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Abstract: In this research, the spectral detection of copper oxide is reported from different combustion
tests of chalcopyrite particles and copper concentrates. Combustion experiments were performed in
a bench reactor. In all the tests, the radiation emitted from the sulfide particle reactions was captured
in the VIS–NIR range. The obtained spectral data were processed by using the airPLS (adaptive
iteratively reweighted penalized least squares) algorithm to remove their baseline, and principal
component analysis (PCA) and the multivariate curve resolution method alternate least squares
(MCR-ALS) methods were applied to identify the emission lines or spectral bands of copper oxides.
The extracted spectral pattern is directly correlated with the emission profile reported in the literature,
evidencing the potential of using spectral analysis techniques on copper sulfide combustion spectra.

Keywords: combustion; optical sensors; spectroscopy measurements; signal detection; digital pro-
cessing; principal component analysis; multivariate data analysis; curve resolution

1. Introduction

The need for better process monitoring, control, and optimization of industrial reactors,
and to secure environmental sustainability, has driven the development of new technologies
in metallurgical processes. For example, many conventional reactors in the metallurgical
industry have undergone improvements and optimization in their design and operation.
Advanced sensing techniques, such as those presented in this work, increase understanding
of the physical chemistry phenomena that take place in the process, facilitating these process
improvements.

Flash smelting technology produces over 50% of the primary copper in the world [1]
and it is widely used by the top producers of primary copper, such as China, Japan,
Chile, and Russia, who represent more than 60% of the copper production through the
pyrometallurgy processes. The flash furnace used in this type of process originated in
Finland at the end of World War II and presented an excellent alternative to the energy
shortage that existed in post-war Europe since, at that time, the intensive demand for
thermal energy was mainly supplied by the combustion of hydrocarbons [2]. Over the
years, flash smelting furnaces have become the most widely used technology in new
smelting companies due to their ability to take advantage of the heat released through
combustion reactions.

At present, new processes and technologies have emerged as competitors to flash
combustion [3,4]. The flash furnace continues to be widely used for both its energy
efficiency and its environmental performance. Since these furnaces appeared on the market,
numerous studies have been reported to improve the understanding of physicochemical
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phenomena and thus optimize their performance. One example is the work of Jorgensen in
1981 [5], who measured the temperature of pyrite particles reacting inside a laminar flow
reactor, all of which was facilitated by optical pyrometry techniques and particularly by
the two-color pyrometry method.

Over the years, it led to the improvement of measurement techniques as can be seen
in the work of Tuffrey et al. [6], who also measured the temperature of pyrite, registering
much higher values (maximum 3127 ◦C) than those reported by Jorgensen. The latter was
attributed to the higher speed of the pyrometer data acquisition system used by Tuffrey.
Subsequently, many studies on combustion kinetics, reaction mechanisms, and particle
size measurement, among others, have applied two-color pyrometry as a support in their
experiences [7–10].

The latest works reported on spectral measurements of sulfide combustion in labo-
ratory tests have been carried out by a group of researchers from the Metallurgical and
Electrical Engineering Departments of the Universidad de Concepción, Chile. This group
has made use of optical pyrometry techniques to retrieve the flame temperature of con-
centrates and pure mineral species under combustion conditions. In these investigations,
different spectral ranges of all the captured radiation were used and a cooled optical fiber
was specially designed for high-temperature applications [11,12].

The application of spectroscopy at an industrial level is scarce, and one of the few
examples is the mentioned by Sun et al. [13], who measured a coal-fired flame in a boiler,
while the only reported measurements in an industrial flash furnace were performed at
the Chagres smelter, Anglo American [12]. These tests were carried out by introducing a
cooled optical probe inside the furnace through a sight glass positioned on the roof of the
reaction tower, which allowed this optical system to capture flame combustion similarly to
those found in laboratory experiments [14,15].

