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Abstract: Starch, mainly composed of amylose and amylopectin, is the major nutrient in grain
sorghum. Amylose and amylopectin composition affects the starch properties of sorghum flour
which in turn determine the suitability of sorghum grains for various end uses. Partial least squares
regression models on near infrared (NIR) spectra were developed to estimate starch and amylose
contents in intact grain sorghum samples. Sorghum starch calibration model with a coefficient
of determination (R2) = 0.87, root mean square error of cross validation (RMSECV) = 1.57% and
slope = 0.89 predicted the starch content of validation set with R2 = 0.76, root mean square error
of prediction (RMSEP) = 2.13%, slope = 0.93 and bias = 0.20%. Amylose calibration model with
R2 = 0.84, RMSECV = 2.96% and slope = 0.86 predicted the amylose content in validation samples
with R2 = 0.76, RMSEP = 2.60%, slope = 0.98 and bias = −0.44%. Final starch and amylose cross
validated calibration models were constructed combining respective calibration and validation sets
and used to predict starch and amylose contents in 1337 grain samples from two diverse sorghum
populations. Protein and moisture contents of the samples were determined using previously tested
NIR spectroscopy models. The distribution of starch and protein contents in the samples of low
amylose (<5%) and normal amylose (>15%) and the overall relationship between starch and protein
contents of the sorghum populations were investigated. Percent starch and protein were negatively
correlated, low amylose lines tended to have lower starch and higher protein contents than lines
with high amylose. The results showed that NIR spectroscopy of whole grain can be used as a high
throughput pre-screening method to identify sorghum germplasm with specific starch quality traits
to develop hybrids for various end uses.

Keywords: near infrared spectroscopy; sorghum; starch; amylose; amylopectin; high throughput
phenotyping; genetic diversity; plant breeding

1. Introduction

Sorghum (Sorghum bicolor (L.) Moench) ranks fifth in global cereal grain production
after maize (Zea mays (L.)), wheat (Triticum aestivum (L.)), rice (Oryza sativa (L.)) and barley
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(Hordeum vulgare (L.)) with 57.9 million megagrams (Mg) of grain sorghum harvested
from 40.1 million ha in 2019 with an average yield of 1.44 Mg/ha. As the third most
important cereal grain in the USA after wheat and maize, the USA produced 8.7 million
Mg of grain sorghum harvested from 1.9 million ha with an average yield of 4.6 Mg/ha in
2019 (FAO STAT http://faostat.fao.org, accessed on 20 October 2021). Grain sorghum is
used as food, feed, fodder and as a feedstock for bioethanol production [1–5].

In the USA, after exports, sorghum is mostly used as an ingredient in animal feed and
as a bio-fuel feedstock. However, since sorghum has potential human health benefits in the
prevention of chronic diseases [6–8] and as a gluten free food, it is also being increasingly
used for preparation of various foods [9,10].

Starch is the primary constituent of sorghum grain. Starch comprises two types of
macromolecules, the relatively small (up to 106 Da) and linear amylose with few long
branches and the large (107–109 Da) and highly-branched amylopectin with many short
branches. These macromolecules form starch granules with alternative crystalline and
amorphous layers [11,12]. Amylose and amylopectin have different physiochemical prop-
erties. Starch content and starch properties, especially the amount of amylose content in
sorghum starch, influence the suitability of sorghum cultivars for specific end uses [13–15]
and the digestibility of sorghum starch [16]. For example, higher starch contents are im-
portant for grains used for ethanol fermentation. However, just the starch content itself
is not sufficient to select the best varieties as the ethanol fermentation efficiency depends
on the amylose levels in starch. Likewise, when the suitability of high starch sorghum as
an animal feed ingredient is evaluated, the amylose levels should also be considered as it
affects the digestibility of starch. Therefore, it is imperative to measure starch and amylose
contents for developing cultivars for specific uses.

For plant breeding purposes, it is necessary to analyze starch and amylose contents of
a large number of samples in breeding populations. Currently there are many methods for
starch analysis [17]. However, laboratory starch analysis methods are laborious, vary in
cost per test, and are time consuming. Near infrared (NIR) spectroscopy has been used as
a rapid analytical method for the evaluation of numerous traits of cereal grains in plant
breeding programs [18], including starch and amylose contents [19]. Most NIR spectroscopy
methods developed for sorghum starch and/or amylose content have been for samples
from ground grain [20,21]. In some studies where NIR has been used for intact grain,
details of the NIR method used were not available [22]. De Alencar Figueiredo et al., 2006
used NIR spectroscopy for the analysis of amylose content in both intact and ground
sorghum grain samples and found that prediction is poor when intact grains are used [23].

However, using intact grain for analysis avoids the need to grind samples, which is
laborious and time consuming, and grinding has the potential to contaminate samples
without proper cleaning of grinding equipment between samples. In addition, when
using intact grains for non-destructive NIR analysis, grains can be saved and used as
seed. Thus, using intact grain for NIR analysis allows for large sample sets to be scanned
and analyzed within a short period of time with only minor sample preparation. The
primary objective of this work was to develop NIR starch and amylose calibration models
for use as a non-destructive, rapid, robust, and cost-effective method to estimate starch
and amylose contents in intact grain sorghum for screening breeding and genetically
diverse populations.

2. Materials and Methods
2.1. Grain Samples

Grains harvested from several sorghum breeding populations and agronomic trials
were collected from the 2018 through 2020 growing seasons from different locations in
California, Kansas, and Texas. Grain samples used for the starch calibration were selected
from five populations and four different populations were used to select samples for the amy-
lose calibration. For the starch calibration, Population 1 (Starch Population 1, SP1) samples
were drawn from the sorghum association panel (SAP) described by Casa et al., (2008) [24]
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Processes 2021, 9, 1942 3 of 15

grown in Kansas. Samples from Population 2 (SP2) came from seven lines within the SAP
grown in Kansas that were harvested at a higher moisture content of around 18% where
samples were scanned as samples dried to introduce moisture variability to calibration.
Population 3 (SP3) samples were from a single hybrid grown under 10 different nitrogen
fertilization treatments grown in Kansas. Population 4 (SP4) was from hybrids and inbred
lines grown in Kansas and Texas and Population 5 (SP5) was from a breeding popula-
tion grown in California. Samples for the amylose calibrations were selected from four
different populations distinct from SP1–5 consisting of hybrids, inbreds, and segregating
early F2 generation plant selections grown in Kansas and Texas (designated as amylose
populations 1 through 4, or AP1, AP2, AP3 and AP4). A summary of the sorghum sample
populations used for starch and amylose calibrations is given in Table 1.

