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Abstract: This article discusses the queueing-inventory model with a cancellation policy and two
classes of customers. The two classes of customers are named ordinary and impulse customers.
A customer who does not plan to buy the product when entering the system is called an impulse
customer. Suppose the customer enters into the system to buy the product with a plan is called
ordinary customer. The system consists of a pool of finite waiting areas of size N and maximum S
items in the inventory. The ordinary customer can move to the pooled place if they find that the
inventory is empty under the Bernoulli schedule. In such a situation, impulse customers are not
allowed to enter into the pooled place. Additionally, the pooled customers buy the product whenever
they find positive inventory. If the inventory level falls to s, the replenishment of Q items is to be
replaced immediately under the (s, Q) ordering principle. Both arrival streams occur according to the
independent Markovian arrival process (MAP), and lead time follows an exponential distribution.
In addition, the system allows the cancellation of the purchased item only when there exist fewer
than S items in the inventory. Here, the time between two successive cancellations of the purchased
item is assumed to be exponentially distributed. The Gaver algorithm is used to obtain the stationary
probability vector of the system in the steady-state. Further, the necessary numerical interpretations
are investigated to enhance the proposed model.

Keywords: IMPULSE customer; cancellation policy; Markovian arrival process; queueing-inventory
model

1. Introduction

In a queueing-inventory system, customers arrive at the service system on an indi-
vidual basis if the item is needed. Inventory must be present if customers are to pick
up the service. Once the service is completed, the items are removed from inventory for
those who have earned the services. This system has emerged as an immense aspect in the
mathematical modelling of predicament commotions issuing in a tremendous application,
transportation system, grocery store, computer network system, and many other systems.
Many researchers have worked with queueing-inventory systems in the last few decades.
When ordered products are plentiful, backlogged demands are fulfilled quickly; but, when
the item is replenished, backlogged demands may have to wait for fulfillment. This type of
backlogged demand is called postponed demand [1].

Customers that buy on the spur of the moment are referred to as impulse customers.
Customers who buy on the spur of the moment have little regard for planning, budgeting,
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or the necessity for a certain item. It is, in reality, a sudden event in which our emotions
take over our brain and drive us to go ahead and purchase that object, even though we
may not need it right now or even immediately. For instance, perfume and body spray,
their attractive smell often encourages customers to buy them even if they do not have any
need for it, dress, shoes, and cosmetics for other examples.

Cancellation is a very frequent occurrence that happens in life. For instance, after
purchasing any garment or dress, later, if it is found to be unfit or not liked, we go for
cancellation. Similarly, we cancel an advance travel reservation, including Bus, Train, and
Flight, if we happen to come across some unexpected and sudden circumstances that don’t
allow us to make our journey as planned.

Aspects of this work are as follows: The model representation of the queueing-
inventory with the cancellation policy and impulse customers governed by the Markovian
arrival process portrayed in Section 2. An investigation has been made in Section 3 to
show the joint probability distribution of the number of pool customers and stock level in
a steady-state case. Section 4 is a delineated discussion of a few numerical instances.

Literature Review

Sigman and Levi [2] and Melikov and Molchanov [3] commenced to discourse
on the queueing-inventory problem. The MAP is one of the emerging trends in the
queueing-inventory system, and Neuts [4] has put forward the Markovian arrival process.
Berman et al. [5] have commenced the idea of postponed demand in the inventory model.

Correlated along with the postponed demand article, Sivakumar and Arivarignan [6]
scrutinized the perishable inventory model along the infinite size waiting for a place,
customers appear under MAP, and when the customer appears in the stock-out, either
they move to a pool or fall out. In addition, Paul Manuel et al. [7] deal with a perishable
inventory model having infinite waiting space, two kinds of customers arrive according to
MAP, and service time follows PH distribution.

Krishnamoorthy et al. [8] commenced inter-cancellation into the queueing-inventory
system. Dhanaya Shajin and Krishnamoorthy [9] scrutinized a queueing-inventory model
with the MAP, service time under PH distribution, all the items have a common lifetime,
and items are overbooked. The waiting customers are fall out when the system is full,
forthwith S items are formed. Dhanya Shajin et al. [10] explored advanced reservation and
overbooking with MAP in the queueing-inventory model. There are only a few papers
related to inter-cancellation. Some notable work done by Sung-Seok Ko [11], Srinivas R.
Chakravarthy [12], and Krishnamoorthy et al. [13] on the Markovian arrival process.

Nair and Jose [14] considered the retrial customers, the customers appear according to
MAP, the service time is exponentially distributed, and the process of production complies
with PH distribution. Production begins and service at a reduced rate up to the zero level
of inventory when the inventory goes to a pre-assigned level s. Incoming customers are
aimed at a buffer of finite capacity equal to the existing inventory level. Suppose that
buffer is complete, customers move to an orbit of infinite size or fall out. Punalal and
Babu [15] contemplated a model in which the customers appear, governed with MAP,
and all customers are treated as ordinary at the moment of arrival. During busy periods,
incoming customers fill the orbit’s infinite capacity. Every orbit customer, regardless of
others, makes a priority with the time that occurs. Once, the customer got precedence
rabidly taken service during the free period; otherwise, the customer went right into a
waiting space that is reserved only for precedence generated customers.

