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Abstract: In this article, we describe a prototype photoreactor of which the geometrical configuration
was obtained by Genetic Algorithms to maximize the residence time of the reactant gases. A gas
reaction mixture of CO2:H2O (1:2 molar ratio) was studied from the fluid dynamic point of view.
The two main features of this prototype reactor are the conical shape, which enhances the residence
time as compared to a cylindrical shape reference reactor, and the inlet heights and position around
the main chamber that enables turbulence and mass transfer control. Turbulence intensity, mixing
capability, and residence time attributes for the optimized prototype reactor were calculated with
Computational Fluid Dynamics (CFD) software and compared with those from a reference reactor.
Turbulence intensity near the envisioned catalytic bed was one percentage point higher in the
reference than in the optimized prototype reactor. Finally, the homogeneity of the mixture was
guaranteed since both types of reactors had a turbulent regime, but for the prototype the CO2 mass
fraction was found to be better distributed.

Keywords: molar rate control; genetic algorithm; CFD; multi-inlet vortex reactor; residence time
distribution

1. Introduction

Fossil fuels are the predominant energy source in today’s society. Although most of the
current research in the field of renewable energies focuses on the study and design of solar
panels and wind turbines [1–3], these technologies only represent the 5% of the worldwide
energy generation, while oil, coal, and natural gas have more than 85% [4]. The use of
fossil fuels leads to the generation of greenhouse gases, where CO2 is the most abundant
anthropogenic gas [5]. One of the possible flanks of attack on this problem is the synthesis
of useful chemical products using CO2 as raw material. It is in this way that CO2 emission
could be reduced, starting a new stage of energy supply-based in circular economy.

Photocatalysis is one of the ways that allow CO2 conversion to chemical products. This
type of technology provides, in addition to chemical products, a way to long-term energy
storage [6,7]. In the photocatalytic process, photoactive materials absorb sunlight, which
promotes the electronic excitation of the material, generating the hollow-electron pair, a
process that is important to carry out reduction or oxidation reactions [8–14]. Although
the study of new photoactive materials is a fundamental part of CO2 transformation,
the systematic study of transport phenomena and reactor engineering is fundamental to
achieve high performance systems [15–20]. There is a consensus concerning the geometry
and arrangement of a photoreactor since it affects both the yield and selectivity of the
chemical process that is carried out [21,22]. In addition, recent literature [23] has reported
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the relevance of combining light and heat to enhance the catalytic reaction. In particular,
the CO2 reduction using water as a reactant molecule (that is called the wet process CO2
reduction) aims to obtain products such as methanol, formaldehyde, etc. The vision of
chemical transformations within experimental set-ups where sunlight is used has strong
relevance and is the aim of green technology.

Two reactor configurations are used extensively for applications in CO2 reduction,
with photocatalytic methods, the continuous flow system and the batch system. The batch
system is one of the most studied. However, its photocatalytic efficiency is low, and given
its condition, it becomes imprecise compared to other methods [24]. The key limitation
of the batch reactor system is the products accumulation inside the reactor, which can
lead to changes in the concentration of the reactants and reabsorption at the surface of
the photocatalyst. On the other hand, although, continuous flow reactors have better
efficiency, the production of compounds is inadequate due to the short residence time of
the reactants inside the reactor chamber, reducing the contact time with the photocatalytic
material [25,26].

The fluid dynamics dependence on the geometric configuration of the reactor, makes
the optimization process a complex problem to solve, since an analytical representation of
the problem cannot be proposed. One of the alternatives to solve such type of optimization
problems, in addition to numerical methods, are stochastic algorithms. In this work,
Genetic Algorithms, one of the most popular stochastic methods [27], are used to search
for the geometric configuration that increases the residence time. Once the best design is
obtained, a fine-tunning process is performed to determine the inlets flow that maintains a
prolonged residence time, high turbulence intensity near the photocatalytic bed, and an
adequate molar fraction of gases. The mixing capability and turbulence enhancement of
the optimized photoreactor are evaluated. Likewise, the effect of the cone-shaped geometry
of the reactor is studied.