Table 1. Description of the sorghum grain sample population used in the study.

Sample Population N Year Location(s) Type of Sample Population

Amylose
AP1 22 2018 Texas Breeding Population
AP2 63 2019 Kansas/Texas Breeding Population
AP3 31 2020 Texas Breeding Population
AP4 37 2020 Texas Breeding Population

Starch
SP1 29 2018 Kansas Diversity panel
SP2 61 2021 Kansas Hybrid
SP3 39 2019 Kansas Diversity panel
SP4 56 2019 Kansas/Texas Breeding Population
SP5 26 2020 California Breeding Population

Predictions
Breeding 1 946 2020 Texas Breeding Populations
Breeding 2 391 2020 California/Argentina/Mexico Breeding Populations

Samples from two additional breeding populations harvested in California, Texas and
in winter nurseries in Argentina and Mexico were scanned and used for the prediction of
starch, amylose and protein contents and moisture to study the relationship between these
traits in sorghum grain in genetically diverse materials. The sample populations used in
generating the starch and amylose calibrations had a high degree of phenotypic diversity
for pericarp color (red, white, yellow, etc.), tannin contents, grain sizes and kernel hardness,
as these samples were from a diverse genetic and geographic background of several
growing regions in North and South America, capturing a wide range of environmental
variability in addition to different nitrogen fertilization treatments.

Preliminary starch and amylose calibrations constructed using the populations scanned
in early years were used to predict starch and amylose contents in subsequent grain popu-
lations. Those predicted starch and amylose values were used to identify candidate lines
across the constituent range for laboratory analysis of starch or amylose in order to use in
calibration improvement. This approach enabled the efficient use of resources available for
laboratory analysis to obtain samples with starch and amylose reference data more or less
equally distributed along the available range of both constituents.

2.2. NIR Scanning

Grain samples were scanned as they were received at the laboratory. First, samples
were screened to remove small broken pieces and dust, and then glumes and other debris
were removed and cleaned seeds were used for scanning. A Perten DA7250 (Perten Instru-
ments, Springfield, IL, USA) spectrometer was used to scan grain samples in reflectance
mode. Samples were scanned using a Teflon cup (60 mm diameter and 10 mm deep) that
can hold about 20 g of grains. A micromirror cup (Perten Instruments, Springfield, IL,
USA) was used if the quantity of seeds available were less. The cup was filled with grains
and excess grains were removed by levelling so that the distance from the surface of grains
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to the collecting optics of the instrument was uniform for all samples. The spectrometer
recorded NIR absorbance data from 950 to 1650 nm in 5 nm intervals. Each sample was
scanned in triplicate by mixing the grains and repacking the sample cup after each scan.

2.3. Starch and Amylose Content Determination

Grain samples were ground for total starch and amylose measurement using a cyclone
mill equipped with a 0.5 mm screen (Udy Corp, Fort Collins, CO, USA). Total starch content was
measured colorimetrically using a commercially available kit (Megazyme K-TSTA-100A kit,
Bray, Ireland) and following the total starch assay procedure (amyloglucosidase/α-amylase
method), procedure example (b), “Determination of total starch content of samples contain-
ing resistant starch (RTS-NaOH Procedure -Recommended).” [25]. Briefly, 100 mg grain
meal in 16 × 120 mm glass tubes was wetted with 0.2 mL of 80% ethanol and dissolved
in 2 mL 1.7 M sodium hydroxide for 15 min. Eight mL sodium acetate buffer (pH 3.8)
was added into the glass tube to adjust pH to 5.0. The samples were hydrolyzed with
thermostable α-amylase and amyloglucosidase (0.1 mL each) at 50 °C for 30 min. After
centrifugation at 1300 rpm for 5 min, 0.1 mL of the hydrolysate was mixed with 3.0 mL
GOPOD reagent and incubated at 50 °C for 20 min. The absorbance of the mixture was
measured against the reagent blank and used to calculate the percent starch content in the
grain meal sample.

Apparent amylose in the whole grain meal samples was quantitated colorimetrically
taking advantage of amylose forming polyiodide-amylose complex with iodine, which
has a maximum absorbance at around 620 nm [26,27]. Briefly, 25–30 mg of grain meal
(alternatively 30–35 mg low amylose samples) were weighed (to ± 0.1 mg accuracy) in a
15 mL glass test tube and the samples were dispersed with 0.1 mL 80% ethanol to prevent
them from forming clumps at the bottom. Next, 1 mL of 90% DMSO:0.6 M urea solution was
added to the glass tubes while vortexing. The glass tubes were brought to 100 °C in a heat
block until the starch was dissolved, another 5 mL of 90% DMSO was added, and samples
were incubated at 100 °C for 30 min with vortexing every 5 min. The heated dissolved
samples were allowed to cool to room temperature, and an aliquot (0.1 mL) was transferred
into a test tube with 5.0 mL of 0.5% trichloroacetic acid and mixed with 0.1 mL 0.01 N
I2-KI solution (300 mg KI in 1–2 mL of deionized water with 127 mg iodine in 100 mL).
Finally, the absorbance at 620 nm was read against a reagent blank after 30 min without
disturbing the precipitates when transferring the solution into a cuvette. A standard curve
was established using reference amylose (potato, Megazyme # P-AMYL, Bray, Ireland) and
amylopectin (maize, Sigma #10120, St. Louis, MI, USA) to make mixtures with different
amylose contents (0, 5, 15, 30, 50, 100% amylose) for calculating the apparent amylose
content in the samples. Note, apparent amylose contents were reported as% amylose in
the ground whole meal (“flour”), not as a percent of total starch (i.e., flour basis rather
than starch basis). Both starch and amylose content data were converted to dry basis using
moisture values obtained from NIR ground whole meal sorghum moisture calibration
(R2 = 0.98, RMSECV = 0.37%, Slope = 0.98).