Ayyappan and Gowthami [16] considered a queueing model along with the arrival
types, such as incoming and outgoing calls. Customers who appear on the system under the
MAP make incoming calls, and the server makes outgoing calls during idle time. Service
times of incoming or outgoing calls under phase-type distribution. Seokjun Lee et al. [17]
contemplated the queueing system with a single server and heterogeneous the arrival flow
is under the marked Markov arrival process. There is distinct impatience for customers
of several kinds. It is assumed that the difficulty of setting non-preemptive priorities for
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various types of consumers is solved within the assumption that customers can improve
their precedence while being in the buffer. The distribution of service time is of the phase
type. Valentina Klimenok et al. [18] analysed the queueing system with a single server.
They categorized two kinds of customers who appear under a batch-marked Markov arrival
process. Customers with low priority are entitled to obtain higher priority after a random
period. Non-priority customers are also allowed in the buffer, but fix the timer. If the timer
is expired, the customer falls away from the system with some probability. The high priority
acquires the complementary probability. Alexander Dudin and Sergei Dudin [19] analysed
the queueing model along with a single server and arrival types, such as customers of type 1
can be queued into the buffer with infinite capacity and customers of type 2 have a finite
capacity buffer. Customers of both types can be impatient, and the arrival harmonizes with
the marked Markovian arrival process. The author introduces a new form of distribution
called phase-type with failures (when a failure can occur while a customer is being served
in generalizes of phase-type distribution). The distribution of service time is PHF. In a
related bibliography [20–23], the stochastic inventory system with MAP arrivals is shown.

The findings of the previous poll sparked our work, and to our knowledge, there has
been little research into impulsive customers with MAP.

2. Model Description

This paper investigates the two classes of customers in a queueing-inventory system
with a cancellation policy. The two classes of customers are defined as ordinary and
impulse customers. In real-life phenomena, we observe two types of customers who may
approach the inventory system to buy a product. Many customers visit an inventory
system without planing to buy the product. Suppose at the end of the visiting process,
a customer decides whether to buy a product or not. This type of customer is called an
impulse customer. On the other hand, once the customers enter into the system, they buy
the product compulsorily. These kinds of customers are called ordinary customers. In such
a way, the proposed model allows these two classes of customers to purchase inventory
items. The arrival pattern of both ordinary and impulse customers are assumed to be
independent MAP.

The arrival process of ordinary customer representation is (E0, E1), where Ei(i = 0, 1)
are square matrices of dimension k1, such that E0 governs transitions corresponding to no
arrival and E1 governs transitions corresponding to an arrival. The underlying Markov
chain U3(t) of the MAP has the generator E is a square matrix of dimension k1, where
E = E0 + E1.

The stationary rate λ1 of an ordinary customer is defined by λ1 = η1E1e, where
stationary row vector η1 of dimension 1× k1 is to be obtained by using η1E = 0 and η1e = 1.

Similarly, (F0, F1) represents the arrival pattern of an impulse customer, where Fi(i = 0, 1)
are the square matrices of size k2, such that F0 governs transitions corresponding to no arrival
and F1 governs transitions corresponding to an arrival. The underlying Markov chain U4(t)
of the MAP has the generator F is a square matrix of size k2, where F = F0 + F1.

The stationary rate λ2 of an impulse customer is defined by λ2 = η2F1e, where
stationary row vector η2 of dimension 1× k2 is to be obtained by using η2F = 0 and η2e = 1.
The parameters k1 and k2 represents the phase of the arrival process of ordinary and impulse
customers, respectively.

The service process of the system is assumed to be instantaneous when the inventory
level is positive. Any arriving customer finds that there exists a positive inventory, he/she
starts purchasing their product. After the purchase completion of the customer, the in-
ventory will be decreased by one unit of an item. In this system, at the end of the visiting
process of impulse customers, they leave the system either under the transition rate pF1 if
they buy the product or qF1 if they do not buy the product. Suppose the inventory system
is empty, the arriving impulse customers are considered as lost. In contrast, the ordinary
customers may join in the finite size, N of pooled place under the Bernoulli schedule. That
is, the arriving ordinary customer enters into the pooled place with probability r1 or leave
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the system with probability r2, where r2 = 1 − r1. The customers in the pool approach
the inventory system whenever they find the positive stock in the inventory with the
rate θ. The time between two successive approaches of a pooled customers follows an
exponential distribution.