2. Spectral Emissions of Iron and Copper Oxides

In the last 50 years, different researchers in the field of emission spectroscopy have
found the ranges of wavelengths in which certain chemical elements and molecules emit
radiation, thus determining their spectral profiles. Among them are the emission spectra
profiles of iron oxide and copper oxide. Although in these investigations, these emission
profiles have not been obtained from sulfide combustion tests, they can be used as a
reference when determining the presence of these oxides in a copper and iron sulfide
emission spectrum, as Toro et al. did in their research on high-grade pyrite combustion
spectra [16].

2.1. Spectral Emission of Iron Oxide

In the case of iron oxide (FeO), West and Broida [17] conducted a study in the visible
spectral range (VIS). In their work, they reported that the FeO molecule emits a continuous
spectrum between 500 and 700 nm. The emission profile contains wide spectral bands
centered at 570, 590, and 620 nm. In the case of the wavelength of 590 nm, it is usually
not perceived due to the interference of the sodium emission [18]. Toro et al. applied
multivariate techniques on high-grade pyrite emission spectra. Through principal com-
ponent analysis (PCA) and multivariate curve resolution method alternate least squares
(MCR-ALS) analysis, the combustion spectrum was deconvolved obtaining pure emission
profiles of Na, FeO, and Fe3O4 [16].

2.2. Spectral Emission of CuOx

The study presented by Gole in the early 1990s was the first to report the emission
profile of copper oxide, with spectral bands located in the range of 580 to 720 nm [19]. For
their part, Knapp et al. proposed a spectral profile of copper oxide and aluminum oxide
in their study of the emission spectroscopy of the termite combustion flame [20]. In this
study, they presented four peaks located at 606, 616, 629 and 640 nm, which represent
CuOx emissions.
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This research shows the application of an optoelectronic technique to measure the
combustion flame produced by copper concentrates. The obtained spectral information
was related to the physicochemical processes. The industrial process control could be
performed with the application of this optoelectronic technique, allowing the operators to
visualize important indicators of the processes online and in real-time.

The objective of this research is to study the emission spectra of chalcopyrite and
a real copper concentrate when it is exposed to combustion conditions using an optical
measurement system.

3. Methodology

The combustion tests were performed to detect spectral characteristics of interest
associated with copper oxides. The emission spectrum of a flame represented by I (λ, T)
= Ic (λ, T) + Id (λ, T) + Imol (λ, T) + n, where λ is a wavelength sample, T is the flame
temperature, Ic is the baseline, Imol and Id are components associated with molecular and
elementals emissions (discontinuous), respectively [21], and n is a noise component related
to the electronics and detectors themselves. The spectral range and the number of sampled
wavelengths were defined by the spectrometer. Research methods and considerations are
represented below.

Experimental Setup and Sample Characteristic

Briefly, the combustion experiments were performed in a bench-scale setup consisting
of a drop-tube reactor under laminar flow conditions and heated by a controlled electrical
furnace at 1273 K (Figure 1). The spectral data acquisition was composed of cooled optical
fiber (Avantes®) and a VIS–NIR spectrometer (Ocean Optics USB4000®) which is sensitive
in the spectral range between 344 and 1034 nm and can deliver 3648 wavelengths samples
in such a range.
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Figure 1. (a) Experimental setup [15] and (b) schematic diagram.

The measurement and interpretation of the emitted radiation from the cloud of par-
ticles in the reactor is a difficult task, especially for copper concentrates, since it involves
many chemical and physical processes and interactions between the particles and the parti-
cles with their surroundings. In Figure 2, a sample of the incandescent cloud generated
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during combustion is depicted. This figure also summarizes the spectral data acquisition
and the implemented methodologies to process and analyze the spectral information.
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Figure 2. Data acquisition and analysis pipeline. (a) Spectral data acquisition and preprocessing.
(b) Principal component analysis (PCA) features extraction. (c) Multivariate curve resolution method
alternate least squares (MCR-ALS) application for separation of pure spectral signals. Note that the
depicted combustion image is only for visualization purposes, and the optical fiber is located at the
central centered position.

