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Abstract: The purpose of this work was to investigate the detection of the pesticide residual (pro-
fenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were
performed on 180 tomato samples with different percentages of profenofos pesticide (higher and
lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide).
VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples
(used as control treatment) impregnated with different concentrations of pesticide in the range
of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide
content at lower and higher levels of MRL as healthy and unhealthy samples, we used different
spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models.
The Smoothing Moving Average pre-processing method with the standard error of cross valida-
tion (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration
and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, re-
spectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a
non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with
profenofos pesticide.

Keywords: pesticide residues; detection; tomato; spectroscopy; processing methods

1. Introduction

Tomato (Solanum lycopersicum) is a native plant of South and Central America that
was transferred to the rest of the world during the Spanish colonization period. Due to the
economic importance of this plant, it has been the subject of much research and is known
as a model plant in genetic science [1]. Tomatoes have attracted the attention of most
consumers worldwide due to their high nutritional value and health benefits [2–4]. In 2018,
world tomato production was 182 million tons, of which Iran accounted for 6.5 million
tons [5,6]. To optimize the production of this product in terms of quality and quantity,
farmers and scientists are looking for a solution to reduce product casualties caused by
control pests, weeds, and diseases [7]. As a result of the pest attack, productivity and
marketability of the product are dramatically reduced. The methods of pest control can
be divided into two ways: chemical control and non-chemical control [8]. In the chemical
control, if the spraying takes place at an inappropriate time and the product is harvested
before the end of the pre-harvest interval, a large amount of the pesticide will remain in the
product, which is dangerous to humans and livestock. Moreover, according to national and
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international standards, if the residual level of pesticide exceeds the standard, the product
is considered to be risky for consumption and endangers health [9]. The non-systemic
insecticide, Profenofos pesticide, is an organophosphate insecticide that controls, through
contact and digestion properties, a wide range of rodent and sucker pests in many products
such as tomatoes. This compound has penetrating properties and is able to move from leaf
surface to leaf back. Therefore, active pests under the leaves, which are usually immune
from the effects of the pesticide, are easily controlled by this insecticide [10,11]. Possible con-
tinuity of pesticide residues in tomatoes is a challenge for consumers. For this, maximum
residual limit (MRL) of tomatoes in the European Union (EU) (European Commission (EC)
no. 2005/396) are set by the Food and Agriculture Organization (FAO) and World Health
Organization (WHO). There are several methods for measuring residual pesticide, the most
common being gas chromatography [12]. Other methods include enzyme immunoassay
and acetyl cholinesterase level biosensor testing [13–15]. The methods mentioned for
measuring the residues of the destructive pesticides are costly and time-consuming, and
consequently, the development of a simple, rapid, low-cost, and environmentally friendly
method for the identification of pesticide residues in the food industry is a topic that can
be of interest to many researchers [16,17].

Near infrared (NIR) spectroscopy is an appropriate technique of quantitative and
qualitative analysis in medicine, agriculture, chemistry, and other sciences. This technique,
cheaper than the usual, environmentally-friendly methods, can usually be used without
the need for sample preparation [13,16,18–20]. In addition, some research has used this
technology to detect residual pesticides in agricultural products [8,14,17–19].

In a study, the detection of pesticides on the surface of bananas was studied using
near-infrared spectroscopy [21]. Principal component analysis (PCA) was used to analyze
spectral data in the wavelength range from 350 nm to 2150 nm. Clustering results were
obtained on the basis of PC1 and PC2 scores. This study may provide a way for rapid
recognition of chemical residues on the fruit.

In a research investigation, the presence of pesticide in 106 raw propolis samples
produced in Spain and Chile was investigated [22]. Near-infrared spectroscopy with remote
reflection from a fiber-optic probe was used to detect triadimefon-infected samples using
partial least squares with R2 = 0.71. Furthermore, the presence of triadimefon pesticide
in propolis was measured using partial regression (PLSR) method. Calibration results
showed R2 = 0.81, root mean square error (RMSE) = 0.36, and residual prediction deviation
(RPD) = 2.5.