2.4. Spectral Data Acquisition and Data Analysis

Spectral data from the Perten DA7250 spectrometer were retrieved in JCAMP-DX
format [28] and the JCAMP-DX spectral data files were imported to the Unscrambler
software Version 10.5.1 (CAMO Software AS, Oslo, Norway) for handling and subsequent
pre-processing of spectra, calibration model development, validation, and prediction in
new samples.

Spectral data in Unscrambler in the form of spectral identity and raw absorbance
values from 950–1650 nm in 5 nm intervals were exported to Microsoft Excel. NIR spectra
from three replicate sample scans were averaged. The spectra of the samples used for starch
and amylose analysis by standard laboratory method for calibration and validation data
sets were selected and the respective constituent values were appended. Lab-measured dry
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weight basis starch and amylose contents were converted to an ‘as is’ basis of the samples
at the time of scanning, using the NIR predicted moisture content of the same samples.

Sample spectral data were then sorted by constituent value and samples were selected
for use in the calibration and validation data sets. Samples from SP2 population for the
starch calibration was divided such that the calibration included four lines scanned at dif-
ferent moisture contents while three lines were used in the validation set. Therefore, those
sample spectra of lines scanned for multiple times at different moisture contents remained
either in the calibration or the validation set, but not in both. Starch calibration spectra
for SP3 came from one hybrid grown under five nitrogen fertilizer treatments, while the
validation set included spectra from the same hybrid grown under five different treatments
(10 treatments total). The rest of the spectra from the remaining populations were used
in the ratio of 2:1 for calibration and validation sets, respectively. The spectral data and
starch and amylose contents were imported to Unscrambler for analysis, calibration model
development, and validations.

Raw spectral data of the starch and amylose datasets were subjected to principal
component analysis to investigate similarity/diversity of spectra among sample popula-
tions. Spectra of calibration sample sets were pre-processed with extended multiplicative
scatter correction (EMSC) [29] and mean centering. Resulting pre-processed and mean
centered NIR spectral data were used to build partial least squares calibration models with
leave-one-out cross validation. The number of PLS factors for the calibration models were
selected considering the Root Mean Squared Error Cross Validation (RMSECV) and coeffi-
cient of determination (R2) of calibration models and Root Mean Squared Error Prediction
(RMSEP), R2, slope and bias of the validation tests. After calibrations were validated, the
spectra in the calibration and validation datasets were combined and a final cross validated
model was developed using all spectra each for starch and amylose predictions.

2.5. Prediction of Moisture, Starch, Amylose and Protein Contents of New BREEDING Populations

The starch and amylose contents of samples from two diverse breeding populations
grown in California, Texas, Argentina, and Mexico that had not contributed to the starch or
amylose calibrations or validation sets were predicted using the above-mentioned com-
bined starch and amylose calibrations. In addition to amylose and starch contents, moisture
and protein contents of these two populations were also predicted using previously de-
veloped NIR calibrations for moisture (R2 = 0.99, RMSECV = 0.23%, Slope = 0.99) and
protein (R2 = 0.92, RMSECV = 0.45%, Slope = 0.93) in intact grains [30]. Subsequently,
dry weight basis starch, amylose and protein contents of the samples were calculated.
Based on the predicted dry weight basis amylose contents, samples were grouped as low
amylose (<5% amylose), intermediate amylose (5–15% amylose), and normal amylose
(>15% amylose). The frequency distribution of the starch and protein contents of the low
and normal amylose groups in the breeding populations were calculated. The relationship
between starch and protein contents in this sample population was tested with Pearson
correlation coefficient. Note that the breeding population used for these predictions con-
tained early generation material which was still genetically segregating for various traits
including starch, amylose, and protein contents. Thus, the wide range of intermediate
amylose contents observed in this dataset may be due to the fact that each seed on a panicle
could have a different starch, amylose, and/or protein content that would be averaged
during NIR scans conducted on a per-panicle basis.

3. Results and Discussion
3.1. Diversity of Sample Populations

NIR spectra of intact sorghum grain samples from the populations used for starch
and amylose calibrations are shown in the Figure 1. NIR spectra of the grain samples
contributing to starch and amylose datasets were subjected to principal component analysis.
The principal component (PC) score plot of PC1 against PC2 for raw NIR spectral data
of different grain populations for starch and amylose spectral data sets are presented in
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Figure 2. First and second principal components of both starch and amylose datasets
explained 99% of the variance of spectra. PC scores of different populations showed that
the individual populations were diverse. The observed diversity may be due to changes in
spectra caused by different starch and amylose contents in the samples, as well as other
factors such as variations in chemical and physical properties resulting from differences
in genetics, growing seasons, locations, or other unknown causes. The least diversity
was observed in the SP3 dataset, which came from a single hybrid grown under different
nitrogen fertilizer treatments wherein the starch content varied from 63.93–69.55%. The use
of samples from very diverse and heterozygous populations grown at different locations in
different years and under various management regimes helped develop calibrations which
can be more robust in predicting grain starch and amylose contents in new populations.

Processes 2021, 9, x FOR PEER REVIEW 6 of 16 
 

 

between starch and protein contents in this sample population was tested with Pearson 

correlation coefficient. Note that the breeding population used for these predictions con-

tained early generation material which was still genetically segregating for various traits 

including starch, amylose, and protein contents. Thus, the wide range of intermediate am-

ylose contents observed in this dataset may be due to the fact that each seed on a panicle 

could have a different starch, amylose, and/or protein content that would be averaged 

during NIR scans conducted on a per-panicle basis. 

3. Results and Discussion 

3.1. Diversity of Sample Populations 

NIR spectra of intact sorghum grain samples from the populations used for starch 

and amylose calibrations are shown in the Figure 1. NIR spectra of the grain samples con-

tributing to starch and amylose datasets were subjected to principal component analysis. 

The principal component (PC) score plot of PC1 against PC2 for raw NIR spectral data of 

different grain populations for starch and amylose spectral data sets are presented in Fig-

ure 2. First and second principal components of both starch and amylose datasets ex-

plained 99% of the variance of spectra. PC scores of different populations showed that the 

individual populations were diverse. The observed diversity may be due to changes in 

spectra caused by different starch and amylose contents in the samples, as well as other 

factors such as variations in chemical and physical properties resulting from differences 

in genetics, growing seasons, locations, or other unknown causes. The least diversity was 

observed in the SP3 dataset, which came from a single hybrid grown under different ni-

trogen fertilizer treatments wherein the starch content varied from 63.93–69.55%. The use 

of samples from very diverse and heterozygous populations grown at different locations 

in different years and under various management regimes helped develop calibrations 

which can be more robust in predicting grain starch and amylose contents in new popu-

lations. 

