mutation operation is to bring slight disturbance to the population,
which can enhance the diversity of the population. The mutation operator in this work is
implemented by randomly selecting one of the two mutation operators with equal prob-
ability. They are swap mutation and inversion mutation as shown in Figure 5.

2 3 1 5 4

4 3 1 5 2

(a)

2 3 1 5 4

2 5 1 3 4

(b)

Figure 5. Two mutation operators that can be selected with equal probability. (a) Swap mutation;
(b) Inversion mutation.

In classic GA, the crossover probability and mutation probability remain unchanged
throughout the evolution process, but actual research shows that they are the key to GA
performance [32]. The crossover and mutation probability of conventional adaptive GA is
expressed as follows:





≤
>−−

=
avgc

avgcavgc
c FF

FFFFFF
P

,
),()(

2

maxmax1
α

α , (8)





≤
>−−

=
avgm

avgmavgm
m FF

FFFFFF
P

,
),()(

4

maxmax3
α

α (9)

Among them, Pc and Pm are the adaptive crossover and mutation probabilities, α1, α2,
α3, α4 are constants. Fc is the larger fitness value of the two individuals to be crossed. Fm is
the fitness value of the current mutant individual. Fmax is the maximum fitness value in the
population. Favg is the average fitness value of the population.

The value of the crossover probability ௖ܲ determines the update rate of the popula-
tion. If its value is too large, it will destroy the excellent genetic model. If the value is too
small, it will reduce the search efficiency of the algorithm and it is difficult to effectively
improve the population. Therefore, this work combines two considerations to improve
the conventional adaptive probability. On the one hand, in the early stage of evolution, in
order to expand the overall search range and speed up the population update rate, ௖ܲshould be increased; In the later stage of evolution, the overall solution set of the popu-
lation tends to be stable. In order to keep the good genes better, ௖ܲshould be appropriately
reduced. On the other hand, considering the destructiveness of the crossover operator to

Figure 4. Demonstration of POX (precedence operation crossover) operator.

The purpose of mutation operation is to bring slight disturbance to the population,
which can enhance the diversity of the population. The mutation operator in this work
is implemented by randomly selecting one of the two mutation operators with equal
probability. They are swap mutation and inversion mutation as shown in Figure 5.

Processes 2021, 9, 219 8 of 18

Processes 2021, 9, x FOR PEER REVIEW 8 of 20

2 213 24 31 4 1 3 4

1 124 31 32 4 3 2 4

2 213 24 31 4 13 4

P1

P2

C1

Figure 4. Demonstration of POX (precedence operation crossover) operator.

The purpose of mutation operation is to bring slight disturbance to the population,
which can enhance the diversity of the population. The mutation operator in this work is
implemented by randomly selecting one of the two mutation operators with equal prob-
ability. They are swap mutation and inversion mutation as shown in Figure 5.

2 3 1 5 4

4 3 1 5 2

(a)

2 3 1 5 4

2 5 1 3 4

(b)

Figure 5. Two mutation operators that can be selected with equal probability. (a) Swap mutation;
(b) Inversion mutation.

In classic GA, the crossover probability and mutation probability remain unchanged
throughout the evolution process, but actual research shows that they are the key to GA
performance [32]. The crossover and mutation probability of conventional adaptive GA is
expressed as follows:





≤
>−−

=
avgc

avgcavgc
c FF

FFFFFF
P

,
),()(

2

maxmax1
α

α , (8)





≤
>−−

=
avgm

avgmavgm
m FF

FFFFFF
P

,
),()(

4

maxmax3
α

α (9)

Among them, Pc and Pm are the adaptive crossover and mutation probabilities, α1, α2,
α3, α4 are constants. Fc is the larger fitness value of the two individuals to be crossed. Fm is
the fitness value of the current mutant individual. Fmax is the maximum fitness value in the
population. Favg is the average fitness value of the population.

The value of the crossover probability ௖ܲ determines the update rate of the popula-
tion. If its value is too large, it will destroy the excellent genetic model. If the value is too
small, it will reduce the search efficiency of the algorithm and it is difficult to effectively
improve the population. Therefore, this work combines two considerations to improve
the conventional adaptive probability. On the one hand, in the early stage of evolution, in
order to expand the overall search range and speed up the population update rate, ௖ܲshould be increased; In the later stage of evolution, the overall solution set of the popu-
lation tends to be stable. In order to keep the good genes better, ௖ܲshould be appropriately
reduced. On the other hand, considering the destructiveness of the crossover operator to

Figure 5. Two mutation operators that can be selected with equal probability. (a) Swap mutation;
(b) Inversion mutation.

In classic GA, the crossover probability and mutation probability remain unchanged
throughout the evolution process, but actual research shows that they are the key to GA
performance [32]. The crossover and mutation probability of conventional adaptive GA is
expressed as follows:

Pc =

{
α1(Fmax − Fc)/(Fmax − Favg), Fc > Favg

α2 , Fc ≤ Favg
, (8)

Pm =

{
α3(Fmax − Fm)/(Fmax − Favg), Fm > Favg

α4 , Fm ≤ Favg
(9)

Among them, Pc and Pm are the adaptive crossover and mutation probabilities, α1, α2,
α3, α4 are constants. Fc is the larger fitness value of the two individuals to be crossed. Fm is
the fitness value of the current mutant individual. Fmax is the maximum fitness value in the
population. Favg is the average fitness value of the population.

The value of the crossover probability Pc determines the update rate of the population.
If its value is too large, it will destroy the excellent genetic model. If the value is too small, it
will reduce the search efficiency of the algorithm and it is difficult to effectively improve the
population. Therefore, this work combines two considerations to improve the conventional
adaptive probability. On the one hand, in the early stage of evolution, in order to expand
the overall search range and speed up the population update rate, Pc should be increased;
In the later stage of evolution, the overall solution set of the population tends to be stable. In
order to keep the good genes better, Pc should be appropriately reduced. On the other hand,
considering the destructiveness of the crossover operator to the chromosome structure,
individuals with poor fitness are given a higher Pc value. Conversely, for individuals with
higher fitness values, in order to reduce the damage to excellent genes, the Pc value should
be appropriately reduced. The case of mutation probability is similar. Considering the
above two aspects, the improved adjustment mechanism is set as follows.