In another investigation, hyperspectral near-infrared imaging was used to investigate
pesticide coverage on cereals [23]. To this end, models and regressions (partial least squares
discriminant analysis (PLS-DA)) and models (partial least squares (PLS)) were used. The
results of near infrared hyperspectral imaging (NIR-HSI) were compared with those of
NIR spectroscopy and ultra-performance liquid chromatography (UPLC) instruments.
This study demonstrated the ability of optical hyperspectral imaging to evaluate the
quality/homogeneity of pesticide coverage on seeds. Chromatographic methods were the
reference methods used to evaluate the pesticide content. All images consisted of 320-pixel
lines obtained at 209 wavelength channels (2400 to 1100 nm). PCA technique was used to
get information on natural separation between spectra.

PLS models for quantitative determination of total nitrogen (TN), organic carbon (OC)
in soil, and atrazine uptake coefficient have been investigated by VIS-NIR spectroscopy
and the relationship between the adsorption coefficient and the organic matter content
have been studied [24]. The correlation coefficients of OC and TN between predicted and
reference values were 0.9285 and 0.6599, respectively. The results showed that VIS-NIR can
be used as a quick and simple method to predict soil composition and pesticide absorption.

In one study, the ability of near-infrared reflectance spectroscopy (NIRS) to measure
residual pesticides in pepper was investigated [16]. Models were classified using PLS-DA
from 62 to 68% of the samples with or without pesticides, depending on the device used. In
the model validation, the highest percentage (75% and 82%) for non-pesticide and pesticide
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samples was obtained, respectively, for peppers as correctly classified samples, using diode
array spectroscopy.

Another study predicted pesticide residues in strawberries with NIRS technology.
PLSR models were developed for boscalid and pyraclostrobin active substances. Perfor-
mance evaluation of PLSR models was performed on the basis of RPD of each model. RPD
was 2.28 for boscalid and 2.31 for pyraclostrobin. These results show that the developed
models have reasonable predictive power [18].

This research can be a prelude to online tomato pesticide detection, which ultimately
enables the design of devices that can detect amount of residue pesticide in tomato at low
cost and in the least time, resulting both in an increase in the speed of performance in
standard export packaging and a step towards human health being taken by preventing
non-standard products with residual pesticide from entering the market. Therefore, it is
possible to provide the basis for making smart packaging equipment for healthy products.
Thus far, no studies have been performed to identify pesticides from the organophosphorus
group in tomato products using NIR spectroscopy. In general, in this study, we attemped
to detect non-destructively the residues of profenofos pesticide in tomato with different
levels by using VIS/NIR coupled with chromatography method as a reference method.

2. Materials and Methods
2.1. Sample Preparation

Initially, 180 identical tomato samples (Queen) were harvested from a greenhouse in
Shabestar County. Tomatoes were bred from the beginning of planting to the harvest stage
in a completely controlled manner and their pest control was non-chemical. In order to
obtain different concentrations of pesticide residues in the samples, we inoculated them
with 40% EC (40% EC) (C11H15BrClO3PS) with 14 days pre-harvest interval (PHI) [25].
Thus, the solution of profenofos pesticide with a concentration of 2 L in 1000 L of water
was prepared and sprayed on the samples. The samples were divided into 6 groups. The
first group without any spraying was used for control and non-pesticide (P0) samples. The
following groups were tested by VIS/NIR spectroscopy after spraying with the prepared
solution: the second group for 2 hours (P-2H), the third group for 2 days (P-2D), the fourth
group was the same as the second group except that afterwards the spray was washed
(P-2D-W), the fifth group for 1 week (P-1W), and sixth group for 2 weeks (P-2W). All treat-
ments were divided into healthy (MRL < 10 mg·kg−1) and unhealthy (MRL > 10 mg·kg−1)
groups. Before the measurements were completed, all samples reached balance tempera-
ture in the lab. Structure attributes of each sample were measured with digital scales and
caliper. Table 1 presents the values (mean, standard deviation (SD)) measured for weight,
large diameter, small diameter, and vertical diameter of the samples.

Table 1. Values of morphological properties.