2. Methodology
2.1. Optimization Process
Genetic Algorithm

The implemented GA consists of six main steps; four of them correspond to the evolu-
tionary loop, where the selection of parents, crossing, mutations, creation of offspring and
the choice of individuals for the next generation takes place; the other two steps correspond
to the initialization and termination of the evolutionary loop, where the maximum number
of iteration (MaxIt) is reached, see Figure 1. The algorithm can find a local minimum of a
real and real-valued objective function f

(→
x
)

. The objective function corresponds to the
volume rate (ΦV f mL/min) that passes through the photocatalytic bed. In all the runs for
the GA the three inlets have a volume flow rate of 83.3 mL/min with CO2 at 298 K, and the
outlet has a pressure opening at 100 kPa, as boundary conditions for the CFD.

There are seven geometric design variables that define each member of the population
for the GA. Three design variables correspond to the angle around the main chamber of
the three inlets, namely θA, θB, and θC. These inlets are always tangent to the circle formed
by the cut of the cone of the main chamber at their specific height, and have a diameter
of 1.59 mm. Another three design variables are the height of the inlets, namely HA, HB
and HC, all the heights are measured from the surface of the photocatalytic bed. Finally,
the wall angle in the main chamber defines the cone shape of the main chamber, which is
labeled as θD.
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Figure 1. Genetic Algorithm flow chart.

Only two dimensions are kept constant, the height of the main chamber, with a value
of 14.30 mm, and the diameter of the photocatalytic bed, with a value of 10 mm. The gene
of a specific individual in the GA will be,

ym = (θA, θB, θC, θD, HA, HB, HC). (1)

The design limits for each variable are shown in Table 1. For θA, θB, and θC the values
were selected to guarantee that they do not overlap, as well as HA, HB and HC.

Table 1. Limit values for the reactor design variables.

Name Maximum Value Minimum Value

θA 360.0◦ 310.0◦

θB 168.0◦ 70.0◦

θC 288.0◦ 190.0◦

θD 150.0◦ 90.0◦

HA 13.5 mm 2.0 mm
HB 13.5 mm 2.0 mm
HC 13.5 mm 2.0 mm

The evolutionary loop was executed several times before the selection of the optimized
geometric configuration, the design variables obtained by GA are presented in Section 2.2.1.

2.2. Tunning Process for the Optimized Photoreactor
2.2.1. Reactor Configuration

The study photoreactor, called optimized photoreactor, is characterized by having
a quartz window at the top, which allows light to enter the main chamber. It has three
inlets that surround the cone-shaped body of the photoreactor (Inlet A, Inlet B and Inlet C)
Figure 2a. At the bottom, before the outlet, the photocatalytic bed is placed, Figure 2b. For
the CFD the photocatalytic bed is simulated as an isotropic porous support with 95% of
porosity and 1.00 mm thickness. The height from the catalytic bed to the quartz window
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is 14.30 mm. The mean feature of the optimized photoreactor is the position of the three
inlets around the photoreactor. The inlets are at different heights with respect to the
photocatalytic bed, namely HA, HB and HC, and at different angles, namely θA, θB, and
θC. The rise of the cone of the main chamber, namely θD is 23.0◦ Figure 2c. All the values
described are in Table 2.
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Table 2. The optimized set of parameters for the reactor configuration, obtained by Genetic Algorithms.

Name Value

θA 313.4◦

θB 74.0◦

θC 240.9◦

θD 23.0◦

HA 11.0 mm
HB 7.2 mm
HC 6.3 mm

The reference reactor used for comparative purposes to the prototype reactor is de-
picted in Figure 3b. It is important, especially for explaining the fluid behavior, to em-
phasize that the gas inlet in both the prototype and the reference reactor are formed by a
hole with a chamfer arrangement that makes it relevant to define properly which inlet is
considered (A, B or C).