Pc =

{
Pc1 − (Pc1 − Pc2)

[
t

2IT +
Fc−Favg

2(Fmax−Favg)

]
, Fc ≥ Favg

Pc1 , Fc < Favg
, (10)

Pc1 =


0.9, t ≤ IT/4
0.8, IT/4 < t ≤ 3IT/4

0.7, 3IT/4 < t ≤ IT
, (11)

Pm =

Pm1 − (Pm1 − Pm2)
[

t
2IT +

Fm−Favg
2(Fmax−Favg)

]
, Fm ≥ Favg

Pm1 , Fm < Favg
, (12)

Pm1 =


0.15, t ≤ IT/4
0.2, IT/4 < t ≤ 3IT/4
0.25, 3IT/4 < t ≤ IT

, (13)

Processes 2021, 9, 219 9 of 18

Among them, Pc1 (Pm1) represents the maximum crossover (mutation) probability,
which is related to the number of iterations of evolution. Pc2 = 0.6 (Pm2 = 0.1) is the
minimum crossover (mutation) probability. IT denotes the maximum number of iterations
of the evolution process. t means the current number of iterations. The factor 2 in the
denominator in square brackets is to ensure that the maximum value of this part does not
exceed the integer 1.

3.3. Evolutionary Rule of Objects in Cell 2

The evolution rule in cell 2 is a discretized improvement of rumor PSO, which is a variant
of traditional PSO algorithm. The traditional PSO was proposed by Kennedy [33,34] through
observing the social behavior of birds and other biological groups. It is a simple model
constructed by swarm intelligence. The initial solution is generated by the random given ve-
locity, while the new solution depends on the competition and cooperation among particle
swarm. The best position of the particle itself and the best position of the entire population
are two key factors for seeking the optimal solution or the approximate optimal solution.
This is similar to human behavior in decision-making: people focus not only on their own
best experiences, but also on the best experiences of others around them. The standard
PSO equations [35] that can reflect the nature of the above-mentioned swarm intelligence
evolution is as follows. Due to its excellent characteristics such as fast convergence and
high feasibility, PSO has been applied in many fields.

Vi(t + 1) = w×Vi(t) + c1 × r1 × (Pib − Xi(t)) + c2 × r2 × (Pgb − Xi(t)), (14)

Xi(t + 1) = Xi(t) + Vi(t + 1), 1 ≤ i ≤ N, (15)

where Vi(t) and Xi(t) respectively represent the velocity and position of the i-th particle
(chromosome) in the t-th iteration; Pib denotes the historical best position of the i-th particle;
Pgb stands for the best position in the history of all particles; w is the inertia weight; c1 and
c2 are learning factors; r1, r2 are two independent random numbers uniformly distributed
between (0,1).

The rumor PSO proposed by Clerc has shown excellent performance in dealing with
continuous problems [31]. In order to avoid the population falling into the local optimum
and improve the diversity of the population as much as possible, the difference from the
traditional PSO is that rumor PSO does not use the global optimum position information
(Pgb) to guide the entire population. The equation of rumor PSO is shown in (16) (17).

Vi(t + 1) = w×Vi(t) + c1 × r1 × (Pib − Xi(t)) + c2 × r2 × (PKb − Xi(t)), (16)

Xi(t + 1) = Xi(t) + Vi(t + 1), 1 ≤ i ≤ N, (17)

Among them, PKb replaces Pgb in the standard PSO, which represents the best historical
position among K particles randomly selected from the entire population. In this paper,
K = 3 is set according to Clerc’s research results [31]. As the iteration progresses, the
object information is exchanged and spread from K particles to the entire population. This
communication mechanism allows the particle trajectory to appear circuitous, and its
propagation process is similar to the spread of rumors, so it is called rumor PSO.

By introducing a real-coded ascending mapping method, rumor PSO can be effectively
applied to the JSSP which belongs to the discrete combinatorial optimization problem. The
specific evolution process is carried out according to the following steps, and Figure 6
shows an evolutionary process taking the partial encoding of a chromosome as an example.

Step 1: Receive the initialized population, the population size is N;
Step 2: Determine whether the iteration threshold is reached. If yes, stop and use the

historical optimal value of N particles as the output result. If not, go to Step 3;
Step 3: For each particle, that is, the chromosome, K particles are randomly selected from

the population. Evaluate the historical optimal fitness value of these K particles to
determine PKb, and then use Equations (16) and (17) to update each particle;

Processes 2021, 9, 219 10 of 18

Step 4: Rearrange the real-numbered gene positions in ascending order;
Step 5: Keep the original mapping relationship between real number codes and integer

codes, and reconstruct gene positions;
Step 6: Evaluate the newly generated particle, and if its fitness value is better, replace the

Pib value corresponding to this particle. Continue to Step 2.

Processes 2021, 9, x FOR PEER REVIEW 10 of 20

The rumor PSO proposed by Clerc has shown excellent performance in dealing with
continuous problems [31]. In order to avoid the population falling into the local optimum
and improve the diversity of the population as much as possible, the difference from the
traditional PSO is that rumor PSO does not use the global optimum position information
(Pgb) to guide the entire population. The equation of rumor PSO is shown in (16) (17).

))(())(()()1(2211 tXPrctXPrctVwtV iKbiibii −××+−××+×=+ , (16)

)1()()1(++=+ tVtXtX iii , Ni ≤≤1 , (17)

Among them, PKb replaces Pgb in the standard PSO, which represents the best histori-
cal position among K particles randomly selected from the entire population. In this paper,
K = 3 is set according to Clerc’s research results [31]. As the iteration progresses, the object
information is exchanged and spread from K particles to the entire population. This com-
munication mechanism allows the particle trajectory to appear circuitous, and its propa-
gation process is similar to the spread of rumors, so it is called rumor PSO.

