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Abstract: In the present study, the flow of a fibre suspension in a channel containing a cylinder was
numerically studied for a very low Reynolds number. Further, the model was validated against
previous studies by observing the flexible fibres in the shear flow. The model was employed to
simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder.
Two different fibre lengths with various flexibilities were applied in the simulations, while the initial
orientation angle to the flow direction was changed between 45◦ ≤ θ ≤ 75◦. It was shown that the
influence of the fibre orientation was more significant for the larger orientation angle. The results
highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.

Keywords: fiber model; fiber flexibility; CFD; fiber suspension; particulate flow

1. Introduction

Fibre suspensions occurs in a wide range of natural and industrial applications. The
behaviour of fibre suspensions is a major concern in many industrial applications, such
as lubrication, extrusion, and moulding. The orientation and distribution of the fibres
are the two most important factors which can determine the rheological behaviour of the
fibre suspension. In order to design and control the processes and applications dealing
with fibrous suspensions, understanding the description of the fibre orientation pattern is
important. Over the past years, many approaches have been presented so far to simulate
flexible fibres. The first work on the mechanics of fibres was presented by Yamato and
Matsuoka [1–3], where the fibres were modelled as a series of connected beads. Further,
several models were developed, such as that introduced by Schmid et al. [4], in which
the role of shear rate, fibre morphology, fibre flexibility, and frictional-interparticle forces
in the flocculation of fibres suspended in a fluid medium were investigated. In Schmid’s
model, fibres were modelled as chains of massless fibre segments that interacted with other
fibres through contact forces. In this model, the effects of particle inertia, non-creeping
fibre-fluid interactions, hydrodynamic interactions between fibres, self-interactions, and
the two-way coupling between the fibre and fluid phases were overlooked. In addition,
the model suffered from numerical instabilities which seriously restricted the range of
simulation parameters. The basic model proposed by Schmid et al. [4] was implemented
later in various research, see, e.g., references [5–13]. In addition, some other multiphase
flow models have been used to study the fibre suspensions; for example in a work by
MacMeccan et al. [14], where the original Lattice Boltzmann method was employed. Similar
work was performed by Qi [15], in which, due to a high computational cost, only fibres
with small aspect ratios were selected. The immersed boundary method [16] has also been
used in several studies; see, e.g., references [17,18]. Forgacs and Mason [19] introduced
five different regimes of fibre motion that ranged from short and rigid to very long and
flexible. According to Arlov et al. [20], the dynamics of flexible fibres were classified into
three classes: flexible spin, flexible spin-rotation, and other configurations such as snake
turn and springy rotations where the fibres were extremely flexible.
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Rigid fibre suspension in Newtonian fluids do not show shear thinning properties, but
the flexible fibre suspensions can show this behaviour in a Newtonian fluid [21]. In other
words, the rheological properties of the fibrous fluids can be controlled by fibre orientation,
distribution, and dispersion. Several models have been developed so far. Shear thinning
and shear thickening can be controlled by the aspect ratio of the fibres: a higher aspect
ratio shows shear thinning while a lower one controls the shear thickening properties. In
addition, it was shown that the yield stress scales with the volume fraction of the fibres
in the suspension. Switzer and Klingenberg [22] found that the viscosity can be strongly
influenced by fibre equilibrium shape, inter-fibre friction, and fibre stiffness. Chaouche
and Koch [17] also examined the effect of shear stress and fibre concentration on the shear
thinning behaviour of rigid fibre suspensions. They have shown that fibre bending and a
non-Newtonian suspending liquid can play a major role in the shear-thinning behaviour of
suspension at high shear rate values.

An understanding of the rheology and dynamics of the deformation of fibrous sus-
pension as a multiphase fluid is important in order to be able to fully disclose the flow
behaviour from very low to very high shear rates. To the knowledge of the authors, only a
few studies have been done on the study of the fibre orientation through objects [18,23,24].
In the present study, we present the results of the motion of rigid, semi-flexible, and fully
flexible fibres with different initial orientation angle.