The criteria to evaluate the performance of both optimized configuration of the proto-
type reactor and the reference are the value of the turbulence and the composition (in mole
fraction) at the region along the reactor vessel and, especially, at the zone of the catalytic
bed. Because of this, the optimized prototype reactor was divided into five different re-
gions, whereas the reference reactor was divided into four related to the planes depicted in
Figures 4 and 5. The reference reactor was proposed based on the characteristics commonly
found in multi-inlet vortex reactors [28,29]. The height of the reference and the optimized
reactors are equal but the wall in the main chamber of the former is 90◦ since it is related to
a cylindrical vessel. In addition, the gas inlets are equidistant from each other and located
at the same height of the vessel. Nevertheless, it is essential to remind that inlet A, B, and
C can affect the turbulence intensity since gas flow through inlet A hits directly to C, gas
flow through inlet B hits directly to A and gas flow through inlet C hits directly to B, see
Figure 5b. The effect of this configuration in the turbulence intensity within the reference
reactor is one topic of interest of the CFD simulations.
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2.2.2. Inlets Gas Flow Considerations

After obtaining the best reactor design, through GA, the optimal model was studied
varying the substance type at the inlets as well as their volume flow rate, to determine
the turbulent behavior near the surface of the photocatalyst including the mole fraction.
In all the studies, the volume flow rate of two inlets (either A and B fixed and C varying,
or B and C fixed and A varying or, finally, A and C fixed and B varying) were kept
at 60 mL/min. The configuration for the substance inlet for the case of the prototype
reactor is shown in Table 3. There are always two inlets with H2O at 374 K and one inlet
with CO2 at 298 K., The reason for this configuration, is to have a molar ratio CO2:H2O
equal to 1:2, as previously mentioned, to foresee the formation of molecules such as
methanol (CH3OH), formaldehyde (CH2O) and molecular oxygen (O2) as expected reaction
products. It is obvious that other heavier molecules might be formed and that might imply
a different reactant molar ratio, but as molecular oxygen is expected to be formed, this
would balance the chemical reaction. Briefly, the presence of two moles of water provides
enough hydrogen to obtain the reduced products. The difference in temperature of the
reactant gas flows leads to evaluate the changes in thermal energy within the reactor that
will be analyzed and discussed later.

Table 3. Gas configuration for the turbulence and Mole Fraction Tuning.

Factor Level Name Level Value

Gas configuration

1
Inlet A CO2
Inlet B H2O
Inlet C H2O

2
Inlet A H2O
Inlet B CO2
Inlet C H2O

3
Inlet A H2O
Inlet B H2O
Inlet C CO2

2.3. Computational Fluid Dynamics Simulation

SolidWorks Flow SimulationTM is a solver for Computational Fluid Dynamics (CFD)
that implements the finite volume methodology using a Reynolds-averaged Navier–Stokes
approach, alongside the modified k-ε turbulence model with damping functions proposed
by Lam and Bremhorts, using the SmartCell® approach for mesh generation [30]. The
solver describes laminar, turbulent and transitional flows of homogeneous fluids, and
employs two transport equations, one for the turbulent kinetic energy (k), Equation (2),
and the second for the turbulent dissipation (ε), Equation (3) [31].

∂ρk
∂t

+
∂ρkui

∂t
=

∂

∂xi

((
µ +

µt

σk

)
∂k
∂xi

)
+ τR

ij
∂ui
∂xj
− ρε + µtPB, (2)

∂ρε

∂t
+

∂ρεui
∂t

=
∂

∂xi

((
µ +

µt

σε

)
∂ε

∂xi

)
+ Cε1

ε

k

(
f1τR

ij
∂ui
∂xj

+ CBµtPB

)
− f2Cε2

ρε2

k
, (3)

with
τij = µsij, (4)

τR
ij = µtsij −

2
3

ρkδij, (5)

sij =
∂ui
∂xj

+
∂uj

∂xi
− 2

3
δij

∂uk
∂xk

, (6)

PB = − gi
σB

1
ρ

∂ρ

∂xi
, (7)
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In which Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σε = 1.3, σB = 0.9, CB = 1 i f PB > 0,
CB = 0 i f PB < 0.