 

Figure 1. NIR spectra of some intact grain samples from populations used for starch and amylose 

calibrations. 

0

0.1

0.2

0.3

0.4

0.5

0.6

950 1050 1150 1250 1350 1450 1550 1650

A
b

so
rb

an
ce

Wavelength (nm)

SP1 SP2 SP3 SP4 SP5

AP1 AP2 AP3 AP4

Figure 1. NIR spectra of some intact grain samples from populations used for starch and
amylose calibrations.

Processes 2021, 9, x FOR PEER REVIEW 7 of 16 
 

 

  

Figure 2. Principal component score plots of NIR spectra of different grain sorghum populations including starch (left) 

and amylose (right) data sets. 

3.2. Starch and Amylose Contents in Grain Samples 

Starch calibration was developed using five while amylose calibration was devel-

oped using four populations. The distribution of starch and amylose contents on fresh 

weight basis in grain populations and in selected calibration and validation data sets are 

presented in Table 2. The starch content of combined populations varied from 50.73–

74.17% with an average of 62.99% and standard deviation of 4.31%. The range of starch 

contents of individual populations were narrow and use of multiple populations in-

creased the range and variability of starch content. Selection of samples for calibration and 

validation datasets were conducted manually such that the calibration dataset had the 

total range of starch content while the validation set had a slightly lower starch content of 

53.46–72.70%. Likewise, the amylose calibration set covered the widest range of amylose 

contents in the assayed populations, ranging from 0.25–27.90%, while the validation set 

included samples with amylose contents ranging from 0.28–27.25%. 

Table 2. Starch and amylose content variability in grain sorghum populations and in calibration and 

validation sets. 

Sample Set Population N * Min Max Avg SD 

Starch samples       

All  211 50.73 74.17 62.99 4.31 
 SP1 29 55.79 65.54 61.44 2.56 
 SP2 61 50.73 64.56 58.82 2.96 
 SP3 39 63.93 69.55 67.23 1.40 
 SP4 56 58.69 68.10 63.14 2.28 
 SP5 26 59.26 74.17 67.85 3.95 

Calibration set  119 50.73 74.17 63.12 4.34 
 SP1 16 58.12 65.54 62.46 2.16 
 SP2 33 50.73 64.56 58.82 3.27 
 SP3 19 63.93 69.29 67.31 1.60 
 SP4 34 58.69 68.10 62.96 2.09 
 SP5 17 59.26 74.17 67.75 4.38 

Validation set  92 53.46 72.70 62.83 4.29 
 SP1 13 55.79 63.42 60.18 2.52 
 SP2 28 53.46 63.95 58.82 2.59 
 SP3 20 64.84 69.55 67.17 1.21 
 SP4 22 58.74 67.00 63.42 2.58 

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-2 -1 0 1 2 3

P
C

-2
 (

11
%

)

PC-1 (88%)

SP1 SP2 SP3 SP4 SP5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-2 -1 0 1 2

P
C

-2
 (

13
%

)

PC-1 (86%)

AP1 AP2 AP3 AP4

Figure 2. Principal component score plots of NIR spectra of different grain sorghum populations including starch (left) and
amylose (right) data sets.
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3.2. Starch and Amylose Contents in Grain Samples

Starch calibration was developed using five while amylose calibration was developed
using four populations. The distribution of starch and amylose contents on fresh weight
basis in grain populations and in selected calibration and validation data sets are presented
in Table 2. The starch content of combined populations varied from 50.73–74.17% with
an average of 62.99% and standard deviation of 4.31%. The range of starch contents
of individual populations were narrow and use of multiple populations increased the
range and variability of starch content. Selection of samples for calibration and validation
datasets were conducted manually such that the calibration dataset had the total range of
starch content while the validation set had a slightly lower starch content of 53.46–72.70%.
Likewise, the amylose calibration set covered the widest range of amylose contents in the
assayed populations, ranging from 0.25–27.90%, while the validation set included samples
with amylose contents ranging from 0.28–27.25%.

Table 2. Starch and amylose content variability in grain sorghum populations and in calibration and
validation sets.

Sample Set Population N * Min Max Avg SD

Starch samples

All 211 50.73 74.17 62.99 4.31

SP1 29 55.79 65.54 61.44 2.56
SP2 61 50.73 64.56 58.82 2.96
SP3 39 63.93 69.55 67.23 1.40
SP4 56 58.69 68.10 63.14 2.28
SP5 26 59.26 74.17 67.85 3.95

Calibration set 119 50.73 74.17 63.12 4.34

SP1 16 58.12 65.54 62.46 2.16
SP2 33 50.73 64.56 58.82 3.27
SP3 19 63.93 69.29 67.31 1.60
SP4 34 58.69 68.10 62.96 2.09
SP5 17 59.26 74.17 67.75 4.38

Validation set 92 53.46 72.70 62.83 4.29

SP1 13 55.79 63.42 60.18 2.52
SP2 28 53.46 63.95 58.82 2.59
SP3 20 64.84 69.55 67.17 1.21
SP4 22 58.74 67.00 63.42 2.58
SP5 9 62.81 72.70 68.03 3.21

Amylose samples

All 153 0.25 27.90 9.17 7.14

AP1 22 4.00 27.90 14.68 10.91
AP2 63 0.29 18.21 8.27 5.71
AP3 31 0.25 12.27 3.70 3.56
AP4 37 1.40 18.48 12.01 4.98

Calibration set 102 0.25 27.90 9.20 7.19

AP1 16 4.00 27.90 14.36 10.89
AP2 41 0.29 18.21 8.74 5.92
AP3 24 0.25 12.27 4.07 3.77
AP4 21 1.40 18.00 12.03 4.89

Validation set 51 0.28 27.25 9.12 7.09

AP1 6 4.02 27.25 15.52 11.95
AP2 22 0.86 16.75 7.41 5.33
AP3 7 0.28 6.29 2.44 2.52
AP4 16 1.99 18.48 11.98 5.25

* N: Number of samples; Min: Minimum; Max: Maximum; Avg: Average; SD: Standard deviation.
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3.3. Starch Calibration Development and Model Validation

Starch calibration model constructed with 119 samples were validated with 92 samples
that were not used for the construction of the calibration model. Starch calibration model
with 11 PLS factors had a R2 = 0.87, RMSECV = 1.57% and a slope of 0.89. The number of
PLS factors for the calibration was selected by taking into consideration the cross-validation
statistics including R2, RMSECV, the slope of the curve and regression coefficient plots. This
calibration model predicted the starch content in the validation sample set with R2 = 0.76,
RMSEP = 2.13%, slope = 0.93 and bias = 0.20% (Figure 3).
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Figure 3. The relationship between laboratory determined and NIR predicted starch content for NIR starch calibration (left)
and validation (right).