The first aim of this study is to investigate the fibre dynamics against several orbit
classes—i.e., rigid, springy, flexible, and complex rotation of the fibres [19,20,25], enabling
the model to have all degrees of freedom (translation, rotation, bending, and twisting,
respectively). The second aim is to understand the behaviour of flexible fibres around a
cylinder object in very low Reynolds number flows (Re ≤ 1).

In this study, a flexible fibre model has been implemented in an open source computa-
tional fluid dynamics code, OpenFOAM. The three-dimensional Navier–Stokes equations,
which describe the fluid motion, are employed, and the fibrous phase of the fluid is mod-
elled as chains of fibre segments that can interact with the fluid through viscous and drag
forces. This model can be used for further research studies on fibre suspension modelling.

2. Computational Setup and Governing Equations

To simulate the behaviour of single fibre elements around the cylindrical object, first,
the flow over a single cylinder in two-dimensional (2D) space was considered and validated.
After that, the fibre suspension model was implemented, validated, and applied to the
single-phase flow domain.

2.1. Single Phase Flow

The state of the flow in which the single fibre is suspended is steady, laminar, and with-
out secondary motions. This is indeed the case when considering the very low Reynolds
number for the flow in the domain. Non-dimension analysing of the governing equations
that use the diameter of the cylinder, D, as characteristic length scale and the inlet velocity,
U, as characteristic velocity can be shown, as below:

∇· u = 0 (1)

(u ·∇)u = −∇p +
1

Re
∇ · τ (2)

A single cylinder with diameter, D, is considered in a rectangular domain and a
cartesian coordinate. Figure 1 shows the domain and the cylinder position. Simulations
are carried out for two Reynold’s numbers (Re = 20 and Re = 40). The dimension of the
2D computational domain in all simulations are 15D × 40D. A uniform velocity profile
at the inlet, a Dirichlet condition at the outlet, slip boundary conditions at the lateral
boundaries, and a no-slip boundary condition on the cylinders surface are applied. A
grid sensitivity study of computational domain (Figure 2a) used in this study is obtained.
Various simulations of the Newtonian flow past the single cylinder are performed, and
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the drag coefficient is selected as a criterion to find the grid independent computational
domain. It is found that there are only minor differences in the drag coefficients for the
three finest resolutions, and the grid resolution of D/20 is employed for all computational
calculations, Figure 2b.

Figure 1. Problem setup and arrangement for the cylinder in the channel.

Figure 2. (a) Discretized model for the single cylinder, (b) a closer view of the grid for the single cylin-
der.

Model Validation

For validating the computational solver, the drag coefficient results of the single
cylinder in a Newtonian media are compared with the results of the former researchers.
Table 1 shows the results for Reynolds numbers Re = 20 and Re = 40. The results of this
study agree well with the previous results.

Table 1. Drag variation for various Reynolds numbers in the current study compared to
previous works.

Reference Re = 20 Re = 40

Present work 1.9999 1.4998
Bharti et al. [26] 2.0455 1.5292

Chakraborty et al. [27] 2.0223 1.5172
Niu et al. [28] 2.1110 1.5740
Park et al. [29] 2.0100 1.5100

Dennis and Chang [30] 2.0450 1.5220
Fornberg [31] 2.0000 1.4980

Figure 3 shows the contour plot of the velocity and the shear strain rate around the
single cylinder. As the flow passes the cylinder, the minimum velocity occurs at the front
stagnation point where the flow has the first contact with the body. The maximum pressure
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is found in this area. The flow continues around the cylinder, and the velocity increases
up to the point in which the flow velocity would reach the maximum value (near 90◦). By
introducing a fibre particle into this field, the fibre would be affected by several forces,
which are discussed in the next section. The forces and momentums move, rotate, twist,
and bend the fibre particle and force it to adopt the direction of the flow streamlines.

Figure 3. Flow field around a single cylinder, (a) velocity magnitude field, (b) Shear strain rate field.

2.2. Fibre Suspension Model

Figure 4 represents a system of spheroid segments. Following the particle-level
method based on Ross and Klingenberg [32], a chain of rigid cylindrical segments has
been considered for modelling. The flexible fibres and each segment of the fibre is tracked
individually through a Lagrangian Particle Tracking method. For each segment, the trans-
lational and rotational equations are solved for each fibre segment by applying Newton’s
second law. The model has been implemented in the OpenFOAM open source software [33].
Here, we briefly describe the model.