The turbulent viscosity is determined by:

µt = fµ·
Cµρk2

ε
. (8)

The Lam and Bremhorst’s damping function fµ is determined by:

fµ =
(

1− e−0.025Ry
)2
(

1 +
20.5
Rt

)
, (9)

where

Ry =
ρ
√

ky
µ

, (10)

Rt =
ρk2

µε
, (11)

in this case, y is the distance from a point to the wall and Lam and Bremhorst’s damping
functions f1 and f2 are determined by:

f1 = 1 +
(

0.05
fµ

)3
, (12)

f2 = 1− eR2
t . (13)

The heat flux is defined by:

qi =

(
µ

Pr
+

µt

σc

)
∂h
∂xi

, i = {1, 2, 3}, (14)

where, σc = 0.9, Pr is the Prandtl Number, and h is the thermal enthalpy.
Another important quantity for analysis is the turbulence intensity, which is defined as,

I ≡ u′

U
, (15)

where u′ is the root-mean-square of the turbulent velocity fluctuations and U is the mean
velocity (Reynolds-averaged), and it can be computed as

I ≡
√

1
3
(
u′x2 + u′y2 + u′z2

)
=

√
1
3

k, (16)

The mean velocity can be obtained from the three mean velocity components as

U ≡
√

1
3

(
u2

x + u2
y + u2

z

)
, (17)

All the thermodynamic properties of the gases used in this work were obtained with
the engineering data base of SolidWorks Flow SimulationTM. The mesh selection for the
reactors could be reviewed in the S1 Supplementary Material.

3. Results and Discussion
3.1. CFD Simulations Results
3.1.1. Turbulence Intensity and Mole Fraction Profile

Two additional aspects of the performance of the reactor were considered by calculat-
ing the turbulence intensity and the composition (mole fraction) over the whole system
and in the region close to the catalyst bed (plane 1). As mentioned in Section 2.2.2, the
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total gas flow rate was split into two flows of water and one for CO2. In this case, each
volumetric flow rate was 83.3 mL/min. The set of calculations amounted to 4 in which
the turbulence intensity was evaluated, as depicted in Figure 6. It can be observed that
the turbulence intensity within the optimized reactor vessel in bulk and on the surface of
the catalyst bed changes drastically depending on the gas inlet configuration as compared
to the reference reactor. It must be important to mention that the number following the
optimized photoreactor (Opt) code refers to design detailed in Table 3. The CO2 inlet flow
configuration affects the turbulence intensity depending on which injection port is used.
Nevertheless, the tendency indicates that the turbulence intensity increases if CO2 is fed
from top to bottom keeping the volumetric flow rate constant. The case of the reference
reactor shows that the turbulence is higher in the bulk of the system but, at the zone of
the catalyst zone, it becomes lower than the Opt-3 (Opt reactor with CO2 fed at the lower
inlet port). In this case, since the flow rate was kept constant and equal in all the inlets, it is
irrelevant to detail which inlet (A, B or C) is used to fed CO2 in the reference reactor. This
means that in the case of no variation of the volumetric inlet flow rate is set, the net effect
of changing the CO2 inlet port in the reference reactor has no impact on the turbulence
intensity or mass fraction distribution.
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A different behavior is observed when the volumetric inlet gas flow rate is changed.
Figure 7a,b show that the turbulence intensity increases as the gas flow changes keeping in
mind that the assigned inlet port for CO2 is C in both reference and Opt-3. However, to
enhance and discuss these results properly, it should be mentioned that the gas flow was
varied for both Opt-3 and the reference reactor in all the inlet ports (A, B or C) and that
logically, changes in gas flow through A and B means changes in the volumetric flow rate
of water. Those volumetric flow rates kept constant were set at 60 mL/min in all cases. In
addition, the turbulence intensity values plotted in this figure are referred to the plane close
to the catalytic bed (plane 5 in Opt-3 and plane 4 in the reference reactor). This indicates
that the catalyst will find those values of turbulence intensity, which is implicitly is related
to the energy content for the chemical reaction to occur. Turbulence is linked to both
homogeneity of the system (stoichiometric requirement) and kinetic energy associated with
the movement of the reactant molecules. The higher the value of the turbulence intensity
the better the energy requirement will be fulfilled for the chemical reaction. This behavior
was expected because, as the volumetric flow rate increases, more mass is entering for
which its velocity is higher so that the turbulence intensity also increases. The higher values
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of turbulence intensity were found in the reference reactor case although the observed
difference is relatively low as compared to the Opt-3 case.
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flow rate was set at 60 mL/min. For further details refer to Figures 3 and 4.