Analysis of the regression coefficient plots of the PLS models is important to make
sure that the key wavelengths of the model are related to the spectroscopic signal of the
interested constituent molecule to ensure the validity of the NIR spectroscopy model [31,32].
The regression coefficient plot for the starch calibration model with 11 PLS factors is shown
in Figure 4. Some of the key regression peaks, both positive and negative, in the regression
coefficient plot that may have direct or indirect relation with the sorghum grain starch
content may be due to second overtone of C-H stretch (peaks around 1160, 1205, 1240 nm),
C-H stretch + C-H deformation (1365 and 1390 nm), first overtone of O-H stretch of starch
(1580 nm) and first overtone of C-H stretch (1645 nm) vibrations of different C-H and
O-H groups of starch [33,34].Therefore, it is possible that the starch model is capable of
predicting the starch content of whole grain samples by using the interactions between
some key NIR wavelengths and starch molecules in the grain. Hence, these results suggest
that NIR spectroscopy can be used to predict starch contents of intact grain samples.

3.4. Amylose Calibration Development and Model Validation

The amylose calibration curve from 102 grain samples had 11 PLS factors with
R2 = 0.84, RMSECV = 2.96% and a slope of 0.86. This amylose calibration model predicted
the amylose content in an independent set of 51 samples with R2 = 0.76, RMSEP = 2.60%,
slope = 0.98 and bias = −0.44% (Figure 5). The regression coefficient plot of the amylose
calibration with 11 PLS factors is shown in Figure 6. The dominant regression peak in
this plot is at 1235 nm and this may be due to C-H stretch second overtone of CH2 vi-
bration [33]. Starch is a glucose polymer composed of straight chain amylose, a linear α
(1–4) linked glucan, and branched amylopectin, an α (1–4) linked glucan that contains
around 5% α (1–6) linkages resulting in a branched molecule [12]. Therefore, amylopectin
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is chemically different from amylose in that the sixth C atom of the α (1–6) linkage contain
a CH2 group attached to O in one end and to the 5th C atom of a glucose unit at the branch-
ing point. The vibrational frequency of this CH2 group may differ from the vibrational
frequency of other CH2 groups of the sixth C atom of glucose units in a linear chain. The
second overtone C-H stretch vibration of this particular CH2 group in amylopectin around
1235 nm may be the primary wavelength that the calibration model uses to distinguish and
quantify amylose from amylopectin in sorghum starch or flour samples. Fertig et al., (2004)
found the best correlation of amylose content in amylose/amylopectin binary mixtures was
around 1730–1750 nm which corresponds to the C-H stretch first overtone vibration of CH2
group [35]. Since the spectral range of 950–1650 nm we used mostly covered the second
overtone region of C-H vibrations, our model apparently works using the difference of
second overtone C-H vibrations of amylose and amylopectin in sorghum starch.
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Figure 5. The relationship between laboratory determined and NIR predicted amylose contents for the amylose NIR
calibration (left) and validation (right).
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Figure 6. Regression coefficient plot of the 11 PLS factor amylose calibration with important regression peaks marked.

3.5. NIR Prediction of Starch and Amylose Contents in Breeding Populations

Spectra of the calibration and validation sets were combined to construct cross vali-
dated starch and amylose calibration curves for predicting starch and amylose contents in
two breeding populations not used in calibration development. The starch calibration with
11 PLS factors from 211 sample spectra used for the calibration and validation of the starch
curve had R2 = 0.85, RMSECV = 1.67% and a slope of 0.86. Likewise, the combined 11 PLS
factor amylose calibration from 153 grain samples had R2 = 0.86, RMSECV = 2.66% and a
slope of 0.87 (Figure 7). After a calibration is developed and tested with an external valida-
tion set, calibration and validation sets may be combined to make a model incorporating
maximum information into the final calibration model, thereby improving the robustness
of the model so that the accuracy of the predictions of future samples will generally be
better [36]. Prediction of the starch and amylose contents in the breeding populations by
the respective calibrations before and after validation set was combined showed that the
average Mahalanobis distance (MD) [37] was reduced. Average MD of starch predictions
was reduced from 2.78 to 2.48 while the average MD of amylose predictions was reduced
from 4.19 to 3.83, suggesting that combining the calibration and validation datasets was
helpful to improve the robustness of the calibrations.

3.6. Relationship between, Starch, Amylose and Protein Contents in Grain Sorghum Populations

The relationship between the dry weight basis starch and protein contents in grain
sorghum based on NIR predictions of 1337 grain samples from the two breeding pop-
ulations is shown in Figure 8. There was a negative relationship between starch and
protein percent in grain sorghum (r = −0.755, p < 10−181). Previous studies have shown
mixed results regarding the association between starch and protein contents of sorghum
grain. Subramanian and Jambunathan (1981) [38] found a strong negative correlation
between starch and protein, while Buffo et al., (1998) [39] found no relationship. However,
Buffo et al., (1998) [39] evaluated only 45–46 commercial hybrids and the range of starch
and protein was narrow compared to the current study. Rhodes et al., (2017) evaluated
265 accessions and also reported a strong negative relationship between starch and protein
contents in sorghum grain [40]. We evaluated a large number of samples covering a very
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wide range of starch and protein contents, and our results further confirm that there is a
strong negative relationship between starch and protein content (on a percentage basis) in
grain sorghum.
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Figure 7. Lab-determined versus NIR predicted final starch (left) and amylose (right) cross validated calibrations con-
structed by combining all spectra in the calibration and validation datasets.
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Figure 8. Scatter plot between dry weight basis starch and protein contents of sorghum grain.
*** = p < 0.001.