In this research, spectral data processing with multivariate data analysis methods were
implemented to extract important characteristics related to the formation of copper oxides.
PCA was used for an exploratory analysis on the data matrix containing all the spectral
information, whilst MCR-ALS was used to deconvolve the original emission spectrum
based on its pure spectral components. The airPLS (adaptive iteratively reweighted penal-
ized least squares) algorithm baseline correction [16,22] was used to unmix the continuous
and discontinuous spectral components to ensure that the analysis was on the chemical
behavior of the combustion and not on its energy. The data analysis was carried out in
MATLAB™ (MathWorks, Inc., Natick, MA, USA) with the PLS Toolbox 8.9 (Eigenvector
Research, Inc., Manson, WA, USA) and MCR-ALS GUI 2.0.

The chalcopyrite sample was purchased from Ward’s Science® (Rochester, NY, USA),
while the concentrate was donated by a Chilean mining company. The predominant
mineralogical composition of the concentrates is detailed in Table 1.

Table 1. Copper concentrate mineralogical composition.

Mineral Conc. A (wt %) Conc. B (wt %)

CuFeS2 32.71 66.7
FeS2 45.52 16.52

Cu5FeS4 3.23 8.35
CuS 0.85 0.45

Others 17.69 7.98

In this research, eight sets of tests were carried out. Six of them consisted of the
combustion of chalcopyrite at different particle sizes, corresponding to 105 to 149, 74 to
105, 53 to 74, 44 to 53, 37 to 44, and <37 µm. From now on, these samples will be referred
to as CpyA, CpyB, CpyC, CpyD, CpyE, and CpyF respective to the previous order. The
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concentrates used had a granulometric distribution with a p80 of ~36 µm for sample Conc.
A and ~47 µm for sample Conc. B. A Sympatec Helos-Succel™ particle size analyzer based
on a diffraction laser was used for the particle size analysis. All the laboratory experiments
were carried out under similar conditions. In addition, we worked with oxygen supply
three times over the stoichiometric quantity to ensure the total oxidation of the chalcopyrite
and the sulfurized species in the concentrates to form copper oxides. The calcines obtained
in each test were analyzed using scanning electronic technology. For more details about
the methodology and special considerations, see Toro et al. [16].

4. Results
4.1. Spectral Measurement from Chalcopyrite

The first step was to calculate the average spectra obtained in each test, which are
depicted in Figure 3. The average calibrated spectrum of chalcopyrite combustion for each
size is shown in Figure 3. It is observed that the behavior of the spectral irradiance was
different for each size of chalcopyrite analyzed. It is possible to observe that for the finer
sizes, the intensity of the spectrum is greater; this is because finer particles are completely
oxidized, releasing more energy. A cloud of fine particles represents a greater surface area
compared to a cloud of “coarse” particles, which also has a higher oxygen consumption
which in turn translates into greater heat generation. For their part, the larger particles
take time to burn in the reaction zone, resulting in a lower intensity emission spectrum.
Even so, this behavior is not possible to observe in the smallest sample size (CpyF), which
may be related to an agglomeration problem. The smallest size tends to form clumps in the
cloud combustion, increasing its particle size and thus behaving as coarse particles.
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Figure 3. Average emission spectrum of chalcopyrite combustion at different sizes.

It is not possible to observe emission peaks in the chalcopyrite spectra compared to
those reported by Toro et al. [16] in their combustion experiments with pyrite. This is likely
because chalcopyrite in an oxidizing environment releases less energy than pyrite under
the same conditions, which results in a lower temperature combustion flame, making it
more difficult to identify discontinuities. Some of the reactions that occurred during the
oxidation of chalcopyrite and pyrite are shown in Table 2, a value of ∆H < 0 indicates that
the reaction is exothermic (releases thermal energy), while a value of ∆H > 0 indicates a
reaction is endothermic (absorbs thermal energy).
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Table 2. Typical reactions during chalcopyrite and pyrite combustion 1.