When varying the water inlet flow rate (inlet A and B), the turbulence intensity in-
creases in a smooth shape. On the contrary, a steep increase in turbulence is observed as
the gas flow increases through inlet C. This result is important since CO2 is fed through
inlet C, which indicates that varying its flow rate affects the turbulence within the reactor.
The values of the turbulence intensity are close between both reference and Opt-3 reac-
tors. Hence, it can be concluded that the effect of changing the volumetric gas flow rate
affect proportionally to the turbulence intensity with slightly better performance in the
reference reactor.

Together with turbulence, there is the mass fraction concern while varying the volu-
metric gas flow rate and the inlet port in the reactor. Again, inlet C is used for CO2 and
A and B for water. In the Opt-3 reactor, inlet C is located at the lower part of the reactor
vessel. Figure 8 shows the behavior of mole fraction as a function of the volumetric gas
flow rate in both reference and Opt-3 reactors. The calculated plotted mole fraction values
were estimated in the proximity of the catalytic bed surface (plane 5 in Opt-3 and plane
4 in the reference reactors). The emphasis of this result lies in the molar ratio obtained
at the catalytic site that corresponds to the stoichiometric requirement for the chemical
reaction (CO2:H2O 1:2). No significant difference between reference and Opt-3 reactor can
be observed. This is also related to the good turbulence achieved in the whole system and
at the closeness of the catalyst. With this result, it has been established that the operating
conditions in which the optimal dynamics of the system in the Opt-3 reactor were reached
are those summarized in Table 4.

Table 4. Optimal operating conditions based on turbulence intensity and stoichiometric CO2:H2O
molar ratio in Opt-3 reactor.

Factor Level Name Level Value Volume Flow Rate (mL/min)

Gas
configuration 3

Inlet A H2O 60
Inlet B H2O 90
Inlet C CO2 60
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Those settings of Table 4 led to the residence time distribution depicted in Figure 9. The
residence time was obtained from a particle study, based on the Lagrangian particle tracking
approach [32], where 30,000 representative particles of the corresponding substance were
injected at each inlet, after obtaining the fluid dynamics, for each particle the time elapsed
inside the computer domain was tracked. The residence time plays an important role
whenever a chemical reaction is about to occur. The case of the reference reactor indicates
that the distribution of the particles is divided into two big lumps with relatively close
residence time values (that it has been called bimodal). On the other hand, the residence
time distribution of the named Opt-3 tuned reactor (based on the aforementioned operating
conditions) shows a multimodal distribution with slightly different time values among
them. Considering the average values, the residence time of the reference reactor yields
0.35 s, while that of the Opt-3-tuned reactor yields 0.85 s. This means that the time used for
the reactant molecules within the prototype reactor is almost three times the value obtained
for the reference. Again, this might be priceless at the moment in which the chemical
reaction takes place.
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3.1.2. Graphical Profile of Reference and Opt-3-Tuned Reactor

A better look at the effluent behavior within the reference and Opt-3-tuned reactors
is depicted by the images in Figures 10–15. Again, the different coloring regions help
visualize how the reactant mixture behaves depending on the studied variable. For instance,
Figure 10 shows that under conditions of Table 4, the turbulence at the interior of each
reactor vessel behaves differently depending on the location. However, for the sake of
clarity, the turbulence found at the catalyst region is somewhat similar in both systems, see
Figure 10c,d.