By introducing a real-coded ascending mapping method, rumor PSO can be effec-
tively applied to the JSSP which belongs to the discrete combinatorial optimization prob-
lem. The specific evolution process is carried out according to the following steps, and
Figure 6 shows an evolutionary process taking the partial encoding of a chromosome as
an example.
Step 1: Receive the initialized population, the population size is N;
Step 2: Determine whether the iteration threshold is reached. If yes, stop and use the

historical optimal value of N particles as the output result. If not, go to Step 3;
Step 3: For each particle, that is, the chromosome, K particles are randomly selected

from the population. Evaluate the historical optimal fitness value of these K particles
to determine PKb, and then use Equations (16) and (17) to update each particle;

Step 4: Rearrange the real-numbered gene positions in ascending order;
Step 5: Keep the original mapping relationship between real number codes and inte-

ger codes, and reconstruct gene positions;
Step 6: Evaluate the newly generated particle, and if its fitness value is better, replace

the Pib value corresponding to this particle. Continue to Step 2.

2 1 3 2 3 1 32

3.1 2.2 1.4 4.5 1.8 2.5 3.85.2

3.12.21.4 4.51.8 2.5 3.8 5.2

213 23 1 3 2

() :iX t

(1) :iX t′ +

(1) :iX t′′ +

(1) :iX t +

The gene positions calculated according to
equations (16) and (17)

Rearrange the real-numbered gene positions in
ascending order.

Keep the original mapping relationship
between real number codes and integer codes,

and reconstruct gene positions.

Figure 6. Demonstration of the update process of the discretized rumor PSO (particle swarm opti-
mization).

3.4. Evolutionary Rule of Objects in Cell 3
The evolutionary rules in cell 3 are guided by a local search method (LSM). The LSM

proposed in this work consists of two parts, namely, an algorithm for quickly identifying
critical path, and a neighborhood optimization algorithm based on critical path.

Figure 6. Demonstration of the update process of the discretized rumor PSO (particle swarm optimization).

3.4. Evolutionary Rule of Objects in Cell 3

The evolutionary rules in cell 3 are guided by a local search method (LSM). The LSM
proposed in this work consists of two parts, namely, an algorithm for quickly identifying
critical path, and a neighborhood optimization algorithm based on critical path.

An important part of the feasible solution of JSSP is the critical path, which is the
longest path from the starting point (0) to the ending point (1) in the disjunction graph. The
length of the critical path is also called the makespan of a scheduling solution. The set of
operations based on the critical path is recognized as a critical operation. The critical path
can be broken down into several blocks (B1, B2, . . . , Br). Each block refers to the longest
sequence of adjacent critical operations processed on the same machine. It should be noted
that for every two consecutive blocks Bj and Bj+1, the last operation of Bj and the first
operation of Bj+1 should belong to the same job but be processed on different machines.
Considering that the permutation of non-critical adjacent operations does not help to
improve the makespan of the scheduling solution and may even lead to infeasible solutions.
Therefore, the LSM in this work will only implement the exploration and exploitation of
individual neighborhoods based on the critical path.

In order to perform an effective neighborhood search based on the critical path, an
algorithm for quickly finding and identifying the critical path of a feasible solution is first
proposed. The notations S(Oij) and E(Oij) represent the start time and end time of the
operation Oij, respectively. The specific algorithm steps to identify the critical path are as
follows.

Step 1: Let P =
{

Oij
∣∣i ∈ [1, n], j ∈ [1, m]

}
, Q = φ. The set Q is used to store the operations

in the critical path, and it is initially an empty set;
Step 2: Check each element τ in the set P. If for ∀λ ∈ P, λ 6= τ, the expression E(τ) = S(λ)

is not satisfied, then operation τ is deleted from the set P;
Step 3: Choose an operation σ that satisfies S(σ) = 0 from the updated set P, and add it to

Q. Let w = 1;
Step 4: While (E(σw) 6= makespan) then w = w + 1, choose an operation σw ∈ P satisfied

S(σw) = E(σw−1) and add σw to Q.
Step 5: Output the elements in Q in order, which is the required critical path.

Take another instance of 3 × 3 JSSP presented in Table 2 as an example to illustrate the
concepts of critical path and blocks. Assuming that an approximate optimal solution of this

Processes 2021, 9, 219 11 of 18

instance is 2-3-1-2-1-3-1-2-3, the Gantt chart corresponding to the feasible solution is shown
in Figure 7 and the makespan of this solution is 12. According to the above algorithm to
identify the critical path of this feasible solution, the set Q = {O21, O11, O12, O13, O33} can be
easily obtained. In other words, the critical path is O21 → O11 → O12 → O13 → O33. This
critical path can be broken down into three blocks B1, B2, and B3.

Table 2. An instance of 3 × 3 JSSP.

Operation
J1 J2 J3

Machine pij Machine pij Machine pij

1 1 3 1 1 2 3
2 2 3 3 5 1 2
3 3 2 2 3 3 3

Processes 2021, 9, x FOR PEER REVIEW 12 of 20

O21 O11 O32

O31

O22

O12 O23

O13 O33

M1

M2

M3

1 4 7 12

B1

B2

B3

Figure 7. The critical path corresponding to the approximate optimal solution and its three blocks.

With an algorithm for quickly identifying the critical path, it is possible to implement
further neighborhood optimization for the already better individuals. The steps of the
specific neighborhood search algorithm are as follows.
Step 1: Receive N feasible solutions optimized by GA and PSO (also can be regarded

as approximate optimal solutions);
Step 2: For each approximate optimal solution, use the algorithm given above to iden-

tify the critical path and its blocks;
Step 3: According to the start and end time of the block, determine whether the current

block is the first block or the last block. If it is the first block, exchange the last two
operations; if it is the tail block, exchange the first two blocks. For the internal blocks,
the first two operations and the last two operations of the block are exchanged re-
spectively. All the operations after the exchange are allocated to the corresponding
machines in the best available processing time. If only one operation is contained in
a block, no exchange is performed;

Step 4: As long as the makespan is improved, the current exchange is accepted. Oth-
erwise, the current exchange is cancelled;

Step 5: If an exchange is accepted, the original critical path may be destroyed. Go to
Step 2, re-identify its critical path and perform a neighborhood search;

Step 6: If the exchange in any block of the critical path does not improve the optimal
goal, stop the local search.
After the feasible solution is optimized by the above algorithm, an optimal result can

be obtained. For example, the approximate optimal solution given in Figure 7 has a
makespan of 12. After critical path identification and neighborhood search, the optimal
makespan is 11, as shown in Figure 8.