The amylose calibration was used to estimate amylose contents in grain samples and
based upon this, samples were divided into low amylose (<5% amylose) and normal amy-
lose groups (>15% amylose). The frequency distribution of starch and protein contents in
the selected groups are given in Figure 9. In these specific sample populations, low amylose
samples tended to have less starch compared to that of normal samples. Accordingly, the
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reverse was observed with the protein contents of low amylose samples tending to be
higher than in samples with normal amylose contents, partly due to the negative relation-
ship between grain starch and protein. Multi-location trials with pedigreed populations
segregating for variability in starch, amylose, and protein contents would be beneficial to
further investigate the relationship between these constituents of sorghum grain. Such
effort may be necessary to identify potential germplasm that minimizes negative inter-
actions among starch, amylose, and protein contents by breaking up deleterious genetic
linkages, similar to how historically low yield in “waxy” (low amylose) sorghum was
overcome [41–44]. Since starch chemical composition is important for different end uses
of sorghum grain, these new NIR calibrations can be used to pre-screen and select parent
lines for specific uses; for example, to develop waxy hybrids having higher starch contents
for ethanol fermentation and gluten-free frozen foods, or hybrids with optimum starch and
protein contents for use in animal feed.
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Figure 9. Variability of NIR predicted dry weight basis starch and protein contents in the low amylose (Amylose < 5%) and
normal amylose (Amylose > 15%) grain samples of the two breeding populations.

3.7. NIR Spectroscopy for High Throughput Phenotyping of Segregating Sorghum Populations

Osborne (2006) has reviewed the application of NIR spectroscopy for quality evalua-
tion of early generation materials in cereal breeding programs [18]. New high throughput
techniques such as near-infrared spectroscopy are greatly lowering the cost per data point
of phenotypic analysis. High throughput phenotyping of grain composition by NIR spec-
troscopy can be valuable for screening breeding populations, but also for use in genetic
studies of grain composition. Genetic locus detection was improved more by increas-
ing phenotyping throughput over accuracy [45] and NIR spectroscopic analysis of intact
sorghum grain is one avenue to increase phenotypic analysis of grain composition. Amy-
lose content and starch properties of sorghum are significantly affected by both genetic
and environmental factors [46,47]. Therefore, in breeding programs selection for starch
properties at a single location may be misleading [14] and the throughput of analyzing
intact sorghum grain can assist in screening sorghum from multi-location trials.

A single scan of a grain sample takes about 2–3 min including sample handling and
scanning, depending on the purity of sample. Thus, analysis of starch, amylose, protein,
and moisture contents in large segregating breeding populations could be conducted with
a much shorter time and at a fraction of the cost, compared to wet chemical analysis
of similar number of samples. As long as NIR calibration for other traits are available,
other interested traits can also be predicted simultaneously. Therefore, the use of NIR
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spectroscopy to screen germplasm may enable plant breeders to have more replicates or
locations to better estimate the genetic potential of segregating plants in each generation.

Goncalves et al., 2021 used a genomics model combining single nucleotide poly-
morphisms (SNPs) and NIR spectroscopy data to predict fiber and sucrose content in a
sugarcane population [48]. They found that the NIR model showed the highest prediction
accuracy of phenotypes compared to using genomics alone or genomics + NIR models
suggesting that NIR-based predictions are an effective strategy for predicting the genetic
merits of sugarcane clones. This shows that NIR spectroscopy data is worth testing for its
ability to enhance genomic prediction for sorghum grain end-use quality traits in the future.

4. Conclusions

NIR spectroscopy calibrations presented in this report can be used as a rapid analysis
pre-screening tool for characterizing sorghum starch composition in segregating popula-
tions and to identify germplasm for developing new cultivars and hybrids for specific end
uses. This whole grain NIR methodology can therefore be used to support the improve-
ment of sorghum at the genetic level by identifying potentially useful sorghum lines based
on starch and/or amylose levels. The information about the starch and protein contents
in waxy (low amylose) and nonwaxy (normal amylose) groups of breeding populations
can be used to identify lines with a desired combination of starch, amylose, and protein
contents to match specific end use quality requirements.
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3. Dahlberg, J.; Janoš, B.; Sikora, V.; Latković, D. Assessing sorghum [Sorghum bicolor (L.) Moench] germplasm for new traits: Food,

fuels & unique uses. Maydica 2012, 56, 85–92.
4. Taylor, J.R.; Schober, T.J.; Bean, S.R. Novel food and non-food uses for sorghum and millets. J. Cereal Sci. 2006, 44, 252–271.

[CrossRef]
5. Wang, D.; Bean, S.; McLaren, J.; Seib, P.; Madl, R.; Tuinstra, M.; Shi, Y.; Lenz, M.; Wu, X.; Zhao, R. Grain sorghum is a viable

feedstock for ethanol production. J. Ind. Microbiol. Biotechnol. 2008, 35, 313–320. [CrossRef] [PubMed]
6. de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, bioactive

compounds, and potential impact on human health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [CrossRef] [PubMed]
7. Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits

and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [CrossRef] [PubMed]

http://doi.org/10.1023/A:1008065519820
http://www.ncbi.nlm.nih.gov/pubmed/9839838
http://doi.org/10.1016/j.jcs.2006.06.009
http://doi.org/10.1007/s10295-008-0313-1
http://www.ncbi.nlm.nih.gov/pubmed/18214563
http://doi.org/10.1080/10408398.2014.887057
http://www.ncbi.nlm.nih.gov/pubmed/25875451
http://doi.org/10.1111/1541-4337.12506
http://www.ncbi.nlm.nih.gov/pubmed/33336966


Processes 2021, 9, 1942 14 of 15

8. McGinnis, M.J.; Painter, J.E. Sorghum: History, use, and health benefits. Nutr. Today 2020, 55, 38–44. [CrossRef]
9. Stefoska-Needham, A.; Tapsell, L. Considerations for progressing a mainstream position for sorghum, a potentially sustainable

cereal crop, for food product innovation pipelines. Trends Food Sci. Technol. 2020, 97, 249–253. [CrossRef]
10. Khoddami, A.; Messina, V.; Vadabalija Venkata, K.; Farahnaky, A.; Blanchard, C.L.; Roberts, T.H. Sorghum in foods: Functionality

and potential in innovative products. Crit. Rev. Food Sci. Nutr. 2021, 1–17. [CrossRef] [PubMed]
11. Taylor, J.R.; Duodu, K.G. Sorghum and millets: Grain-quality characteristics and management of quality requirements.