Mean Standard Deviation

Weight 132.26 16.82
Large diameter 66.16 3.85
Small diameter 63.66 3.67

Vertical diameter 60.21 3.50

2.2. VIS/NIR Spectroscopy

VIS/NIR spectroscopy tests were performed using a PS-100 model spectroradiometer
(Apogee Instruments, INC., Logan, UT, USA) with a Charge-couple Device (CCD)detector,
2048 pixels, with a resolution of 1 nm, and a halogen tungsten light source in the wavelength
range of 350–1100 nm. Before spectroscopy, black and white (reference) spectra were first
defined and stored. As such, by turning off the light source, the dark spectrum was first
taken; then, in bright light source mode, a standard Teflon disk was used to reach the
reference spectrum, which was capable of reflecting above 97% in the range of 300 to
1700 nm. For each tomato sample from 4 different points of each sample with 8 scans,
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within the spectral range of the device used, we performed spectroscopy with a Spectra-
Wiz Spectrometer OS v5.33 (c) 2014 software, and the data were recorded after averaging
(Figure 1). Then, the absorption spectra of pesticide solution were obtained using 2 single-
strand P400-2-VIS-NIR optical fibers by passage method (Figure 2). In this case, the detector
is placed on the opposite side of the light and is typically used to analyze liquid and some
solid samples such as seeds, meat, and dairy [22]. Reference measurements are made 1 day
after spectroscopy analysis [13]. Therefore, tomatoes are sent frozen to the laboratory for
analysis of reference information.
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Figure 2. Measurement of VIS/near infrared (NIR) spectra of pesticide in passing mode.

2.3. Gas Chromatography

All the tomatoes were prepared frozen for measurement of profenofos using reference
method (Agilent 5977A Series GC/MSD-USA) in central laboratory of Mohaghegh Ardebili
University after VIS/NIR spectroscopy. To determine the retention time of the profenofos
pesticide diagram, we injected the standard profenofos material (95%) prepared by Agri-
cultural Exir Company into the gas chromatographic system. For this purpose, sample
preparation was performed according to British Standard BS EN 15662 [26,27]. First, 10 g
of the homogenate sample was poured into a 50 ML centrifuge falcon tube. Then, 10 ML of
ethyl acetate, 1.9 ML of distilled water, and 5 g of nitrogen sulfate were added and stirred
for 1 min. The mix was then centrifuged at 5000 rpm for 5 min and 6 ML of the obtained
extract was transferred on top of the falcon to another glass falcon. It was shaken for 1 min
and centrifuged at 5000 rpm for 5 min. Then, 4 ML of the extract of the upper part of the
glass was poured into another falcon and 50 µL of ethyl acetate was added. After passing
through the filter, 1 µL of the extract was injected into the device. Conditions for setting up
the device are fully described in the following table (Table 2).



Processes 2021, 9, 196 5 of 13

Table 2. Gas Chromatography (GC) run conditions.

Analytical Column HP-5 ms Ultra Inert 30 m × 250 µm, 0.25 µm (p/n 19091S-433UI)

Injection volume 1 µL
Injection mode Splitless
Inlet temperature 280 ◦C
Liner UI, splitless, single taper, glass wool (p/n 5190–2293)
Plated seal kit Gold Seal, Ultra Inert, with washer (p/n 5190–6144)
Carrier gas Helium, constant flow, 1 ML/min

Oven program

60 ◦C for 1 min,
then 40 ◦C/min to 170 ◦C,
then 10 ◦C/min to 310 ◦C,
then hold for 2 min

Transfer line temperature 280 ◦C

2.4. Dimension Reduction by PCA

An important multivariate statistical method used in chemistry is principal compo-
nent analysis [28,29]. The mathematical model corresponding to PCA is based on the
decomposition of the X matrix into the n × A score matrix (T) and N × A loading matrix
(P) as Equation (1):

X = TP′ + F =
A

∑
a=1

ta p′a + F (1)

where X is the spectral data matrix, T is the scores matrix for X, P is the loading matrix for
X, F is the residual matrix or model error, ta is the sample score vector on each Principle
Component (PC) for X, and pa is the vector of the variable loading on each PC for X.