Figure 7. The critical path corresponding to the approximate optimal solution and its three blocks.

With an algorithm for quickly identifying the critical path, it is possible to implement
further neighborhood optimization for the already better individuals. The steps of the
specific neighborhood search algorithm are as follows.

Step 1: Receive N feasible solutions optimized by GA and PSO (also can be regarded as
approximate optimal solutions);

Step 2: For each approximate optimal solution, use the algorithm given above to identify
the critical path and its blocks;

Step 3: According to the start and end time of the block, determine whether the current
block is the first block or the last block. If it is the first block, exchange the last
two operations; if it is the tail block, exchange the first two blocks. For the internal
blocks, the first two operations and the last two operations of the block are exchanged
respectively. All the operations after the exchange are allocated to the corresponding
machines in the best available processing time. If only one operation is contained in a
block, no exchange is performed;

Step 4: As long as the makespan is improved, the current exchange is accepted. Otherwise,
the current exchange is cancelled;

Step 5: If an exchange is accepted, the original critical path may be destroyed. Go to Step 2,
re-identify its critical path and perform a neighborhood search;

Step 6: If the exchange in any block of the critical path does not improve the optimal goal,
stop the local search.

After the feasible solution is optimized by the above algorithm, an optimal result
can be obtained. For example, the approximate optimal solution given in Figure 7 has a
makespan of 12. After critical path identification and neighborhood search, the optimal
makespan is 11, as shown in Figure 8.

Processes 2021, 9, 219 12 of 18Processes 2021, 9, x FOR PEER REVIEW 13 of 20

O21 O11 O32

O31

O22

O12 O23

O13O33

M1

M2

M3

1 4 7 1211

Figure 8. The Gantt chart corresponding to the optimal solution obtained after local search.

3.5. Flow Chart of the Proposed Hybrid Algorithm
This section presents a flow chart integrating different heuristic algorithms, as shown

in Figure 9. The three main sub-algorithms are: improved adaptive GA, discretized rumor
PSO, and improved LSM that can quickly identify critical path. As mentioned earlier, the
above three sub-algorithms correspond to the evolution rules in the three cells in the tis-
sue-like membrane system.

Figure 8. The Gantt chart corresponding to the optimal solution obtained after local search.

3.5. Flow Chart of the Proposed Hybrid Algorithm

This section presents a flow chart integrating different heuristic algorithms, as shown
in Figure 9. The three main sub-algorithms are: improved adaptive GA, discretized rumor
PSO, and improved LSM that can quickly identify critical path. As mentioned earlier, the
above three sub-algorithms correspond to the evolution rules in the three cells in the tissue-like
membrane system.

Processes 2021, 9, x FOR PEER REVIEW 14 of 20

Initialization

Discretized
rumor PSO

(corresponding
to the

evolutionary
rule in cell 2)

Improved
adaptive GA

(corresponding
to the

evolutionary
rule in cell 1)

Select the best N
individuals

Termination
condition No

Yes

Improved LSM
(corresponding to
the evolutionary

rule in cell 3)

Output

Internal
iteration

External
iteration

Figure 9. The overall flow chart of the algorithm framework.

4. Comparative Experiment and Discussion
The algorithm proposed in this work is implemented by Python. The computer used

for computation has an i5-4210H processor with a 2.90GHz clock speed and 12GB of RAM.
The parameter settings involved in the algorithm are as follows. The initial population
size is N = 128. The maximum number of external iterations used to control the population
update is Iex = 20. The maximum number of iterations of modified PSO and improved GA,
that is, the number of internal iterations in cell 1 and cell 2 are both Iin = 50. The inertia
weight in Equation (16) is w = 0.7, and the learning factor c1 = c2 = 2.10.

The proposed algorithm is first compared with three state-of-the-art heuristic algo-
rithms on 22 JSSP benchmark instances (see Table 3). Among them, there are 1 instance
(FT20) designed by Fisher and Thompson [2], and 21 instances (LA01~LA40) designed by
Lawrence [36]. The other three heuristic algorithms used for comparison are MAGATS
[19], NIMGA [37], and HIMGA [8]. In Table 3, the first column is the instance name, the
second column is the instance size n×m, and the third column is the best-known solution
(BKS). The remaining four columns are the best solutions obtained by different algorithms
on corresponding instances. The results show that, except for the instances LA36 and

Figure 9. The overall flow chart of the algorithm framework.

Processes 2021, 9, 219 13 of 18

4. Comparative Experiment and Discussion

The algorithm proposed in this work is implemented by Python. The computer used
for computation has an i5-4210H processor with a 2.90 GHz clock speed and 12 GB of RAM.
The parameter settings involved in the algorithm are as follows. The initial population size
is N = 128. The maximum number of external iterations used to control the population
update is Iex = 20. The maximum number of iterations of modified PSO and improved GA,
that is, the number of internal iterations in cell 1 and cell 2 are both Iin = 50. The inertia
weight in Equation (16) is w = 0.7, and the learning factor c1 = c2 = 2.10.

The proposed algorithm is first compared with three state-of-the-art heuristic algo-
rithms on 22 JSSP benchmark instances (see Table 3). Among them, there are 1 instance
(FT20) designed by Fisher and Thompson [2], and 21 instances (LA01~LA40) designed by
Lawrence [36]. The other three heuristic algorithms used for comparison are MAGATS [19],
NIMGA [37], and HIMGA [8]. In Table 3, the first column is the instance name, the second
column is the instance size n × m, and the third column is the best-known solution (BKS).
The remaining four columns are the best solutions obtained by different algorithms on
corresponding instances. The results show that, except for the instances LA36 and LA40,
the BKS of the remaining instances can be found by the proposed algorithm. Figures 10
and 11 show the Gantt chart of the experimental results of the instances LA20 and LA29,
respectively, while the remaining algorithms for comparison did not get BKS on these two
instances. The results of the comparison algorithms come from the corresponding original
publication [8,19].