Cancellation policy:
The customers return the purchased product due to their dissatisfaction. Suppose

the purchased item is damaged and the system has at most S (maximum inventory level)
items in the inventory, they can not be allowed to return the product. Whenever there
exists a (S − i) item in the inventory, where i(1 ≤ i ≤ S) represents the purchased item, the
transition rate of the return or cancellation of the product is defined by iβ. The time between
two successive cancellations of the product is assumed to be exponentially distributed.

Further, if the storage of the system falls to s, there must be Q(= S − s > s + 1)
items immediately replenished with the transition rate µ(> 0). The lead time follows an
exponential distribution.

3. Analysis

In this sector, we construct the transition rate matrix on the queueing-inventory system.
The Markov process of the form {(U1(t), U2(t), U3(t), U4(t)), t ≥ 0} with state space

C = {(u1, u2, u3, u4) : u1 = 0, 1, · · · , N; u2 = 0, 1, · · · , S; u3 = 1, 2, · · · , k1; u4 = 1, 2, · · · , k2}

where

U1(t) : The number of customers in pool of finite size waiting

place at time t.

U2(t) : The number of items in the inventory at time t.

U3(t) : Phase of the ordinary customers arrival process at time t.

U4(t) : Phase of the impulse customers arrival process at time t.

Transition rates are:

1. Transition due to ordinary customers arrival

(a) (u, v) → (u, v − 1): rate E1 ⊗ Ik2 , u = 0, 1, · · · , N; v = 1, 2, · · · , S.

(b) (u, 0) → (u + 1, 0): rate r1E1 ⊗ Ik2 , u = 0, 1, · · · , N − 1.

2. Transition due to impulse customers arrival
(u, v) → (u, v − 1): rate Ik1 ⊗ pF1 , u = 0, 1, · · · , N; v = 1, 2, · · · , S.

3. Transition due to cancellation
(u, v) → (u, v + 1): rate (S − v)βIk1 ⊗ Ik2 , u = 0, 1, · · · , N; v = 0, 1, · · · , S − 1.

4. Transition due to approach from pooled customers
(u, v) → (u − 1, v − 1) : rate θ Ik1 ⊗ Ik2 , u = 1, 2, · · · , N; v = 1, 2, · · · , S.

5. Transition due to replenishment
(u, v) → (u, v + Q) : rate µIk1 ⊗ Ik2 , u = 0, 1, · · · , N; v = 0, 1, · · · , s,

where u = u1, v = u2.
The process’s infinitesimal generator A is generated by
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A =

0 1 2 3 . . . N − 1 N



0 A00 A01 0 0 . . . 0 0
1 A10 A11 A01 0 . . . 0 0
2 0 A10 A11 A01 . . . 0 0

3 0 0 A10 A11
. . . 0 0

...
...

...
...

. . . . . . . . .
...

N − 1 0 0 0 0
. . . A11 A01

N 0 0 0 0 . . . A10 A22

,

where [A10]vv′ =

{
θ Ik1 ⊗ Ik2 v′ = v − 1, v = 1, 2, · · · , S,
0 otherwise.

[A01]vv′ =

{
r1E1 ⊗ Ik2 v′ = v, v = 0,
0 otherwise.

[A00]vv′ =



E1 ⊕ pF1 v′ = v − 1, v = 1, 2, · · · , S,
(S − v)βIk1 ⊗ Ik2 v′ = v + 1, v = 0, 1, · · · , S − 1,
µIk1 ⊗ Ik2 v′ = v + Q, v = 0, 1, · · · , s,
(r2E1 + E0)⊕ F
−(µ + (S − v)β)Ik1 ⊗ Ik2 v′ = v, v = 0,
E0 ⊕ (F0 + qF1)

−(µ + (S − v)β)Ik1 ⊗ Ik2 v′ = v, v = 1, 2, · · · , s,
E0 ⊕ (F0 + qF1)

−(S − v)βIk1 ⊗ Ik2 v′ = v, v = s + 1, s + 2, · · · , S − 1,
E0 ⊕ (F0 + qF1) v′ = v, v = S,
0 otherwise.

[A11]vv′ =



E1 ⊕ pF1 v′ = v − 1, v = 1, 2, · · · , S,
(S − v)βIk1 ⊗ Ik2 v′ = v + 1, v = 0, 1, · · · , S − 1,
µIk1 ⊗ Ik2 v′ = v + Q, v = 0, 1, · · · , s,
(r2E1 + E0)⊕ F
−(µ + (S − v)β)Ik1 ⊗ Ik2 v′ = v, v = 0,
E0 ⊕ (F0 + qF1)

−(µ + (S − v)β + θ)Ik1 ⊗ Ik2 v′ = v, v = 1, 2, · · · , s,
E0 ⊕ (F0 + qF1)

−((S − v)β + θ)Ik1 ⊗ Ik2 v′ = v, v = s + 1, · · · , S − 1,
E0 ⊕ (F0 + qF1)

−θ Ik1 ⊗ Ik2 v′ = v, v = S,
0 otherwise.
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[A22]vv′ =