Prior to obtaining the PLS discriminant model, in order to reduce the number of
data matrix variables, we performed principal component analysis on spectral data of
180 samples and the outliers were successfully identified by studying the score diagram
using residual statistics of Q and Hotelling T2. The Q statistic was calculated as the sum
of squares of the residuals [30]. Equation (2) shows the calculation method of Hotelling
T2 [31],

T2
p,n,a =

p(n− 1)
n− 1

Fp,n−p,a (2)

where p is the number of variables, n is the number of samples, and F is the critical value
for the Fisher distribution with confidence level.

Figure 3 shows the principal component analysis of all data in which outliers are
identified. After deleting outlier data (20 samples), the residual data were sorted according
to the residual amount of profenofos pesticide obtained by reference measurement. The
data were then divided into 2 groups: after approximately every 3 samples, 1 sample was
selected for the external validation set. Therefore, 48 samples (30% of the samples) were
used as the external validation set. The remaining 112 samples (70% of the samples) were
selected for the calibration set [7].
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2.5. PLS-DA Analysis

PLS-DA is a versatile algorithm that can be used for predictive and descriptive mod-
elling as well as for discriminative variable selection. In this paper, a discriminant model
(DM) using PLS-DA was used. This model included healthy samples (samples with a
pesticide concentration of less than 10 mg·kg−1) and unhealthy samples (samples with a
pesticide concentration greater than 10 mg·kg−1). The general model of multivariate PLS
is represented by Equation (3) [32,33]:

X = TPT + EY = UQT + F (3)

where X is a n ×m matrix of predictors; Y is n × p matrix of responses; T and U is matrix
n × l; E and F are error matrices; and P and Q are matrixes m × l and p × l, respectively.

When only 2 classes are available for segregation, this model applies −1 code to
variable membership in one class and +1 code to variable membership in another class. It
is not an easy task to identify the belonging to samples near zero [34].

Different pre-processing methods including normalizing, multiplicative scatter correc-
tion (MSC) and standard normal variate (SNV), and the first D1 and second D2 derivatives
based on the Savitzky–Golay algorithm (SG) and their combinations were used to eliminate
unwanted and physical effects in the spectra [35]. Moreover, multivariate modeling of
spectra was performed without any pre-processing to investigate the effect of these dif-
ferent methods on the accuracy of the formulated models. After formulating PLS models,
the models were evaluated by fully cross-validation with a maximum of 15 factors. This
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method obtains validation errors by dividing the calibration into several groups. Evalua-
tion criteria were predictive ability of discriminant regression models (PLS-DA) based on
the least root mean square error of cross validation (RMSECV) (Equation (4)) and the highest
percentage of classified samples and correlation coefficient (RCV) (Equation (5)) [7]. All
statistical analyzes were performed using Unscrambler X10.4 software Made in Montreal,
California, USA (CAMO Analytics Company-made in Montclair—California-USA).

RMSECV =

√
∑

np
i=1 (yi−ŷi)

2

np
(4)

RCV =

√
∑

np
i=1 (yi−ŷi)

2

∑
np
i=1 (ym−ŷi)

2 (5)

yi: the measured value of the attribute desired;
ˆ

yi: the predicted value of the attribute desired for sample i when the model is prepared
without sample i;
np: number of test class samples;
ym: average measured values of the attribute.

3. Results and Discussion
3.1. Reference Values for Profenofos Pesticide

Table 3 shows the reference values (mean, standard deviation, and range) of the content
of profenofos (mg·kg−1) in the tomato samples using the limit of detection (LOD) method.
As can be seen, the values ranged from “n.d” (<LOD) to 42.9 mg·kg−1, which included
healthy samples (MRL < 10 mg·kg−1) and unhealthy samples (MRL > 10 mg·kg−1). Table 4
also shows the GC results for the six treatments used in the article for further explanation.

Table 3. Reference values (mean, standard deviation (SD), and range) for the content of profenofos (mg·kg−1).