Figure 4. Illustration of multiple spheroids as a model of a single fibre.
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In Figure 4, the location of each segment is recognized by
→
r i. The spheroid has a major

axis, 2a, and minor axis, 2b. The segments are connected through a ball and socket joint, as
illustrated in the figure. The connectivity of the fibres satisfies Equation (3).(→

r i +
→
c i,j

)
−
(→

r i−1 +
→
c i−1,j

)
= 0 (i, j = 1, . . . . . . , N) (3)

Using the connectivity matrix, S, Equation (3) can be written in matrix form in
Equation (4):

(S)t→r + (C)t1N = 0 (4)

In Equation (4),
→
r =

[→
r 1 . . .

→
r N

]
and C is an N × N matrix in which C = Sijcij. 1N is

a N × 1 matrix of ones. S is an N × N connectivity matrix which is defined as:

S =



−1 1 0 . . . 0

0 − 1 1
. . .

...
. . . . . . 0
. . . − 1 1

0 . . . 0 − 1


There is a need to define another connectivity matrix, T, defined as:

T =


−1 − 1 − 1 . . . − 1
0 − 1 − 1 . . . − 1

−1 . . . − 1
...

. . . . . .
...

0 · · · 0 − 1


where

S T = T S = B (5)

and B is an N × N identity matrix. These two connectivity matrices are used to describe the
connectivity of the spheroids and joints together. Using Equations (4) and (5), the position
of each spheroid reads:

→
r = −(CT)1N = 0 (6)

The equations of motion are solved by applying Newton’s second law and the conser-
vation of momentum. Figure 5 shows the free-body diagram for a single fibre spheroid, i. Fi
is the resultant force applied to the centre of the mass. This force consists of hydrodynamic
forces, Fh

i , fibre-fibre contact forces, and the body forces. It is worthwhile to note that, in the
current model, the two later forces are neglected. In addition, we neglect the fibre inertia in
this model. Regarding the contact type, one-way coupling is considered. In other words,
the fibres have no influence on their carrier fluid in this model.

To compute the hydrodynamic force,
→
F

h

i , and the hydrodynamic torque,
→
M

h

i , the
theory provided by Kim and Karrila [34] is employed, giving:

→
F

h

i =
→
Ai·

(→
U

∞

i −
.
ri

)
(7)

→
M

h

i =
→
C i·

(→
Ω

∞

i −
→
ωi

)
+
→
Hi : E∞

i (8)
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In Equations (7) and (8),
→
U

∞

i ,
→
Ω

∞

i ,
→
ωi, and E∞

i are the velocity, vorticity, absolute

angular velocity, and strain rate, respectively.
→
Ai,
→
C , and

→
Hi are resistance tensors expressed

by Equations (9)–(11).

→
Ai = 6πµa

[
XA→p i

→
p i + YA

(
δ−→p i

→
p i

)]
(9)

→
C i = 6πµa

[
XC→p i

→
p i + YC

(
δ−→p i

→
p i

)]
(10)

→
Hi = −8πµa3YH

(
ε
→
p i

)→
p i (11)

In the equations above, δ is the identity tensor and ε is the permutation tensor. XA,

YA, XC, YC, and YH are a function of the eccentricity (e =
(

1− b2

a2

) 1
2 ), and they are defined

by Equations (12)–(16).

XA =
8
3

e3
[
−2e +

(
1 + e2

)
ln
(

1 + e
1− e

)]−1
(12)

YA =
16
3

e3
[

2e +
(

3e2 − 1
)

ln
(

1 + e
1− e

)]−1
(13)

XC =
4
3

e3
[

2e +
(

1 + e2
)

ln
(

1 + e
1− e

)]−1
(14)

YC =
4
3

(
2− e2

)[
−2e +

(
1 + e2

)
ln
(

1 + e
1− e

)]−1
(15)

YH =
4
5

e5
[
−2e +

(
1 + e2

)
ln
(

1 + e
1− e

)]−1
(16)

From Figures 4 and 5, one can define the internal torques at the joints between two

joints, i and i + 1, i.e.,
→
Y j, by:

→
Y j = −kb

(
θj − θ0

j

)
(17)

In Equation (17), θj is the angle between the two spheroids in Figure 4 and θ0
j is

the previous angle at equilibrium status, which is θ0
j = π for the straight fibre. kb is

the bending constant which represents the rigidity of the fibre model under the applied
bending momentum, such that:

kb =
EI
2a

(18)

where E is the modulus of elasticity and I is the moment of inertia. As in Equation (17), one
can get a similar equation to calculate the twisting torque, Yi. The rigidity against twist
torque, kT , is defined by:

kT =
GJ
2a

(19)

where G is the shear modulus and J is the polar moment of inertia.
The final form of the equations of motion is described by:

→
Ai·

(→
U

∞

i −
.
ri

)
+
→
F

c

i + Sij·
→
X j = 0 (20)

→
C i·

(→
Ω

∞

i −
→
ωi

)
+
→
Hi : E∞

i + Sij·
(
→
c ij ×

→
X j +

→
Y j

)
= 0 (21)
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It should be noted that, in this study, we considered the single fibres as neutral fibres;

hence, the body forces are overlooked (see Figure 5), i.e.,
→
F

b

i = 0. In Equation (20),
→
F

c

i is
the external contact force.

From Equations (20) and (21) one can calculate the translational and rotational velocity
of a spheroid, i [24], with Equations (22)–(29).

.
ri = M1

ij
→
ω j + M2

→
F

c
+
→
M

3
(22)

N1
il
→
ωk = N2

ik

→
F

c

j + N3
→
T

c

i + N4
i (23)

where
M1

ij = −b̃ji + A−1
(

Ak·b̃jk

)
(24)

M2 = −A−1 (25)

N1
il = δijCh

j −
3
r2

p

[
−d̃ji · Aj · b̃ij + d̃ji ·

(
Aj · A−1 · Ak

)
· b̃lk

]
(26)

N2
ik =

1
4r3

p
d̃ij ·

[
I − Aj

]
(27)

N3 =
1

8r3
p

(28)

N4
i =

3d̃ij

r2
p
·
[

Aj.
→
U

∞

j − Aj · A−1
(

Ak ·
→
U

∞

k

)]
+ H̃

h
i : E∞

i + Ch
i ·
→
Ω

∞

i +
1

8r3
p
+ Sij

→
Y j (29)

In Equations (22)–(29), A = ∑N
i=1 Aj and the aspect ratio is rp = a

b . For the fibre
segments in contact with a surface, I is defined as an identity matrix used to prevent the
fibre segment passing the wall. Matrix d̃ contains the fibre centre of mass, and matrix b̃
represents the position of the centre of the fibre segments relative to the fibre centre of mass.
It should be mentioned that all of the equations above have been made dimensionless,

employing 2b, πµb3

kb
and kb

b for length, time, and force, respectively.

Regarding the flexibility of a fibre particle, a dimensionless shear rate,
.
γ
∗, is defined as:

.
γ
∗
=

πηb3 .
γ

kb
(30)

To define the fibre-wall contact, the method developed by Vakil and Green [24] is
implemented in the code.

Fibre model validation
To validate the fibre model, several simulations are performed, considering various

fibre aspect ratios. The results of the rigid fibres are compared with two benchmarks: the
experimental results by Forgacs and Mason [19] and the theory of orbit by Jeffery [35],
which states that the dimensionless period of rotation is dependent on the aspect ratio,
Equation (31):

T
.
γ =

2π
.
γ

(
rp +

1
rp

)
(31)

In Equation (31), T is the non-dimensional period of rotation,
.
γ is the shear rate, and

rp is the aspect ratio. To do this, a single rigid fibre is simulated in a simple plane Couette
flow, where the centre of the fibre is set at the middle of the domain. At this point, the
translational velocity is equal to zero. Figure 6 shows the period of rotation for a fibre with
10 spheroids, where the aspect ratio has been changed in the range of 10–50. The results
of the current study is in line with the Ross and Klingenberg theory [32] and the Jeffrey
theory [32].
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Figure 5. Applied forces and torques on a single sphroid, i.

Figure 6. Validation of the implemented spheroid fibre model against Jeffrey orbit theory [35] and
Forgacs and Mason [19].