Notably, the turbulence at the center and on the upper region of the Opt-3-tuned
reactor has low turbulence (dark blue spots) since there is the vortex formation (whirl) due
to the gas entrance, the arrangement of this inlet and the shape of the hole (chamfer shape).
As expected, in both reactors, once the reactant mixture has passed through the catalyst
support, the gas leaves the reactor in a laminar regime.
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Concerning the composition within the system for the Opt-3-tuned reactor, Figure 11
shows the calculated mass fraction profile at different layers of the current reactor vessel
(see the horizontal planes 1–4 in Figure 4). For the sake of knowledge, the mass fraction
depicted in this figure is what the program yields, and that is the reason the mole fraction
is not currently plotted. Nevertheless, the correspondence between one and another is
that for the stoichiometric molar requirement of the reaction (CO2:H2O 1:2) the CO2 mole
fraction should be 0.33, equivalent to the CO2 mass fraction equal to 0.55. Therefore, the
CO2 mass fraction near 0.55 refers to the molar ratio needed for the chemical reaction of
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current interest. Therefore, according to the mass composition in the Opt-3-tuned reactor,
on the surface of the catalyst, there will be the amount of reactant needed to perform the
chemical reaction. This, together with the turbulence requirement previously discussed,
can be set as the conditions to perform the chemical process without having mass transport
limitations and an apparent energy requirement fulfilled.
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Another perspective of the CO2 mass fraction profile along both the reference and the
Opt-3-tuned reactor is shown in Figure 12. Once CO2 and water enter the reactor vessel,
the mixture becomes more homogeneous in prototype rather than in reference reactor,
which is reflected in the yellow to greenish color that reaches the catalyst area in the reactor.
It seems that although turbulence is slightly higher in the reference reactor, there is still
a gradient of reactants concentration that reaches the catalytic bed, which is much less
pronounced in the Opt-3-tuned reactor. For the latter case, the conical shape enhances the
homogeneous distribution of reactants even though turbulence is, under these conditions,
one value lower than the reference case.
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Two additional aspects of interest, while dynamic simulations are performed are the
vectorial performance of the particle trajectory and the streamlines related to the eddy



Processes 2021, 9, 2237 14 of 22

formation during the gas mixing. The calculated speed vector of the trajectory of the
particle, Figure 13, shows that once the volumetric gas flow rate enters the reactor vessel,
the velocity of the particles becomes almost zero at any point in the bulk of both types of
reactors. This means that inertial and gravitational forces rather than the turbulence effect
might govern the movement of the particle. In other words, the direction and speed of the
particles seem to depend on the inlet flow rate, and its configuration in the reactor vessel is
also influenced by its geometrical shape (cylindrical and conical). It seems a logical result
to find that the velocity vector in Opt-3-tuned is better distributed than in the reference
reactor because, besides the conical shape, the upper inlet port exerts this inertial force
enhanced by the other two inlet ports as the gas effluent reaches the exit. A situation in
reference reactor cannot be observed because all the inlet ports are located at the same
height from the reactor exit.

The qualitative eddies formation and their size and distribution are better observed
in the image of Figure 14. The streamlines depicted in this figure seem to be larger and
rounded in the Opt-3-tuned reactor, whereas elongated streamlines are observed in the
reference reactor. Only to emphasize the importance of this picture, large eddies are related
to the higher kinetic energy of the particles in the gas effluent. In contrast, small eddies
promote an increase in thermal energy because more friction forces are involved. It can
be concluded that the behavior of the dynamics of the gas reactant mixture for both types
of reactors are rather similar because eddies of comparative size, but different shapes are
formed in both reactors.
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Finally, but no less important for the current work is the temperature profile of the
reactant gas mixture for both types of reactors. A marked temperature gradient in both
reactors that is related to the temperature of the water (as vapor) inlet flow rate and that of
the CO2 (gas) inlet flow rate. To feed water in the vapor phase, this must be evaporated,
which means to raise temperature to its boiling point (~373.15 K). On the other hand, CO2
is a gas at room temperature, and there is no need to be heated up. A rough calculation of
the equilibrium temperature, based on specific heat and mass of both reactants accordingly
to the volumetric standard flow rate, yields that the temperature at thermal equilibrium
is 346.3 K which corresponds to the yellow color in Figure 15. The slightly more uniform
temperature profile observed within the Opt-3-tuned reactor might be relevant when the
chemical reaction occurs since the thermal energy is better distributed in this reactor than
in the reference one.
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3.1.3. Main Chamber Cone Influence