Reactions ∆Ho
1000 ◦C [Kcal/mol]

CuFeS2(s) → 1
2 Cu2S(s) + FeS(s) +

1
4 S2(g) 12.19

FeS2(s) → FeS(s) +
1
2 S2(g) 34.79

FeS(s) +
1
2 O2(g) → FeO(s) +

1
2 S2(g) −26.36

FeS(s) +
5
3 O2(g) → 1

3 Fe3O4(s) + SO2(g) −136.46
Cu2S(s) + O2(g) → 2CuO(s) +

1
2 S2(g) −40.82

S2(g) + 2O2(g) → 2SO2(g) −172.52
1 Values are calculated with HSC Chemistry®.

In this work, multivariate techniques were implemented to detect weak spectral
emission profiles. The application of PCA and the analysis of loadings of the combustion
spectra of chalcopyrite, allowed us to find peaks at 606 and 616 nm, which are associated
with copper oxides [19,20]. These peaks were observed slightly from the loading of the
PC3 of the CpyD sample, being more visible in the CpyF sample (Figure 4d–f). Moreover,
the peaks associated with Na and K emissions were observed, around 589 and 767 nm,
respectively.
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4.2. Spectral Measurement from Copper Concentrates

In Figure 5, the average spectral signals of the combustion of copper concentrates
are represented. It can be noted that the signal associated with the sample Conc. A
presents greater intensity of irradiance compared to the spectral signals of the samples
of chalcopyrite and Conc. B. In addition, the spectral lines of emission of Na and K are
presented with greater intensity.
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Figure 5. Average emission spectrum from the combustion of copper concentrates.

Through exploratory analysis with PCA to each set of spectral data of the concentrates
and the subsequent graphic representation of the first three loadings (Figure 6a,b), it is
revealed that the emission spectral lines of Conc. A are more intense than those of Conc. B
and, in addition, there are certain characteristics at ~606 and ~616 nm that are associated
with copper oxides, while close to the potassium emission, two spectral emissions appear
at 779.1 and 793.9 nm, the same ones that appear in the pyrite combustion spectral signals
reported by Toro et al. [16].
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4.3. MCR-ALS Application

From the PCA analysis of the spectral data of chalcopyrite and copper concentrates,
the spectral data of CpyF and Conc. A were selected, which have discontinuous sections
in which the spectral characteristics are related to copper oxides. The intensity of these
spectral characteristics is the result of the temperature reached by the combustion cloud
of each sample. Table 3 indicates the average combustion temperatures estimated by
two-color pyrometry, and according to [23], a good selection of the sampling wavelengths
to apply this method are 650 and 750 nm.

Table 3. Average estimated temperatures of the combustion flames.

Sample Temperature (◦C)

CpyA 1002.5
CpyB 1047.2
CpyC 1061.5
CpyD 1109.5
CpyE 1160.2
CpyF 1310.9

Conc. A 1485.2
Conc. B 1316.8

Continuing with the analysis, the airPLS baseline extraction algorithm was applied
to the two selected datasets, thereby separating the dataset to extract the continuous and
discontinuous emissions. Since the spectral evidence of copper presence is associated with
wavelengths of ~606 and ~616 nm, we proceeded to limit the discontinuous section in the
spectral range between 540 and 650 nm, while the noise was reduced through the algorithm
of Savitzky–Golay (SG) [24]. Figure 7 summarizes the discontinuities profile of CpyF and
Conc. A.

Thus, to obtain a spectral profile associated with copper oxides, the spectra of the
sample Conc. A were selected because they present greater irradiance intensity.
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MCR-ALS can perform multiset analysis of data organized in a single matrix [25] and,
therefore, for this study, we proceeded to create a matrix in the range of 540 to 650 nm
that contains the discontinuous samples of the Conc. A sample and the spectral signals of
sodium (Na), FeO, and Fe3O4 were those obtained by Toro et al. [16] (Figure 8). The aim of
this was to make the MCR-ALS algorithm separate the signals of the known species (FeO,
Fe3O4, and sodium) from those that are not, including the copper oxide profile.
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Figure 8. Spectral profiles (a) associated with sodium and (b) associated with FeO and Fe3O4 [16].