Number
Profenofos (mg·kg−1)

Group Number
Profenofos (mg·kg−1)

Range Mean Standard Deviation Range Mean Standard Deviation

Calibration 112 “n.d”–42.90 14.00 10.16
Healthy 40 “n.d”–9.90 4.30 4.22

Unhealthy 72 10.10–42.90 19.60 8.14

Validation 48 “n.d”–34.00 13.70 8.92
Healthy 18 “n.d”–10.00 4.90 4.20

Unhealthy 30 10.10–34.00 18.90 6.78

Table 4. Reference values of the content of profenofos (mg·kg−1) for the treatments.

Treatments Number Range Mean Standard Deviation

P0 30 n.d (<LOD) n.d (<LOD) n.d (<LOD)
P-2H 30 (6.70–42.94) 22.97 10.63
P-2D 30 (5.28–34.02) 16.49 7.90

P-2D-W 30 (5.07–25.91) 14.29 6.43
P-1W 30 (6.52–29.50) 15.20 6.50
P-2W 30 (8.27–28.34) 14.61 5.52

3.2. Spectral Interpretation

First, the VIS/NIR absorption spectrum and the first derivative between 400 and
1050 nm were analyzed for pure profenofos samples (Figure 4). According to the figure,
there was a downward trend in the visible bands. The top point in the wavelength range of
900 nm was obtained, which could be the result of the second O–H or third C–H overtones,
because of the distribution of organic bonds in the NIR region [13]. Thereafter, the upward
trend to 1100 nm occurred because of the second O–H overtone. With regard to the
chemical structure of profenofos, the spectral trend in the NIR region may be more related
to C–H absorption.

The first derivative for absorption spectra of tomato samples with different concentra-
tions of pesticide are also shown in Figure 5. The compounds of the product color were
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affected on adsorption in the visible region. The second O–H or the third C–H overtone
induced the growing trend of the spectra. Therefore, the measurement of profenofos in the
NIR region of the spectrum depends on the amount of C–H absorption, which has been
suggested by Saranwong and Kawano (2005), Sánchez et al. (2010), Jamshidi et al. (2015),
and Yazici et al. (2019) for other pesticide residues [8,13,16,18].
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3.3. Multivariate Pre-Processing and Analysis

The different pre-processing methods were applied for datasets, and the results of PLS
models for predicting the profenofos pesticide residual in tomato samples are shown in
Table 5. The data were normalized before preprocessing. Most of the developed calibration
models had acceptable ability to predict pesticide residues in samples with RCV above 0.8.
However, the best prediction results were obtained using the PLS model on the basis of the
smoothing + moving average method (Rcv = 0.92, RMSECV = 4.25).

Table 5. Results of partial least squares (PLS) models obtained with different pre-processing methods
for predicting the profenofos pesticide residual.

LV RCV RMSECV

No pre-processing 12 0.9152 4.5194
Smoothing—moving average 13 0.9254 4.2562
Smoothing—gaussian filter 14 0.9251 4.2680
Smoothing—median filter 13 0.8847 5.2481
Smoothing—SGolay 15 0.9295 4.1379
Maximum normalize 11 0.8679 5.5788
1derivative—SGolay 15 0.7522 7.6328
SNV 13 0.7978 6.8656
MSC 15 0.7828 7.1441
(Smoothing—Gaussian) + (smoothing median) 11 0.7778 7.0276
Normalize + Gaussian 10 0.8490 5.9218

Predicted residual pesticide values versus reference values for this calibration model
are shown in Figure 6. Shan et al. (2020), Yazici et al. (2019), Yi et al. (2010), and Sharabiani
et al. (2019) also applied the method used in this study to predict soil atrazine uptake,
pesticide residue in strawberries, orange leaf nitrogen content, and wheat protein content,
respectively, obtaining acceptable results [18,24,36,37].
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3.4. PLS-DA Analysis