Regarding the flexible fibres, the effect of the dimensionless shear rate,
.
γ
∗, is studied

on the flexibility of a single fibre with 18 spheroids and an aspect ratio of 20. By changing
three different values,

.
γ
∗
= 3.2 × 10−3, 7.2 × 10−4, and 1.43 × 10−4, the variety of complex

rotational motions and flexibility of the fibre, reported by Forgacs and Mason [19], is
investigated (Figure 7).

As shown in Figure 7a, at
.
γ
∗
= 1.43 × 10−4, the fibre plays a role as a rigid fibre and it

rotates about its centre of mass. As the dimensionless shear rate,
.
γ
∗, increases, the fibre

shows a flexible behaviour, and the end of the fibre deforms, as shown in Figure 7b. By
increasing the dimensionless shear rate,

.
γ
∗
= 3.2 × 10−3, the S-shape flexibility that is

reported by Forgacs and Mason [19] is observed (Figure 7c). Other research has reported
similar results [8,32].
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Figure 7. Time sequence of images from the simulation for various dimensionless shear rates: (a) γ∗ = 1.43 × 10−4,
(b) γ∗ = 7.2 × 10−4, and (c) γ∗ = 3.2 × 10−3.

3. Results

Figure 8 shows the trajectory of a single rigid fibre past a cylinder. The fibre length
and the cylinder diameter are similar, and the Reynolds number is 1. The fibre particle was
set close to the horizontal centreline of the cylinder with a tilt angle equal to 10◦. As the
flow passes the fibre, it starts to rotate due to hydrodynamic forces applied on its segments.
When it gets close enough to the cylinder, it starts rotating, and the maximum rotation
would occur at an angle of 0◦, where the flow velocity also has the maximum value. After
this, the fibre starts passing the object and follows the flow streamlines. In the end, the fibre
rests in the horizontal direction and leaves the cylinder. Aspect ratio rp = 20 is considered
in this simulation.

Figure 8. Trajectory of a single rigid fibre with six segments around a cylinder where the fibre length and cylinder diameter
are the same.

Figure 9 shows a rigid long fibre passing a single cylinder, where the length of the fibre
is 3D, and D is the cylinder diameter. The centre of gravity of the fibre is located off-centre
of the cylinder horizontal centreline and is found to have unsymmetric hydrodynamic
forces. Re = 1 and rp = 20 are considered for the flow Reynolds number and the aspect
ratio of the fibre, respectively. As the flow passes the fibre, the applied forces push the fibre
forward and it contacts with the cylinder. After that, the fibre slides over the cylinder and
leaves it.
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Figure 9. Trajectory of a single rigid fibre with six segments around a cylinder where the fibre length
is 3D.

From Figures 8 and 9, one can observe different behaviour of the single rigid fibre
passing the cylinder. Examining several possibilities of the fibre position, we have focused
only on the position where the centre of gravity of the fibre is located at the inflow centreline.
In fact, we investigated the behaviour of the rigid and flexible fibres, where the flexibility of
the fibre is varied by changing the dimensionless shear rate 1.3 × 10−4 ≤ .

γ
∗ ≤ 3 × 10−3.

In addition, the fibre initial angle of orientation is changed between 45◦ ≤ θ ≤ 75◦. In all
simulations, the Reynolds number is considered to be Re = 1. The aspect ratio rp = 20 is
considered, and each fibre has six segments joints.

To observe the effect of fibre length, cylinder diameter, and the flexibility of the fibre on
the movement of a single fibre, we consider two cases with different fibre length to cylinder
diameter ratios (4 and 8). Initial orientation angle θ = 15◦, 30◦, and 45◦ and dimensioneless
shear rate of

.
γ
∗
= 1.3 × 10−4,

.
γ
∗
= 7 × 10−4, and

.
γ
∗
= 3 × 10−3 were considered for

the fibre as well. An aspect ratio of rp = 20 is considered for both cases. The shorter case
consists of 6 segments and the longer consist of 12 segments.