In Cereal Grains, 2nd ed.; Wrigley, C., Batey, I., Miskelly, D., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2017; pp. 317–351,
ISBN 978-0-08-100719-8.

12. Tester, R.F.; Karkalas, J.; Qi, X. Starch—composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [CrossRef]
13. Ai, Y.; Medic, J.; Jiang, H.; Wang, D.; Jane, J.L. Starch characterization and ethanol production of sorghum. J. Agric. Food Chem.

2011, 59, 7385–7392. [CrossRef] [PubMed]
14. Beta, T.; Corke, H. Noodle quality as related to sorghum starch properties. Cereal Chem. 2001, 78, 417–420. [CrossRef]
15. Miller, O.H.; Burns, E.E. Starch characteristics of selected grain sorghums as related to human foods. J. Food Sci. 1970, 35, 666–668.

[CrossRef]
16. Lichtenwalner, R.E.; Ellis, E.B.; Rooney, L.W. Effect of incremental dosages of the waxy gene of sorghum on digestibility.

J. Anim. Sci. 1978, 46, 1113–1119. [CrossRef]
17. McCleary, B.V.; Charmier, L.M.; McKie, V.A. Measurement of starch: Critical evaluation of current methodology. Starch-Stärke

2019, 71, 1800146. [CrossRef]
18. Osborne, B.G. Applications of near infrared spectroscopy in quality screening of early-generation material in cereal breeding

programmes. J. Near Infrared Spec. 2006, 14, 93–101. [CrossRef]
19. Cozzolino, D.; Degner, S.; Eglinton, J. A review on the role of vibrational spectroscopy as an analytical method to measure starch

biochemical and biophysical properties in cereals and starchy foods. Foods 2014, 3, 605–621. [CrossRef]
20. Boyles, R.E.; Pfeiffer, B.K.; Cooper, E.A.; Rauh, B.L.; Zielinski, K.J.; Myers, M.T.; Brenton, Z.; Rooney, W.L.; Kresovich, S. Genetic

dissection of sorghum grain quality traits using diverse and segregating populations. Theor. Appl. Genet. 2017, 130, 697–716.
[CrossRef]

21. Li, J.; Danao, M.G.C.; Chen, S.F.; Li, S.; Singh, V.; Brown, P.J. Prediction of starch content and ethanol yields of sorghum grain
using near infrared spectroscopy. J. Near Infrared Spec. 2015, 23, 85–92. [CrossRef]

22. Griebel, S.; Adedayo, A.; Tuinstra, M.R. Genetic diversity for starch quality and alkali spreading value in sorghum. Plant Genome
2021, 14, e20067. [CrossRef] [PubMed]

23. De Alencar Figueiredo, L.F.; Davrieux, F.; Fliedel, G.; Rami, J.F.; Chantereau, J.; Deu, M.; Courtois, B.; Mestres, C. Development of
NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. J. Agric. Food Chem.
2006, 54, 8501–8509. [CrossRef] [PubMed]

24. Casa, A.M.; Pressoir, G.; Brown, P.J.; Casa, A.M.; Pressoir, G.; Brown, P.J. Community resources and strategies for association
mapping in sorghum. Crop Sci. 2008, 48, 30–40. [CrossRef]

25. Megazyme. Total Starch Assay Procedure (Amyloglucosidase/α-Amylase Method). K-TSTA-100A, Procedure (b). 2020. Available
online: https://www.megazyme.com/documents/Assay_Protocol/K-TSTA-100A_DATA.pdf (accessed on 9 January 2021).

26. Morrison, W.R.; Laignelet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and
other starches. J. Cereal Sci. 1983, 1, 9–20. [CrossRef]

27. Chrastil, J. Improved colorimetric determination of amylose in starches or flours. Carbohydr. Res. 1987, 159, 154–158. [CrossRef]
28. McDonald, R.S.; Wilks, P.A., Jr. JCAMP-DX: A standard form for exchange of infrared spectra in computer readable form.

Appl. Spectrosc. 1988, 42, 151–162. [CrossRef]
29. Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods

for near infrared spectroscopy. J. Pharmaceut. Biomed. Anal. 1991, 9, 625–635. [CrossRef]
30. Peiris, K.H.; Bean, S.R.; Chiluwal, A.; Perumal, R.; Jagadish, S.K. Moisture effects on robustness of sorghum grain protein

near-infrared spectroscopy calibration. Cereal Chem. 2019, 96, 678–688. [CrossRef]
31. Dowell, F.E.; Maghirang, E.B.; Graybosch, R.A.; Berzonsky, W.A.; Delwiche, S.R. Selecting and sorting waxy wheat kernels using

near-infrared spectroscopy. Cereal Chem. 2009, 86, 251–255. [CrossRef]
32. Wu, D.; Yong, H.; Shuijuan, F. Short-wave near-infrared spectroscopy analysis of major compounds in milk powder and

wavelength assignment. Anal. Chim. Acta 2008, 610, 232–242. [CrossRef] [PubMed]
33. Osborne, B.G.; Fearn, T.; Hindle, P.H. Practical NIR Spectroscopy with Applications in Food and Beverage Analysis; Longman Scientific

and Technical: Singapore, 1993; 227p.
34. Williams, P.C. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries;

Williams, P., Norris, K.H., Eds.; American Association of Cereal Chemist: St. Paul, MN, USA, 2001; pp. 145–169.
35. Fertig, C.C.; Podczeck, F.; Jee, R.D.; Smith, M.R. Feasibility study for the rapid determination of the amylose content in starch by

near-infrared spectroscopy. Eur. J. Pharm. Sci. 2004, 21, 155–159. [CrossRef] [PubMed]
36. Dardenne, P. Some considerations about NIR spectroscopy: Closing speech at NIR-2009. NIR News 2010, 21, 8–14. [CrossRef]
37. De Maesschalck, R.; Jouan-Rimbaud, D.; Massart, D.L. The mahalanobis distance. Chemometr. Intell. Lab. Syst. 2000, 50, 1–18.