PLS discriminant analysis (PLS-DA) is a classification method based on modeling the
differences between several classes with PLS. If there are only two classes to separate, the
PLS model uses one response variable, which codes for class membership as follows: −1
for members of one class, +1 for members of the other one. If there are three classes or more,
the model uses one response variable (−1/+1 or 0/1, which is equivalent) coding for each
class. There are then several Y-variables in the model. In this study, the PLS-DA model was
used to detect samples at lower and higher levels than the EU official limit (10 mg·kg−1).
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According to the results obtained for calibration data, above 84% of the total samples were
classified accurately. Of the 40 healthy samples from calibration data, above 90% were
correctly classified, and above 97% were correctly classified for the 72 unhealthy samples.
The percentage of correct classification in the prediction dataset was also above 85%. Out
of 18 healthy samples from the prediction set, more than 80% were correctly classified,
and out of 30 unhealthy samples, more than 75% were correctly classified. Among the
different pre-processing methods used, the best discriminant equation was obtained by
using smoothing moving average pre-processing method with effective factor number of
13, accuracy of calibration data classification of 90%, and standard error of cross validation
(SECV) = 4.2767. Table 6 shows the results of the PLS-DA analysis for all pre-processing
methods used. The results of the PLS-DA analysis showed the acceptable potential of NIRS
technology as a non-destructive tool for separating tomatoes with higher/lower profenofos
content than the official EU limit. This conclusion is in line with the results reported by
Jamshidi et al. (2015), Sánchez et al. (2010), and Salguero-Chaparro et al. (2013), who
evaluated the feasibility of NIR reflectance spectroscopy in the range of 400–1000 for the
detection diazinon pesticide residues in cucumber, in the range of 1100 to 1650 nm for the
detection of some classes of pesticide residues in pepper, and in the range of 400 to 2500 nm
for the detection of diuron pesticide level in olives, respectively.

Table 6. Results of partial least squares discriminant analysis (PLS-DA) analysis obtained for different pre-processing methods.

Pre-Processing Pls Factor Accuracy of Calibration
Data Classification (%) SECV Accuracy of Prediction

Data Classification (%)

No pre-processing 12 90.3 4.5406 89.30
Smoothing—moving average 13 90.0 4.2767 91.66
Smoothing—gaussian filter 14 89.0 4.2884 86.08
Smoothing—median filter 13 84.0 5.2727 87.61

Smoothing—S-Golay 15 88.2 4.1566 85.88
Maximum normalize 11 84.0 5.6056 89.25
1derivative—SGolay 15 84.9 7.6652 89.25

SNV 13 85.5 6.8978 87.61
MSC 15 90.3 7.1780 89.25

(Smoothing—Gaussian) + (smoothing median) 11 84.8 7.0616 85.88
Normalize + Gaussian 10 88.9 5.9503 90.78

4. Conclusions

In this paper, the possibility of applying the VIS/NIR technique as a rapid and non-
destructive PLS discriminant technique for tomatoes containing higher or lower levels of
profenofos pesticide than the MRL set by the EU (10 mg·kg−1) was established. For this
purpose, multiple regression analysis was used to model and predict. The performance of
the developed PLSR models was successful. This technology can detect pesticide residues
in tomatoes at a lower cost per second without the need for a comprehensive laboratory
environment, chemicals, consumables, and sample preparation. These models can be
complementary to current methods of pesticide analysis. The developed calibration models
had an acceptable ability to predict the residual profenofos in samples with an RCV above
0.8. However, the best prediction results were obtained using the PLS model based on
the smoothing + moving average method (rcv = 0.92, RMSECV = 4.25). Furthermore, the
best discriminant equation was obtained using smoothing moving average preprocessing
method with effective factor number of 13, accuracy of calibration data classification of 90%,
and SECV = 4.2767. On the basis of the results mentioned, it can be said that the technique
used can have a good place in postharvest science. However, it cannot prove that this
method can be used directly with high percentage of confidence in agricultural conversion
industries and agricultural product export and import. Therefore, it is necessary to repeat
this method on tomatoes of different varieties that are produced in different regions and
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in a wider spectral range in the presence of several pesticides in order to evaluate the
technical ability in different situations.
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MRL maximum residue limit
EU European Union
VIS/NIR visible/near infrared
PCA principal component analysis
PLSR partial least squares regression
R2 coefficient of determination
RMSE root mean square error
RPD residual prediction deviation
PLS-DA partial least squares discriminant analysis
NIR-HSI near infrared hyperspectral imaging
UPLC ultra-performance liquid chromatography
SECV standard error of cross validation
SD standard deviation
OC organic carbon
TN total nitrogen
PHI pre-harvest interval
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