For the first case, the behaviour of a single fibre with three different flexibilities is
observed, while the fibre initial orientation angle is varied. As shown in all plots in
Figure 10, the fibre is carried by the flow, moves towards the cylinder, and touches the
object. Depending on the rigidity of the fibre, the deformation of the cylinder can be varied.
The fibre in Figure 10a is rigid, and its flexibility does not change when it contacts with
the cylindrical object. For the other two fibres in Figure 10b,c, which are semi-flexible and
fully flexible, the fibres deform. The initial orientation angle of the fibre has an important
role of sliding off the fibre when the particle reaches the object. The larger the angle,
the less sliding off can be observed in the figures. Even for the flexible fibre in Figure
10c, the inclination of the fibre can be seen when it reaches the cylindrical object. For the
flexible fibre, bending of the fibre segment has been fully captured by the model as the
fibre gets hung-up by the cylinder and all joints of the fibre segment react to the forces, and
momentums is applied by the flow field around the cylindrical object.



Processes 2021, 9, 191 11 of 13

Figure 10. Movement of a single fibre past a cylinder where the ratio of the fibre length to the cylinder diameter is 4:
(a)

.
γ
∗
= 1.3 × 10−4, θ = 15◦, (b)

.
γ
∗
= 7 × 10−4, θ = 30◦, (c)

.
γ
∗
= 3 × 10−3, θ = 45◦.

The behaviour of the single fibres in Figure 11 is physically expressible. Regarding
the lowest dimensionless shear rate,

.
γ
∗
= 1.3 × 10−4, it is seen that, as soon as the fibre

contacts with cylinder, it starts to incline until it leaves the domain.

Figure 11. Movement of a single fibre past a cylinder where the ratio of the fibre length to the cylinder diameter is 8:
(a)

.
γ
∗
= 1.3 × 10−4, θ = 15◦, (b)

.
γ
∗
= 7 × 10−4, θ = 30◦, (c)

.
γ
∗
= 3 × 10−3, θ = 45◦.

Compared to Figure 10, more flexibility can be observed by the longer fibres in
Figure 11 because the fibres consist of 12 segments jointed together. As shown in Figure 11c,
the longer fibre gets hungs up on the cylinder.

4. Summary and Conclusions

The model of Ross and Klingenberg [32] was implemented in Open FOAM open
source code, and the motion of a fibre was determined by solving the translational and
rotational equations of motion for each spheroid segment. Translation, rotation, bending,
and twisting were observed in the single flexible fibre motion. The model was validated
against previous numerical and experimental benchmarks by Forgacs and Mason [19]
and Jeffrey [35]. The flexibility of the fibre was expressed by the dimensionless shear rate,
.
γ
∗
= πηb3 .

γ
kb

.
When a fibre slender particle is introduced to this flow field, the slender particle is

oriented with is axes parallel to the principal axes of distortion of the fluid surrounding
it. However, the vorticity tensor plays an opposite role and causes the slender body to
adopt the same orientation as the surrounding fluid [34]. As expected, and as shown in
Figures 10 and 11, increasing the initial orientation angle would lead the fibre to be placed
more in the flow direction. In fact, the distribution of a single fibre depends on the flow field
and the interaction between the fibre and the single cylinder. The fibre interaction includes
hydrodynamic and mechanical effects. Regarding the motion of the fibre, it is worth noting
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that, by increasing the initial orientation angle, the centroid of the fibre significantly moves
downward. By increasing the flexibility of the fibre, this movement would decrease.

It should be emphasized here that by increasing the flexibility of the fibre, more
rotation can be observed for the fibre when it is getting close to the cylinder. In other
words, the interaction forces play significant roles on the rotation and movement of the
fibre downward.

Simultaneously changing the fibre length and the fibre flexibility would increase the
inter particle forces and momentums, and the fibre deformation would be seen more in the
region close the cylinder.

Having various dimensionless shear rate values, different fibre configurations have
been captured from fully rigid to full flexible fibres. After validating the implemented
model, the behaviour of a single fibre with a different orientation angle, length, and
flexibility is investigated around a single cylindrical object. It is shown that the initial
orientation angle of the fibre has an influence on the flexibility and the shape of the
fibre when it contacts with the cylinder. The model and the results can be employed
to understand the behaviour of fibre suspension fluids in many applications such as
lubrication and manufacturing processes.
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