Table 3. Comparison of the best solutions with other works.

Instances Size BKS This Work MAGATS NIMGA HIMGA

FT20 20 × 5 1165 1165 1165 1173 1165

LA05 10 × 5 593 593 593 593 593

LA10 15 × 5 958 958 958 958 958

LA15 20 × 5 1207 1207 1207 1207 1207

LA20 10 × 10 902 902 907 907 902

LA21 15 × 10 1046 1046 1046 1058 1046

LA22 15 × 10 927 927 927 937 927

LA23 15 × 10 1032 1032 1032 1032 1032

LA24 15 × 10 935 935 935 947 935

LA25 15 × 10 977 977 977 989 977

LA26 20 × 10 1218 1218 1218 1218 1218

LA27 20 × 10 1235 1235 1235 1269 1235

LA28 20 × 10 1216 1216 1216 1247 1216

LA29 20 × 10 1152 1152 1164 1241 1153

LA30 20 × 10 1355 1355 1355 1355 1355

LA31 30 × 10 1784 1784 1784 1784 1784

LA35 30 × 10 1888 1888 1888 1888 1888

LA36 15 × 15 1268 1280 1281 1293 1268

LA37 15 × 15 1397 1397 1397 1432 1397

LA38 15 × 15 1196 1196 1198 1222 1196

LA39 15 × 15 1233 1233 1233 1251 1233

LA40 15 × 15 1222 1224 1228 1246 1224

Processes 2021, 9, 219 14 of 18

Processes 2021, 9, x FOR PEER REVIEW 15 of 20

LA40, the BKS of the remaining instances can be found by the proposed algorithm. Figures
10 and 11 show the Gantt chart of the experimental results of the instances LA20 and LA29,
respectively, while the remaining algorithms for comparison did not get BKS on these two
instances. The results of the comparison algorithms come from the corresponding original
publication [8,19].

Table 3. Comparison of the best solutions with other works.

Instances Size BKS This Work MAGATS NIMGA HIMGA
FT20 20 × 5 1165 1165 1165 1173 1165
LA05 10 × 5 593 593 593 593 593
LA10 15 × 5 958 958 958 958 958
LA15 20 × 5 1207 1207 1207 1207 1207
LA20 10 × 10 902 902 907 907 902
LA21 15 × 10 1046 1046 1046 1058 1046
LA22 15 × 10 927 927 927 937 927
LA23 15 × 10 1032 1032 1032 1032 1032
LA24 15 × 10 935 935 935 947 935
LA25 15 × 10 977 977 977 989 977
LA26 20 × 10 1218 1218 1218 1218 1218
LA27 20 × 10 1235 1235 1235 1269 1235
LA28 20 × 10 1216 1216 1216 1247 1216
LA29 20 × 10 1152 1152 1164 1241 1153
LA30 20 × 10 1355 1355 1355 1355 1355
LA31 30 × 10 1784 1784 1784 1784 1784
LA35 30 × 10 1888 1888 1888 1888 1888
LA36 15 × 15 1268 1280 1281 1293 1268
LA37 15 × 15 1397 1397 1397 1432 1397
LA38 15 × 15 1196 1196 1198 1222 1196
LA39 15 × 15 1233 1233 1233 1251 1233
LA40 15 × 15 1222 1224 1228 1246 1224

Figure 10. Gantt chart of an optimal schedule of instance LA20 (designed by Lawrence). Figure 10. Gantt chart of an optimal schedule of instance LA20 (designed by Lawrence).

Processes 2021, 9, x FOR PEER REVIEW 16 of 20

Figure 11. Gantt chart of an optimal schedule of instance LA29 (designed by Lawrence).

Next, further comparative analysis is done on four instances of different sizes with
the other 3 heuristic algorithms. The three comparison algorithms are PSO [11], DE [38]
and SSO-DM [18]. Four instances of different sizes are FT10, LA40, ORB10 [39] and YN4
[40]. For 20 independent runs of each algorithm, Table 4 shows the statistical results of the
best, worst, mean and standard deviation (Std.). The comparison data of the above three
algorithms in Table 4 are from the literature [18]. Figures 12–15 show the box plots of these
four algorithms on the four instances. Box plot is a popular visual representation of data
distribution. The horizontal line in the box is used to indicate the median. The red plus
sign in the figure indicates possible outliers. Although the stability of the proposed algo-
rithm is slightly inferior to SSO-DM, the accuracy of its solution is better than the other
three algorithms. Figure 16 shows a Gantt chart of an optimal solution for the instance
ORB10.

Table 4. Statistical results of four algorithms on four instances.

Instances Size BKS Algorithm Best Worst Mean Std.

FT20 20 5 1165

PSO 1374.00 1521.00 1442.50 42.02
DE 1456.00 1554.00 1506.00 27.64

SSO-DM 1374.00 1374.00 1374.00 0
This work 1165.00 1165.00 1165.00 0

LA40 15 × 15 1222

PSO 1498.00 1732.00 1576.05 59.79
DE 1691.00 1824.00 1767.05 36.46

SSO-DM 1528.00 1528.00 1528.00 0
This work 1224.00 1250.00 1237.55 7.98

ORB10 10 × 10 944

PSO 1039.00 1263.00 1150.05 48.84
DE 1190.00 1293.00 1244.40 25.04

SSO-DM 1114.00 1114.00 1114.00 0
This work 944.00 944.00 944.00 0

YN4 20 × 20 968

PSO 1340.00 1607.00 1425.15 64.84
DE 1486.00 1601.00 1570.75 26.15

SSO-DM 1492.00 1492.00 1492.00 0
This work 979.00 1070.00 1004.28 28.88

Figure 11. Gantt chart of an optimal schedule of instance LA29 (designed by Lawrence).