E1 ⊕ pF1 v′ = v − 1, v = 1, 2, · · · , S,
(S − v)βIk1 ⊗ Ik2 v′ = v + 1, v = 0, 1, · · · , S − 1,
µIk1 ⊗ Ik2 v′ = v + Q, v = 0, 1, · · · , s,
E ⊕ F
−(µ + (S − v)β)Ik1 ⊗ Ik2 v′ = v, v = 0,
E0 ⊕ (F0 + qF1)

−(µ + (S − v)β + θ)Ik1 ⊗ Ik2 v′ = v, v = 1, 2, · · · , s,
E0 ⊕ (F0 + qF1)

−((S − v)β + θ)Ik1 ⊗ Ik2 v′ = v, v = s + 1, · · · , S − 1,
E0 ⊕ (F0 + qF1)

−θ Ik1 ⊗ Ik2 v′ = v, v = S,
0 otherwise.

It may be noted that the matrices A10, A01, A00, A11, and A22 are all square matrices
of dimension (S + 1)k1k2.

3.1. Steady State Probability Vector

The Markov process {(U1(t), U2(t), U3(t), U4(t)), t ≥ 0} on the state space C and the
limiting distribution Θ(u1,u2,u3,u4)

=

lim
t→∞

Pr[U1(t) = u1, U2(t) = u2, U3(t) = u3, U4(t) = u4|U1(0), U2(0), U3(0), U4(0)]

exists and is independent of the initial state.
Take

Θ = (Θ0, Θ1, Θ2, ..., ΘN−1, ΘN),

where

• Θu1 = (Θ(u1,0), Θ(u1,1), Θ(u1,2), · · · , Θ(u1,S)), u1 = 0, 1, · · · , N
• Θ(u1,u2)

= (Θ(u1,u2,1), Θ(u1,u2,2), · · · , Θ(u1,u2,k1)
), u1 = 0, 1, · · · , N; u2 = 0, 1, · · · , S

• Θ(u1,u2,u3)
= (Θ(u1,u2,u3,1), Θ(u1,u2,u3,2), · · · , Θ(u1,u2,u3,k2)

), u1 = 0, 1, · · · , N;
u2 = 0, 1, · · · , S; u3 = 1, 2, · · · , k1.

Our general matrix A has same structure in Gaver [24], so we make use of the same
arguments to determine the limiting probability vectors.

We present the Gaver algorithm here.
Gaver Algorithm:

1. Determine the matrices Zn recursively by initializing,
Z0 = A00
Zn = A11 + A10(−Z−1

n−1)A01, 1 ≤ n ≤ N − 1
ZN = A22 + A10(−Z−1

N−1)A01.

2. Compute the limiting probability vectors Θn using,
Θn = Θ(n+1)A10(−Z−1

n ), for n = 0, · · · , N − 1.

3. Determine the system of equations
ΘN ZN = 0 ;

N

∑
n=0

Θne = 1.

From the above system of equations ΘN ZN = 0, vector ΘN could be determine distinc-
tively, up to a multiplicative constant. The constant is resolved by Θn = Θ(n+1)A10(−Z−1

n ),

n = 0, · · · , N − 1 and
N

∑
n=0

Θne = 1.
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3.2. Few Significant of the System Peculiarities

In this segment, we acquire a few significant peculiarities measures.

1. Mean inventory level
Let ηI is mean inventory level in the steady state. Since Θ(i1,i2) denote the limiting
probability vector with the inventory level represents as i1 and the number of cus-
tomers in the pool represents as i2. This is given by

ηI =
N

∑
i1=0

S

∑
i2=1

i2Θ(i1,i2)e.

2. Mean reorder rate
Let ηR denote the mean reorder rate in the steady-state. When the inventory level
reduces to s from s + 1 due to any of the following situations, a reorder is triggered:

(a) The purchase of an ordinary customer.
(b) Any one of pooled customers approaches.
(c) The purchase of an impulse customer.

This is lead to

ηR =
N

∑
i1=0

Θ(i1,s+1)(E1 ⊗ Ik2)e +
N

∑
i1=1

Θ(i1,s+1)θ Ie +
N

∑
i1=0

Θ(i1,s+1)(Ik1 ⊗ pF1)e.

3. Mean number of customers in the pool
Let ηPC denote the mean number of customers in the pool. Since Θi1 denote the
stationary probability vector with the inventory level i1. Hence, the mean number of
customers in the pool is given by

ηPC =
N

∑
i1=1

i1Θi1 e. Mean rate of arrival of impulse customers

Let ηIC denote the mean rate of arrival of impulse customers in the steady state. Then,
ηIC is given by

ηIC =
N

∑
i1=0

S

∑
i2=0

Θ(i1,i2)(Ik1 ⊗ F1)e.