To verify the influence of the main chamber cone of the prototype photoreactor, which
was generated from the variable θD (see Figure 2); a new design was established, namely
Opt-3-Tuned-No-Cone Figure 16. This new reactor design has the inlet locations with the
same values as those shown in Table 2 in Section 2.2.1. This new design considers θD = 90◦,
which is the value used in the reference reactor. For comparative purposes, the inlet fluids
were taken from Section 3.1.1 Table 4, where the optimal operation values were found.
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Figure 17 shows the calculated distribution of the residence time for Opt-3-Tuned-No-
Cone reactor, reference reactor and the Opt-3-tuned reactor and the one-inlet reactor. The
reference reactor has two main regions in its distribution, while the Opt-3-Tuned-No-Cone
reactor has a single area distributed in time. As mentioned in Section 3.1.1, the longest
residence time was obtained for the optimized photoreactor and the shortest time for that of
the one-inlet reactor design. The later configuration seems to be a completely non-efficient
system since the reactant gas mixture passes through the reactor almost without interacting
due to the short contact time (see Table 5). On average, the residence time of the Opt-3-
Tuned-No-Cone and that of the reference reactor are the same besides their distribution
profile is entirely different.
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Table 5. Reactors mean residence time using operation conditions described in Table 4.

Reactor Mean Residence Time (s)

Opt-3-Tuned 0.85
Opt-3-Tuned-No-Cone 0.35

One Inlet 0.20
Reference 0.35

The average turbulence intensity near the surface of the photocatalytic bed of all the
reactor systems is shown in Table 6. The best result was obtained for the Opt-3-Tuned-No-
Cone photoreactor followed by the Opt-3-tuned with a slightly different values for the
reference and one-inlet reactors. This result might be due to the position of the inlets that
enhances the eddies formation that appears to be stable and remains without changing
along the body of the No-cone reactor vessel, a situation that is not assured in the cone
reactor vessel, logically, because of the reactor geometry. Although the position of the
inlets controls the degree of turbulence (that remains in the cylindrical reactor vessel), the
cone-shaped geometry controls the residence time, which is also an essential parameter in
catalytic processes.

Table 6. Reactors average Turbulence Intensity at the Photocatalyst surface.

Reactor Photocatalyst Surface Turbulence Intensity (%)

Opt-3-Tuned 13.07
Opt-3-Tuned-No-Cone 17.97

One Inlet 11.10
Reference 12.17

For the sake of comparison of the mass fraction, velocity vectors, turbulence and
temperature profile with those of the reference and optimized photoreactor, Figures 18–22
show the results obtained with the reactor vessel of the Opt-No-cone system. Rather similar
velocity vectors are found for both the conical and No-cone reactor vessels (see Figure 13).
However, there is a slight mass fraction distribution difference between these reactors which
is due to the geometrical shape. It seems that a more uniform distribution of reactants is
obtained using the conical reactor vessel that the non-conical one (see Figures 12 and 19).
As mentioned, the turbulence profile is better in the non-conical reactor vessel than in the
conical one (see Figures 10 and 20) which also can be qualitatively verified by the eddy
formation depicted in Figures 14 and 22. Concerning the temperature profile, there is a
more notorious temperature gradient in the non-conical reactor vessel than in the conical.
Again, the geometry of the vessels plays the role of reaching a better distribution of heat in
the conical configuration than in the cylindrical one (see Figures 15 and 21).