Next, further comparative analysis is done on four instances of different sizes with the
other 3 heuristic algorithms. The three comparison algorithms are PSO [11], DE [38] and
SSO-DM [18]. Four instances of different sizes are FT10, LA40, ORB10 [39] and YN4 [40].
For 20 independent runs of each algorithm, Table 4 shows the statistical results of the
best, worst, mean and standard deviation (Std.). The comparison data of the above three
algorithms in Table 4 are from the literature [18]. Figures 12–15 show the box plots of these
four algorithms on the four instances. Box plot is a popular visual representation of data
distribution. The horizontal line in the box is used to indicate the median. The red plus sign
in the figure indicates possible outliers. Although the stability of the proposed algorithm
is slightly inferior to SSO-DM, the accuracy of its solution is better than the other three
algorithms. Figure 16 shows a Gantt chart of an optimal solution for the instance ORB10.

Processes 2021, 9, 219 15 of 18

Table 4. Statistical results of four algorithms on four instances.

Instances Size BKS Algorithm Best Worst Mean Std.

FT20 20 5 1165

PSO 1374.00 1521.00 1442.50 42.02
DE 1456.00 1554.00 1506.00 27.64

SSO-DM 1374.00 1374.00 1374.00 0
This work 1165.00 1165.00 1165.00 0

LA40 15 × 15 1222

PSO 1498.00 1732.00 1576.05 59.79
DE 1691.00 1824.00 1767.05 36.46

SSO-DM 1528.00 1528.00 1528.00 0
This work 1224.00 1250.00 1237.55 7.98

ORB10 10 × 10 944

PSO 1039.00 1263.00 1150.05 48.84
DE 1190.00 1293.00 1244.40 25.04

SSO-DM 1114.00 1114.00 1114.00 0
This work 944.00 944.00 944.00 0

YN4 20 × 20 968

PSO 1340.00 1607.00 1425.15 64.84
DE 1486.00 1601.00 1570.75 26.15

SSO-DM 1492.00 1492.00 1492.00 0
This work 979.00 1070.00 1004.28 28.88

Processes 2021, 9, x FOR PEER REVIEW 17 of 20

Figure 12. The box plot for FT20 (designed by Fisher & Thompson).

Figure 13. The box plot for LA40 (designed by Lawrence).

Figure 14. The box plot for ORB10 (designed by Applegate & Cook).

Figure 12. The box plot for FT20 (designed by Fisher & Thompson).

Processes 2021, 9, x FOR PEER REVIEW 17 of 20

Figure 12. The box plot for FT20 (designed by Fisher & Thompson).

Figure 13. The box plot for LA40 (designed by Lawrence).

Figure 14. The box plot for ORB10 (designed by Applegate & Cook).

Figure 13. The box plot for LA40 (designed by Lawrence).

Processes 2021, 9, 219 16 of 18

Processes 2021, 9, x FOR PEER REVIEW 17 of 20

Figure 12. The box plot for FT20 (designed by Fisher & Thompson).

Figure 13. The box plot for LA40 (designed by Lawrence).

Figure 14. The box plot for ORB10 (designed by Applegate & Cook). Figure 14. The box plot for ORB10 (designed by Applegate & Cook).

Processes 2021, 9, x FOR PEER REVIEW 18 of 20

Figure 15. The box plot for YN4 (designed by Yamada & Nakano).

Figure 16. Gantt chart of an optimal schedule of instance ORB10 (designed by Applegate & Cook).

5. Conclusions
This work introduces the inherent mechanism of tissue-like P system for solving the

job shop scheduling problem and proposes a hybrid heuristic algorithm based on this
framework. The algorithm framework incorporates improved genetic algorithms (GA),
modified rumor particle swarm optimization (PSO), and a local search method based on
rapid identification of critical path. Through comparative experiments in multiple bench-
mark instances of JSSP, comprehensively, the proposed algorithm performs better than
the other comparison algorithms.

However, although this work couples the traditional hybrid heuristic algorithm with
the tissue-like membrane system, it still has some shortcomings. That is, this coupling is
only a formal simulation, and does not truly reflect the advantages of the distribution and
parallelism of membrane computing. With the continuous development of hardware tech-
nology, the realization of parallel computing will better simulate the parallel advantages
of membrane computing. This will also greatly reduce the optimization time of the algo-
rithm. In addition, this work is dedicated to solving single-objective JSSP, and in actual

Figure 15. The box plot for YN4 (designed by Yamada & Nakano).

Processes 2021, 9, x FOR PEER REVIEW 18 of 20

Figure 15. The box plot for YN4 (designed by Yamada & Nakano).

Figure 16. Gantt chart of an optimal schedule of instance ORB10 (designed by Applegate & Cook).

5. Conclusions
This work introduces the inherent mechanism of tissue-like P system for solving the

job shop scheduling problem and proposes a hybrid heuristic algorithm based on this
framework. The algorithm framework incorporates improved genetic algorithms (GA),
modified rumor particle swarm optimization (PSO), and a local search method based on
rapid identification of critical path. Through comparative experiments in multiple bench-
mark instances of JSSP, comprehensively, the proposed algorithm performs better than
the other comparison algorithms.

However, although this work couples the traditional hybrid heuristic algorithm with
the tissue-like membrane system, it still has some shortcomings. That is, this coupling is
only a formal simulation, and does not truly reflect the advantages of the distribution and
parallelism of membrane computing. With the continuous development of hardware tech-
nology, the realization of parallel computing will better simulate the parallel advantages
of membrane computing. This will also greatly reduce the optimization time of the algo-
rithm. In addition, this work is dedicated to solving single-objective JSSP, and in actual

Figure 16. Gantt chart of an optimal schedule of instance ORB10 (designed by Applegate & Cook).

Processes 2021, 9, 219 17 of 18

5. Conclusions

This work introduces the inherent mechanism of tissue-like P system for solving the
job shop scheduling problem and proposes a hybrid heuristic algorithm based on this
framework. The algorithm framework incorporates improved genetic algorithms (GA),
modified rumor particle swarm optimization (PSO), and a local search method based
on rapid identification of critical path. Through comparative experiments in multiple
benchmark instances of JSSP, comprehensively, the proposed algorithm performs better
than the other comparison algorithms.