4. Mean number of lost customers in the system
Let ηL denote the mean number of lost customers in the system. This is given by

ηL =
N−1

∑
i1=0

Θ(i1,0)(r2E1 ⊗ Ik2)e +
S

∑
i2=0

Θ(N,i2)(E1 ⊗ Ik2)e +
N

∑
i1=0

Θ(i1,0)(Ik1 ⊗ F1)e

+
N

∑
i1=0

S

∑
i2=1

Θ(i1,i2)(Ik1 ⊗ qF1)e.

5. Mean cancellation rate of return product
Let ηC denote the mean cancellation rate of return product in the steady state. Then,
ηC is given by

ηC =
N

∑
i1=0

S−1

∑
i2=0

Θ(i1,i2)(S − i2)βe.

3.3. Construction of the Cost Feature

The expected total cost function per unit time is constructed by

C(S, s) = chηI + cwηPC + csηR + cclηL + ciηIC ,
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where

ch : The inventory carrying cost per unit time.

cw : Waiting cost of a customer in the pool per unit time.

cs : Setup cost per order.

ccl : Cost of a customer lost due to the zero stock per unit time.

ci : The cost due to the arrival of impulse customer per unit time.

4. Numerical Illustration

We give a few descriptive numerical examples that expose the convexity of the ex-
pected cost rate and the MAP for ordinary and impulse customers’ appearance. We
consider, E0 = F0 and E1 = F1.

1. Hyper-exponential (HEX):

E0 = F0 =

[
−15 0

0 −5

]
; E1 = F1 =

[
13.5 1.5
4.5 0.5

]
2. Erlang (ER):

E0 = F0 =

−3 3 0
0 −3 3
0 0 −3

; E1 = F1 =

0 0 0
0 0 0
3 0 0


3. Negative Correlation (NC):

E0 = F0 =

−2.35 2.35 0
0 −2.35 0
0 0 −3.5

; E1 = F1 =

 0 0 0
0.0235 0 2.3265
3.465 0 0.035


4. Positive Correlation (PC):

E0 = F0 =

−2.35 2.35 0
0 −2.35 0
0 0 −3.5

; E1 = F1 =

 0 0 0
2.3265 0 0.0235
0.035 0 3.465


The ordinary customer process has negative(positive) correlated arrival with coef-

ficient of variance cvar = 2λ1η1(−E0)
−1e − 1 = 0.9342(0.9342) and coefficient of corre-

lation ccor = (λ1η1(−E0)
−1E1(−E0)

−1)e − 1)/cvar = −0.2595(0.2595) with arrival rate
λ1 = 1.7594. By our consideration, the values of cvar and ccor for the impulse customer are
the same as the values of cvar and ccor for ordinary customers.

Table 1 gives the behaviour of the cost function of two variables C(S, s) for the case of
hyper-exponential distribution. The values are divulged bold in each column indicate the
minimum cost rate whereas, the least cost rate is specified in each row by underlining the
values. Thus a value (bold and underlined) spectacles the local minimum of the function
C(S, s). The optimal cost value C∗(S, s) = 34.3798 is achieve at S∗ = 23, s∗ = 7 with the
values r1 = 0.6, r2 = 1 − r1, p = 0.6, q = 1 − p, θ = 6.5, λ1 = 12.5, λ2 = 12.5, µ = 0.5,
β = 1, N = 7, ch = 0.9, cw = 3, cs = 10, ccl = 0.1, ci = 0.3. Table 1 and Figure 1 shows
that the function C(S, s) is convex.

Table 1. The function of total cost rate with two variables S and s.

S/s 5 6 7 8

21 73.9092 50.1316 35.9508 51.6445

22 70.1498 48.7175 35.1863 50.1225

23 66.6530 47.3281 34.3798 48.6287

24 64.2888 46.8634 34.4369 48.0564

25 64.3960 46.9908 35.0336 48.0747
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Figure 1. Convexity of the total cost with two variables S and s.

Table 2 scrutinized the ramifications of lead time rate µ and a customer’s approach
rate from the pool θ, the total cost rate C(S, s)∗ and analogous optimal value (S∗, s∗) with
values r1 = 0.6, r2 = 1 − r1, p = 0.6, q = 1 − p, λ1 = 12.5, λ2 = 12.5, β = 1, N = 7,
ch = 0.9, cw = 3, cs = 10, ccl = 0.1, ci = 0.3. We observe, the total expected cost rate
decreases whenever θ and µ increases. Tables 3 and 4 are bestow the total expected cost
rate is increase when cw, ch and cs increase but total expected cost rate is decrease when
ccl increases.

Tables 5–7 give the mean inventory level. The arrival rate of impulse customers,
reorder rate, the number of lost customer, and the mean cancellation rate decreases, and
the mean number of pooled customers increase whenever θ, µ, and β increase under
hyper-exponential, erlang, negative correlation and positive correlation.