The configuration of cone-shaped geometry of the reactor with the use of broadband
radiation is compatible, using natural or artificial solar light. We consider light-assisted
CO2 conversion over heterogeneous catalyst supported by the catalytic bed surface inside
the optimized reactor chamber. The fused quartz window at the top of the photoreactor,
which allows light to enter the main chamber, is very efficient for transmitting UV-Visible
and Infrared radiation. The bed surface area can be irradiated by focusing an external
solar simulated light from a commercial lamp, selected wavelength lasers, or optically
filtered source. Light-assisted is attributed to electron-hole pairs generated in the catalysts
by the photon energies presented in the solar spectral range [22,23]. Thus, we can study
multiphoton capture, light penetration depth, and uniform photon access of bed surfaces
(foams, films, packed bed, catalysts prepared by sputtering, among others) [33]. Even the
light that is potentially absorbed and overlapped, not only in the catalytic bed surface with
active species for the photoreduction, but also an increment in the vibration and certain
polarization of the molecules of CO2 and H2O is expected, promoting an increment in their
reactivity. Additionally, catalyst temperature with high average power can be optically



Processes 2021, 9, 2237 18 of 22

increased [21]. Therefore, efficiently absorbed with respect to available irradiated photons
is typically considered. On the other hand, the product molecules respect for such absorbed
photons is also required to study the optimal thickness and optical properties of the photo-
catalyst. The combination control of gas mixing and the selection of solar radiation allows
the selective product molecules with the practical option of residence time. The residence
time is an excellent tool for improving light-matter interaction, studying thermodynamics,
kinetics, and photocatalytic activity properties [34,35], and the concentration control of the
reactants and reabsorption at the surface of such photocatalyst is possible.
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From a fundamental point of view, the mechanistic (synergistic) steps involved, while
a photocatalytic process is performed, are related to alternative pathways compared to
those involved in thermal (dark) processes. Although photonics is always complicated
and many speculations emerge when it is used for chemical transformations, greater and
greater insight into catalyst characterization has been gained that allows the establishment
of more convincing reaction mechanisms based on both the molecular electronic behavior
and their interactions [21–23]. Prototype reactors, hence, become important because it
sets the path for scaling-up. Assuring the latter, and with the long residence time that
is currently evaluated, it is likely to obtain those aforementioned eco-fuels from the wet
process CO2 reduction.
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4. Conclusions

Using as starting point the optimized photoreactor by Genetic Algorithms, which gen-
erated the height and distance of separation among the three reactant inlet ports led to the
optimal configuration of this conical prototype photoreactor, it was possible to determine
the optimal operating conditions that guarantee a mixture of CO2:H2O (1:2 molar ratio), a
long residence time and a high turbulence intensity, close to the photocatalyst surface. The
tunning process enables the understanding of the optimized reactor behavior, allowing gas
mixing control. In this way, it is possible to determine the appropriate operating conditions
for different gas mixtures with another molar ratio. The inlet arrangement of the optimized
reactor yielded similar behavior either in turbulence or in composition as compared to
a reference cylindrical shape reactor. However, the residence time of the reactant in the
prototype is 2.4 times higher than for the reference which is important when a chemical
reaction is about to occur. By changing the conical to a non-conical reactor geometry,
keeping the gas mixture inlets equal to the conical reactor vessel, enhances the turbulence
within the vessel but lowers the residence time (the value is similar to that of the reference
reactor). In the end, the dynamic performance of the prototype conical photoreactor is
slightly better concerning the temperature profile, mass fraction, and residence time with
good turbulence intensity that is reached because of the designed conical shape and the
asymmetrical gas inlet distributions along the reactor body. It only remains to build it in
stainless-steel material and to test it with a set of well-planned experiments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pr9122237/s1. Figure S1. Mesh independence test: (a) Reference photoreactor; (b) Optimized
photoreactor; (c) Opt-No-Cone; (d) One-Inlet. Figure S2. Mesh cross-section: (a) Reference photoreac-
tor; (b) Optimized photoreactor; (c) Opt-No-Cone; (d) One-Inlet. Figure S3. Mesh cut refinement: (a)
For the reference photoreactor; (b) For the optimized photoreactor. Table S1. Number of cells for the
studied reactors.
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