However, although this work couples the traditional hybrid heuristic algorithm with
the tissue-like membrane system, it still has some shortcomings. That is, this coupling is
only a formal simulation, and does not truly reflect the advantages of the distribution and
parallelism of membrane computing. With the continuous development of hardware tech-
nology, the realization of parallel computing will better simulate the parallel advantages of
membrane computing. This will also greatly reduce the optimization time of the algorithm.
In addition, this work is dedicated to solving single-objective JSSP, and in actual industrial
production, the demand for multi-objective optimization is increasing day by day.

Based on this, there will be several meaningful research directions in the future. First
of all, in order to make full use of and simulate the parallelism of membrane computing, it
is still a promising and challenging direction to develop multi-threaded parallel computing
algorithms and implement them on GPUs. Secondly, the multi-objective flexible job shop
scheduling problem, as the top problem of the shop scheduling problem, will become an
important research direction that we continue to carry out based on the current work. In
addition, as the two most important branches of biological computing, the combination of
membrane computing and DNA computing will also become an extremely interesting and
valuable cross field.

Author Contributions: Conceptualization, X.T. and X.L.; methodology, X.T. and X.L.; software, X.T.;
validation, X.T.; formal analysis, X.T.; writing—original draft preparation, X.T.; writing—review and
editing, X.T. and X.L.; supervision, X.L.; project administration, X.L.; funding acquisition, X.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
(Nos. 61876101, 61802234, 61806114), the Social Science Fund Project of Shandong (Nos. 11CGLJ22,
16BGLJ06), the Natural Science Foundation of the Shandong Province (No. ZR2019QF007), the
Youth Fund for Humanities and Social Sciences, Ministry of Education (No. 19YJCZH244), the
China Postdoctoral Special Funding Project (No. 2019T120607), and the China Postdoctoral Science
Foundation Funded Project (Nos. 2017M612339, 2018M642695).

Data Availability Statement: This study did not report any data. All test instances and comparison
data can be publicly accessed and freely obtained from the corresponding references. We have made
a detailed description and quotation in the text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Giffler, B.; Thompson, G.L. Algorithms for solving production-scheduling problems. Oper. Res. 1960, 8, 487–503. [CrossRef]
2. Fisher, H.; Thompson, G.L. Probabilistic learning combinations of local job-shop scheduling rules. Ind. Sched. 1963, 225–251.
3. Balas, E. Machine sequencing via disjunctive graphs: An implicit enumeration algorithm. Oper. Res. 1969, 17, 941–957. [CrossRef]
4. Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G. Job-shop scheduling by implicit enumeration. Manag. Sci. 1977, 24, 441–450.

[CrossRef]
5. Carlier, J.; Pinson, E. An algorithm for solving the job-shop problem. Manag. Sci. 1989, 35, 164–176. [CrossRef]
6. Blackstone, J.H.; Phillips, D.T.; Hogg, G.L. A state-of-the-art survey of dispatching rules for manufacturing job shop operations.

Int. J. Prod. Res. 2007, 20, 27–45. [CrossRef]
7. Adams, J.; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1988, 34, 391–401.

[CrossRef]
8. Kurdi, M. A new hybrid island model genetic algorithm for job shop scheduling problem. Comput. Ind. Eng. 2015, 88, 273–283.

[CrossRef]

http://doi.org/10.1287/opre.8.4.487
http://doi.org/10.1287/opre.17.6.941
http://doi.org/10.1287/mnsc.24.4.441
http://doi.org/10.1287/mnsc.35.2.164
http://doi.org/10.1080/00207548208947745
http://doi.org/10.1287/mnsc.34.3.391
http://doi.org/10.1016/j.cie.2015.07.015

Processes 2021, 9, 219 18 of 18

9. Watanabe, M.; Ida, K.; Gen, M. A genetic algorithm with modified crossover operator and search area adaptation for the job-shop
scheduling problem. Comput. Ind. Eng. 2005, 48, 743–752. [CrossRef]

10. Lian, Z.; Jiao, B.; Gu, X. A similar particle swarm optimization algorithm for job-shop scheduling to minimize makespan. Appl.
Math. Comput. 2006, 183, 1008–1017. [CrossRef]

11. Lin, T.-L.; Horng, S.-J.; Kao, T.-W.; Chen, Y.-H.; Run, R.-S.; Chen, R.-J.; Lai, J.-L.; Kuo, I.H. An efficient job-shop scheduling
algorithm based on particle swarm optimization. Expert. Syst. Appl. 2010, 37, 2629–2636. [CrossRef]

12. Fığlalı, N.; Özkale, C.; Engin, O.; Fığlalı, A. Investigation of ant system parameter interactions by using design of experiments for
job-shop scheduling problems. Comput. Ind. Eng. 2009, 56, 538–559. [CrossRef]

13. Satake, T.; Morikawa, K.; Takahashi, K.; Nakamura, N. Simulated annealing approach for minimizing the makespan of the
general job-shop. Int. J. Prod. Econ. 1999, 60–61, 515–522. [CrossRef]

14. Zhang, C.Y.; Li, P.G.; Guan, Z.L.; Rao, Y.Q. A tabu search algorithm with a new neighborhood structure for the job shop scheduling
problem. Comput. Oper. Res. 2007, 34, 3229–3242. [CrossRef]

15. Zhang, C.Y.; Li, P.G.; Rao, Y.Q.; Li, S.Z. A new hybrid GA/SA algorithm for the job shop scheduling problem. Lect. Notes Comput.
Sc. 2005, 3448, 246–259.