Table 8 indicates the ordinary and impulse customer appears under erlang, a negative
and positive correlation on the optimal total cost rate values at optimal value S∗ and
s∗. Table 9 bestow the ordinary customer appears under erlang, and impulse customer
appears with various distributions (erlang, negative and positive correlation) on the various
measures and also negative and positive correlation. Table 10 bestow the effect of λ1 for
various MAP(ER, NC and PC) with λ2 = 0.1. The value of λ1 increase as C(S, s) increase
with different MAP(ER, NC, and PC) and the values r1 = 0.4, r2 = 1 − r1, p = 0.6,
q = 1 − p, θ = 10.5, µ = 2.5, β = 2, N = 7, ch = 9, cw = 3, cs = 10, ccl = 0.1 ci = 0.3.
Table 11 bestow the effect of λ2 for various MAP(ER, NC and PC) with λ1 = 1. The
value of λ2 increase as C(S, s) increase with different MAP(ER,NC and PC) and the values
r1 = 0.4, r2 = 1 − r1, p = 0.6, q = 1 − p, θ = 10.5, µ = 0.5, β = 02, N = 7, ch = 9,
cw = 3, cs = 10, ccl = 0.1, ci = 0.3. Figure 2 shows the correlation values of ordinary
customers are plotted against the C(S, s) values. It is possible to see that the C(S, s) is
increase as correlation coefficient values increases and impulse customer pursuant to
MAP(ER, NC and PC) with the values r1 = 0.5, r2 = 1 − r1, p = 0.5, q = 1 − p, λ1 = 12.5,
λ2 = 12.5, β = 1.5, N = 7, ch = 0.9, cw = 3, cs = 9, ccl = 0.1, ci = 0.3. Figure 3 shows
the correlation values of impulse customer are plotted against the C(S, s). It is possible to
see that the C(S, s) values non-decrease as the correlation coefficient values increases and
ordinary customer under MAP(ER, NC, and PC).
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Table 2. Ramification of the rate of lead time (µ) and approach from the pool customer (θ) on the
optimal values.

µ/θ 0.5 1.0 1.5 1.5 2.0

6
23 7 23 7 23 7 23 7 23 7

35.2053 34.9025 34.5938 34.2810 33.9654

8
24 7 24 7 24 7 23 7 23 7

32.0167 31.7418 31.4634 31.1825 30.8967

10
24 7 24 7 24 7 24 7 24 7

29.1054 28.8532 28.5981 28.3413 28.0834

12
24 7 24 7 24 7 24 7 24 7

26.5210 26.2909 26.0586 25.8250 25.5906

14
24 7 24 7 24 7 24 7 24 7

24.2303 24.0214 23.8108 23.5992 23.3871

Table 3. Ramification of the cost rate of a lost customer during the stock out period (ccl) and cost rate
of waiting customer in the pool (cw) on the optimal values.

ccl /cw 1 2 3 4 5

0.1
24 7 24 7 24 7 24 7 24 7

25.3237 26.3775 27.4312 28.4850 29.5388

0.2
23 7 23 7 23 7 23 7 23 7

20.6208 21.7063 22.7918 23.8773 24.9628

0.3
23 7 23 7 23 7 23 7 23 7

15.8716 16.9572 18.0427 19.1282 20.2137

0.4
23 7 23 7 23 7 23 7 23 7

11.1225 12.2080 13.2935 14.3790 15.4645

0.5
22 7 23 7 23 7 23 7 23 7

6.3611 7.4589 8.5444 9.6299 10.7154

Table 4. Ramification of the cost of setup cost (cs) and holding cost (ch) on the optimal values.

cs/ch 0.7 0.8 0.9 1.0 1.1

8
23 7 23 7 23 7 23 7 23 7

24.8072 25.1731 25.5389 25.9047 26.2705

9
24 7 24 7 24 7 23 7 23 7

25.7475 26.1340 26.5205 26.9057 27.2716

10
24 7 24 7 24 7 24 7 24 7

26.6582 27.0447 27.4312 27.8178 28.2043

11
24 7 24 7 24 7 24 7 24 7

27.5689 27.9555 28.3420 28.7285 29.1150

12
24 7 24 7 24 7 24 7 24 7

28.4797 28.8662 29.2527 29.6392 30.0258
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Table 5. Ramification of MAP with ER, NC and PC for (S, s, µ, β) = (21, 7, 2.5, 0.1).