The MCR-ALS method was applied to the new matrix, as detailed in Figure 9, with
10 components and a “non-negativity” restriction on spectral profiles and concentrations.

With these settings on the MCR-ALS GUI, 92.5244% of the data variance and an error
of fit (PCA) of 3.0201% were achieved with 70 iterations [25]. As expected, within the
10 obtained profiles were those associated with emissions of sodium (Na), FeO, and Fe3O4,
in addition to a profile whose characteristics resemble the profile reported by Knapp, as
seen in Figure 10.
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Figure 10. Spectral emission measurements obtained via MCR-ALS and reference spectral character-
istics.

On the other hand, the phase analysis of the calcine of the sample Conc. A is presented
in Table 4, a majority composition of Fe and Cu oxides was observed according to what
was expected, which was a product of the working conditions. The mineralogical compo-
sition of the Conc. A calcine was determined using an integrated automated mineralogy
solution, QEMSCAN system (quantitative evaluation of minerals by scanning electron
microscopy), produced by the Fei Company (Hillsboro, OR, USA). The Cu2S generated
by the decomposition of species such as bornite or chalcopyrite can be oxidized to form
CuO or Cu2O. The formation of these copper oxides in the flame follows the following
transition Cu2S→ Cu2O→ CuO, this can be corroborated with the analysis of the stability
diagram Cu-S-O in Figure 11.

Table 4. Calcine of the sample Conc. A mineralogical composition.

Minerals wt %

Fe2O3/Fe3O4 29.87
FeS2 1.09
CuS 0.84

CuO/Cu2O 39.30
CuFeS2 0.11

FeS 0.79
Cu2S 2.30

Cu5FeS4 0.95
SiO2 4.32
FeO 6.96
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This small thermodynamic analysis ensures the formation of CuO within the working
conditions, so the depicted CuOx emission profile in the combustion spectra of a copper
concentrate is effectively the emission profile of copper oxides. The detection of these
oxides in the process is important because it will allow having control over copper oxidation
in the flame, allowing the operator to adjust process variables preventively. This would
avoid greater copper losses in the slag.

5. Conclusions

In this work, a series of multivariate analysis techniques were applied to spectral data
obtained during the combustion of chalcopyrite and copper concentrates. The results show
that the intensity of the combustion and the spectral characteristics present in the signal
depend on the temperature reached by the combustion cloud. The copper concentrates,
according to their pyrite content, can reach an intensity such that it allows visualizing some
spectral lines, such as those associated with sodium and potassium in the visible range and,
even so, the spectral data of all the combustion tests required an exploratory analysis to
reveal the presence of spectral lines that are not visible in the average spectrum. The sample
that provided the most information on the possible oxidized phases that were generated
in the combustion cloud was a high pyrite concentrate sample. The spectral information
provided was not only limited to copper oxide emission lines at ~606 and ~616 nm but,
instead, there are two emission lines at 779.1 and 793.9 nm that may be associated with iron
species, according to some authors. Finally, the application of the MCR-ALS method to a
spectral dataset measured from the combustion of a high pyrite concentrate and previous
knowledge of spectral bands of Na, FeO, and Fe3O4 patterns allowed us to find a spectral
profile associated with copper oxides in the range of 540 and 650 nm.

This research shows that the use of spectral measurement techniques is a powerful
tool to relate the spectral emission with physicochemical processes in a combustion flame
of copper concentrates. The online and real-time identification of copper oxide formation
in a flash furnace flame could be a great advance for the non-ferrous mineral in the
pyrometallurgical industry, improving process control by measuring a few process variables
such as copper content in mate or slag.
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