16. Zhang, C.Y.; Rao, Y.Q.; Li, P.G. An effective hybrid genetic algorithm for the job shop scheduling problem. Int. J. Adv. Manuf.
Technol. 2008, 39, 965–974. [CrossRef]

17. Abdel-Kader, R.F. An improved PSO algorithm with genetic and neighborhood-based diversity operators for the job shop
scheduling problem. Appl. Artif. Intell. 2018, 32, 433–462. [CrossRef]

18. Zhou, G.; Zhou, Y.; Zhao, R. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop
scheduling problem. J. Ind. Manag. Optim. 2019, 13, 1–16. [CrossRef]

19. Peng, C.; Wu, G.; Liao, T.W.; Wang, H. Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling
problem. PLoS ONE 2019, 14, e0223182. [CrossRef]

20. Pongchairerks, P. A two-level metaheuristic algorithm for the job-shop scheduling problem. Complexity 2019, 2019, 1–11.
[CrossRef]

21. Cruz-Chavez, M.A.; Rosales, M.H.C.; Zavala-Diaz, J.C.; Aguilar, J.A.H.; Rodriguez-Leon, A.; Avelino, J.C.P.; Ortiz, M.E.L.; Salinas,
O.H. Hybrid micro genetic multi-population algorithm with collective communication for the job shop scheduling problem. IEEE
Access 2019, 7, 82358–82376. [CrossRef]

22. Păun, G. Computing with membranes. J. Comput. Syst. Sci. 2000, 61, 108–143. [CrossRef]
23. Martin-Vide, C.; Păun, G.; Pazos, J.; Rodriguez-Paton, A. Tissue P systems. Theor. Comput. Sci. 2003, 296, 295–326. [CrossRef]
24. Bernardini, F.; Gheorghe, M. Cell communication in tissue P systems: Universality results. Soft Comput. 2005, 9, 640–649.

[CrossRef]
25. Păun, A.; Păun, G. Small universal spiking neural P systems. Biosystems 2007, 90, 48–60. [CrossRef] [PubMed]
26. Wang, J.; Shi, P.; Peng, H.; Perez-Jimenez, M.J.; Wang, T. Weighted fuzzy spiking neural P systems. IEEE Trans. Fuzzy Syst. 2013,

21, 209–220. [CrossRef]
27. Song, B.S.; Zhang, C.; Pan, L.Q. Tissue-like P systems with evolutional symport/antiport rules. Inform. Sci. 2017, 378, 177–193.

[CrossRef]
28. Peng, H.; Shi, P.; Wang, J.; Riscos-Núñez, A.; Pérez-Jiménez, M.J. Multiobjective fuzzy clustering approach based on tissue-like

membrane systems. Knowl. Based Syst. 2017, 125, 74–82. [CrossRef]
29. Jiang, Z.; Liu, X. A novel consensus fuzzy k-modes clustering using coupling DNA-chain-hypergraph P system for categorical

data. Processes 2020, 8, 1326. [CrossRef]
30. Guo, W.; Liu, X.; Xiang, L. Membrane system-based improved neural networks for time-series anomaly detection. Processes 2020,

8, 1168. [CrossRef]
31. Clerc, M. Particle Swarm Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2010; Volume 93.
32. Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern.

1994, 24, 656–667. [CrossRef]
33. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks

Proceedings, Perth, WA, Aaustralia, 27 November–1 December 1995; pp. 1942–1948.
34. Kennedy, J. Particle swarm optimization. Encycl. Mach. Learn. 2010, 4, 760–766.
35. Bratton, D.; Kennedy, J. Defining a standard for particle swarm optimization. In Proceedings of the 2007 IEEE Swarm Intelligence

Symposium (SIS 2007), Honolulu, HI, USA, 1–5 April 2007; pp. 120–127.
36. Lawrence, S. Supplement to resource constrained project scheduling: An experimental investigation of heuristic scheduling

techniques. Grad. Sch. Ind. Adm. 1984, 4, 4411–4417.
37. Kurdi, M. An effective new island model genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 2016, 67, 132–142.

[CrossRef]
38. Zobolas, G.I.; Tarantilis, C.D.; Ioannou, G. A hybrid evolutionary algorithm for the job shop scheduling problem. J. Oper. Res. Soc.

2009, 60, 221–235. [CrossRef]
39. Applegate, D.; Cook, W. A computational study of the job-shop scheduling problem. ORSA J. Comput. 1991, 3, 85–176. [CrossRef]
40. Yamada, T.; Nakano, R. A genetic algorithm applicable to large-scale job-shop problems. Parallel Probl. Solving Nat. 1992, 2,

281–290.

http://doi.org/10.1016/j.cie.2004.12.008
http://doi.org/10.1016/j.amc.2006.05.168
http://doi.org/10.1016/j.eswa.2009.08.015
http://doi.org/10.1016/j.cie.2007.06.001
http://doi.org/10.1016/S0925-5273(98)00171-6
http://doi.org/10.1016/j.cor.2005.12.002
http://doi.org/10.1007/s00170-007-1354-8
http://doi.org/10.1080/08839514.2018.1481903
http://doi.org/10.3934/jimo.2019122
http://doi.org/10.1371/journal.pone.0223182
http://doi.org/10.1155/2019/8683472
http://doi.org/10.1109/ACCESS.2019.2924218
http://doi.org/10.1006/jcss.1999.1693
http://doi.org/10.1016/S0304-3975(02)00659-X
http://doi.org/10.1007/s00500-004-0393-4
http://doi.org/10.1016/j.biosystems.2006.06.006
http://www.ncbi.nlm.nih.gov/pubmed/16965853
http://doi.org/10.1109/TFUZZ.2012.2208974
http://doi.org/10.1016/j.ins.2016.10.046
http://doi.org/10.1016/j.knosys.2017.03.024
http://doi.org/10.3390/pr8101326
http://doi.org/10.3390/pr8091168
http://doi.org/10.1109/21.286385
http://doi.org/10.1016/j.cor.2015.10.005
http://doi.org/10.1057/palgrave.jors.2602534
http://doi.org/10.1287/ijoc.3.2.149

	Introduction
	Mathematical Modeling and Disjunctive Graph Representation of JSSP
	The Proposed Hybrid Heuristic Algorithm Coupling with Tissue-Like P System
	The Coupled Tissue-Like P System
	Evolutionary Rule of Objects in Cell 1
	Encoding and Initialization
	Fitness Function and Selection Strategy
	Adaptive Crossover and Mutation Operation

	Evolutionary Rule of Objects in Cell 2
	Evolutionary Rule of Objects in Cell 3
	Flow Chart of the Proposed Hybrid Algorithm

	Comparative Experiment and Discussion
	Conclusions
	References