[CrossRef]

http://doi.org/10.1097/NT.0000000000000391
http://doi.org/10.1016/j.tifs.2020.01.012
http://doi.org/10.1080/10408398.2021.1960793
http://www.ncbi.nlm.nih.gov/pubmed/34357823
http://doi.org/10.1016/j.jcs.2003.12.001
http://doi.org/10.1021/jf2007584
http://www.ncbi.nlm.nih.gov/pubmed/21604720
http://doi.org/10.1094/CCHEM.2001.78.4.417
http://doi.org/10.1111/j.1365-2621.1970.tb04838.x
http://doi.org/10.2527/jas1978.4641113x
http://doi.org/10.1002/star.201800146
http://doi.org/10.1255/jnirs.595
http://doi.org/10.3390/foods3040605
http://doi.org/10.1007/s00122-016-2844-6
http://doi.org/10.1255/jnirs.1146
http://doi.org/10.1002/tpg2.20067
http://www.ncbi.nlm.nih.gov/pubmed/33259143
http://doi.org/10.1021/jf061054g
http://www.ncbi.nlm.nih.gov/pubmed/17061827
http://doi.org/10.2135/cropsci2007.02.0080
https://www.megazyme.com/documents/Assay_Protocol/K-TSTA-100A_DATA.pdf
http://doi.org/10.1016/S0733-5210(83)80004-6
http://doi.org/10.1016/S0008-6215(00)90013-2
http://doi.org/10.1366/0003702884428734
http://doi.org/10.1016/0731-7085(91)80188-F
http://doi.org/10.1002/cche.10164
http://doi.org/10.1094/CCHEM-86-3-0251
http://doi.org/10.1016/j.aca.2008.01.056
http://www.ncbi.nlm.nih.gov/pubmed/18291134
http://doi.org/10.1016/j.ejps.2003.09.011
http://www.ncbi.nlm.nih.gov/pubmed/14757486
http://doi.org/10.1255/nirn.1165
http://doi.org/10.1016/S0169-7439(99)00047-7


Processes 2021, 9, 1942 15 of 15

38. Subramanian, V.; Jambunathan, R. Properties of sorghum grain and their relationship to roti quality. Sorghum in the eighties.
In Proceedings of the International Symposium on Sorghum Grain Quality, ICRISAT Center, Patanchuru, India, 28–31 October 1981;
pp. 281–288.

39. Buffo, R.A.; Weller, C.L.; Parkhurst, A.M. Relationships among grain sorghum quality factors. Cereal Chem. 1998, 75, 100–104.
[CrossRef]

40. Rhodes, D.H.; Hoffmann, L.; Rooney, W.L.; Herald, T.J.; Bean, S.; Boyles, R.; Brenton, Z.W.; Kresovich, S. Genetic architecture of
kernel composition in global sorghum germplasm. BMC Genom. 2017, 18, 15. [CrossRef]

41. Jampala, B.; Rooney, W.L.; Peterson, G.C.; Bean, S.; Hays, D.B. Estimating the relative effects of the endosperm traits of waxy and
high protein digestibility on yield in grain sorghum. Field Crops Res. 2012, 139, 57–62. [CrossRef]

42. Yerka, M.K.; Toy, J.J.; Funnell-Harris, D.L.; Sattler, S.E.; Pedersen, J.F. Registration of A/BN641 and RN642 waxy grain sorghum
genetic stocks. J. Plant Regist. 2015, 9, 258–261. [CrossRef]

43. Yerka, M.K.; Toy, J.J.; Funnell-Harris, D.L.; Sattler, S.E.; Pedersen, J.F. Registration of N619 to N640 grain sorghum lines with waxy
or wild-type endosperm. J. Plant Regist. 2015, 9, 244–248. [CrossRef]

44. Yerka, M.K.; Toy, J.J.; Funnell-Harris, D.L.; Sattler, S.E.; Pedersen, J.F. Evaluation of interallelic waxy, heterowaxy, and wild-type
grain sorghum hybrids. Crop Sci. 2016, 56, 1–9. [CrossRef]

45. Lane, H.M.; Murray, S.C. High Throughput can produce better decisions than high accuracy when phenotyping plant populations.
Crop Sci. 2021, 61, 3301–3313. [CrossRef]

46. Beta, T.; Corke, H. Genetic and environmental variation in sorghum starch properties. J. Cereal Sci. 2001, 34, 261–268. [CrossRef]
47. Tester, R.F.; Karkalas, J. The effects of environmental conditions on the structural features and physico-chemical properties of

starches. Starch-Stärke 2001, 53, 513–519. [CrossRef]
48. Gonçalves, M.T.V.; Morota, G.; Costa, P.M.D.A.; Vidigal, P.M.P.; Barbosa, M.H.P.; Peternelli, L.A. Near-infrared spectroscopy

outperforms genomics for predicting sugarcane feedstock quality traits. PLoS ONE 2021, 16, e0236853. [CrossRef] [PubMed]

http://doi.org/10.1094/CCHEM.1998.75.1.100
http://doi.org/10.1186/s12864-016-3403-x
http://doi.org/10.1016/j.fcr.2012.09.021
http://doi.org/10.3198/jpr2014.10.0075crgs
http://doi.org/10.3198/jpr2014.06.0043crgs
http://doi.org/10.2135/cropsci2015.03.0151
http://doi.org/10.1002/csc2.20514
http://doi.org/10.1006/jcrs.2000.0379
http://doi.org/10.1002/1521-379X(200110)53:10&lt;513::AID-STAR513&gt;3.0.CO;2-5
http://doi.org/10.1371/journal.pone.0236853
http://www.ncbi.nlm.nih.gov/pubmed/33661948

	Introduction 
	Materials and Methods 
	Grain Samples 
	NIR Scanning 
	Starch and Amylose Content Determination 
	Spectral Data Acquisition and Data Analysis 
	Prediction of Moisture, Starch, Amylose and Protein Contents of New BREEDING Populations 

	Results and Discussion 
	Diversity of Sample Populations 
	Starch and Amylose Contents in Grain Samples 
	Starch Calibration Development and Model Validation 
	Amylose Calibration Development and Model Validation 
	NIR Prediction of Starch and Amylose Contents in Breeding Populations 
	Relationship between, Starch, Amylose and Protein Contents in Grain Sorghum Populations 
	NIR Spectroscopy for High Throughput Phenotyping of Segregating Sorghum Populations 

	Conclusions 
	References