Customer Arrivals θ ηI ηR ηPC ηIC ηL ηC

MAP with HEX

6 7.1489 5.5542 0.9492 0.1955 0.9655 4.9701

8 6.1845 5.2418 1.8282 0.1841 0.7165 4.8983

10 5.5445 5.1297 2.1221 0.1755 0.598 4.8031

12 5.2971 5.1185 2.3209 0.1587 0.2655 4.7455

14 4.1842 5.0395 2.7986 0.1484 0.0495 4.2965

MAP with ER

6 10.4716 1.5605 4.7701 0.1907 0.2718 3.9203

8 10.3639 1.1016 4.8031 0.1618 0.1711 3.7462

10 10.2159 0.7828 4.8355 0.1421 0.1071 3.3194

12 9.9523 0.5579 4.8672 0.1271 0.0669 3.2674

14 9.6010 0.3977 4.8983 0.1148 0.0419 3.0355

MAP with NC

6 11.9361 0.8136 3.6126 0.5072 0.1869 6.5235

8 11.8047 0.6569 3.6502 0.4694 0.1415 6.1452

10 11.7142 0.5300 3.6872 0.4375 0.1076 5.4512

12 10.1372 0.4278 3.7235 0.4099 0.0821 5.2201

14 9.2649 0.3455 3.7592 0.3857 0.0629 5.1258

MAP with PC

6 11.8179 0.0055 3.0061 0.4916 0.1555 8.2835

8 11.9699 0.0063 3.0113 0.4738 0.1655 8.1521

10 11.9704 0.0069 3.0160 0.4590 0.1731 7.9203

12 11.4244 0.0076 3.0203 0.4464 0.1790 7.5603

14 10.1432 0.0082 3.0244 0.4352 0.1835 7.3595

Table 6. Ramification of MAP with ER, NC and PC for (S, s, θ, β) = (21, 7, 10.5, 0.1).

Customer Arrivals µ ηI ηR ηPC ηIC ηL ηC

MAP with HEX

0.5 9.2511 1.2543 2.3533 0.7530 0.9532 6.2472

1.0 5.4524 1.0216 2.3751 0.4652 0.7592 6.1552

1.5 5.2455 1.0178 2.3751 0.3728 0.5313 5.2428

2.0 3.9425 1.0149 2.3751 0.2086 0.3097 5.1588

2.5 3.7058 1.0126 2.3751 0.0532 0.0927 5.0214

MAP with ER

0.5 9.5325 1.2029 3.8355 0.6417 0.8013 7.2472

1.0 9.9282 1.1225 3.8355 0.5124 0.7032 6.8435

1.5 8.8140 1.0212 3.8356 0.4532 0.6233 6.5472

2.0 8.2287 1.0129 3.8356 0.3681 0.5237 6.3758

2.5 8.0266 1.0025 3.8357 0.2522 0.4251 6.2457

MAP with NC

0.5 6.2459 2.0054 3.6872 0.7490 0.1595 7.8643

1.0 6.1205 2.0056 3.6873 0.6378 0.1645 7.5184

1.5 13.0476 2.0055 3.6873 0.5431 0.1635 7.4259

2.0 6.0102 2.0053 3.6874 0.4629 0.1585 7.3445

2.5 5.3139 2.0051 3.6874 0.3952 0.1510 6.2454

MAP with PC

0.5 5.8184 2.0051 4.5212 1.7060 0.9654 6.9637

1.0 3.9954 2.0051 4.6122 1.5971 0.7652 6.7235

1.5 2.3729 2.0049 4.6222 1.5089 0.6449 6.6282

2.0 2.9522 2.0046 4.7522 1.4371 0.5372 6.4645

2.5 1.7177 2.0043 4.7622 1.3782 0.3286 6.1278
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Table 7. Ramification of MAP with ER, NC and PC for (S, s, θ, µ) = (21, 7, 10.5, 2.5).

Customer Arrivals β ηI ηR ηPC ηIC ηL ηC

MAP with HEX

0.5 4.3915 4.7884 1.0554 38.8344 9.9514 4.2575

1.0 4.3805 4.4750 1.0320 30.7307 8.9913 4.1702

1.5 4.2681 4.3167 1.1123 30.3223 8.9913 4.1434

2.0 4.1868 4.0668 1.9921 30.2715 2.0151 1.5565

2.5 3.6345 3.2879 2.0475 30.1281 1.9440 1.3230

MAP with ER

0.5 6.5733 2.5566 1.0214 1.1602 5.1051 0.7440

1.0 2.0654 1.4214 1.2613 1.0315 4.0583 0.6516

1.5 0.8832 1.3771 1.3315 0.7274 1.4230 0.5629

2.0 0.4074 0.3074 1.3701 0.3122 0.5364 0.2604

2.5 0.1988 0.0065 1.4128 0.1682 0.2350 0.1353

MAP with NC

0.5 7.7680 4.1544 0.9291 0.0302 0.1130 0.0098

1.0 2.0747 3.5491 0.9314 0.0139 0.0139 0.0024

1.5 1.5672 1.5672 0.9437 0.0002 0.0006 0.0001

2.0 1.7586 0.5786 0.9560 0.0001 0.0005 0.0001

2.5 0.2107 0.3754 0.9684 0.0001 0.0004 0.0001

MAP with PC

0.5 0.3234 0.1616 1.1871 2.2619 3.4010 1.0797

1.0 0.3160 0.0788 1.1248 1.0117 1.7219 0.5441

1.5 0.0590 0.0206 1.2137 0.1521 0.1198 0.1073

2.0 0.0087 0.0019 1.3521 0.0194 0.0161 0.0158

2.5 0.0020 0.0003 1.4287 0.0040 0.0034 0.0035

Table 8. Ramification of ordinary and impulse arrival on optimal value.

Ordinary/Impulse Arrivals MAP with ER MAP with NC MAP with PC

MAP with ER
23 7 23 8 24 7

23.1112 21.6972 12.0351

MAP with NC
23 7 23 8 24 7

22.8082 21.4556 21.1303

MAP with PC
23 7 23 8 24 7

21.5698 23.8045 22.7606

Table 9. Ramification of MAP of ordinary and impulse customer arrivals on various measures.

Impulse Customer Arrivals ηI ηR ηPC ηIC ηL ηC

MAP of ordinary arrival with ER

MAP with ER 4.0749 0.3074 1.0370 0.3122 0.5364 0.2604

MAP with NC 2.8386 0.2935 0.9444 0.2783 0.0878 0.0417

MAP with PC 1.8369 0.0038 1.0198 0.0189 0.0562 0.0154

MAP of ordinary arrival with NC

MAP with ER 1.7586 0.0055 0.5786 0.5431 0.1635 0.1720

MAP with NC 0.6741 0.0161 0.0016 0.9280 0.4787 0.0128

MAP with PC 0.0164 0.0086 0.0029 0.8591 0.2563 0.0031

MAP of ordinary arrival with PC

MAP with ER 8.0759 0.0019 0.0194 0.0161 0.0158 2.1521

MAP with NC 2.2589 0.0171 0.0015 0.8594 0.5084 1.2315

MAP with PC 0.0909 0.8807 0.2235 0.1300 0.1486 1.1763
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Table 10. Effects of λ1 with various MAP.

λ1 Ordinary/Impulse Arrivals MAP with ER MAP with NC MAP with PC

1.0

MAP with ER
30 9 30 8 31 9

3.2312 2.8333 1.9895

MAP with NC
33 7 33 7 31 9

2.7514 2.8149 2.8366

MAP with PC
31 8 34 8 33 7

3.0706 2.8275 2.8560

1.5

MAP with ER
33 7 35 7 35 8

2.9048 2.9277 2.8302

MAP with NC
35 9 33 8 33 8

3.7805 2.8542 2.8954

MAP with PC
31 8 34 8 33 7

24.7267 2.3890 20.5588

2.0

MAP with ER
33 7 35 7 35 8

2.8922 2.8921 2.8967

MAP with NC
35 9 33 8 33 8

2.9265 2.8177 2.8953

MAP with PC
31 8 34 8 33 7

2.8855 2.8851 2.8920

Table 11. Effects of λ2 with various MAP.

λ2 Impulse/Ordinary Arrivals MAP with ER MAP with NC MAP with PC

0.2

MAP with ER
30 9 30 8 31 9

4.2172 1.3851 0.1314

MAP with NC
33 7 33 7 31 9

1.3100 1.0523 1.0050

MAP with PC
31 8 34 8 33 7

1.1253 0.5222 7.0213

0.4

MAP with ER
38 3 38 3 38 3

3.0233 2.2223 2.3503

MAP with NC
35 9 33 8 33 8

1.0123 2.2211 2.4125

MAP with PC
31 8 34 8 33 7

3.4561 2.1847 2.4875

0.6

MAP with ER
35 9 33 8 33 8

2.5654 3.4842 1.1551

MAP with NC
33 9 31 11 35 8

3.2484 1.5422 0.4412

MAP with PC
31 8 34 8 33 7

3.1654 2.1685 3.1517
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Figure 2. Ordinary customer arrival correlation vs. total cost rate.

Figure 3. Impulse customer arrival correlation vs. total cost rate.

5. Conclusions

In this article, we introduced the impulse customer with cancellation policy in the
queueing-inventory system. This work helps improve the QoS of an inventory management
system. We presented the behaviour of the total cost function with variables s and S under
hyper exponential distribution. We analysed the total cost function with various distribu-
tions like erlang, negative correlation, and positive correlation for ordinary and impulsed
customers’ arrival streams. We analysed the effects of the pooled customer approach, lead
time, and cancellation rates with various arrival streams like hyper-exponential, erlang,
negative correlation, and positive correlation. The effects of an average number of impulse
customer arrival rates and the average loss rate are indicated. Finally, we showed the
effects of ordinary and impulsed customers’ arrival correlation with total cost rate.

In the future, we will be interested in extending this model with multi-server, and
service time follows PH distribution.
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Abbreviations
The following Notations and Abbreviations are used in this manuscript:

[A]ij The element submatrix at (i, j) the position of A
0 Zero matrix
e A column vector of 1’s appropriate dimension
S Maximum inventory level
A ⊗ B Kronecker product of matrices A and B
A ⊕ B Kronecker sum of matrices A and B
MAP Markovian Arrival Process
PH Phase-type
PHF Phase-type with Failure.
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