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S1. Meshing of the geometries 
 

 
 

 
Figure S1. Detail of the mesh for micromodel (a) 
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Figure S2. Detail of the mesh for micromodel (b). 

 

 
Figure S3. Detail of the mesh for micromodel (c) 

 

 
Figure S4. Detail of the mesh for micromodel (d) 
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Figure S5. Detail of the mesh for micromodel (e) 
 

 
Figure S6. Detail of the mesh for micromodel (f) 
 

 
Figure S7. Detail of the mesh for micromodel (g) 
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Figure S8. Detail of the mesh for micromodel (h) 
 

S2. Parameters of the variable time step algorithm 
A variable-time-step algorithm was used in all simulations with a global Courant 

number of 2. Table s.1 presents the parameters used for the variable-time-step algorithm. 
 

 
Table S1. Parameters for the variable time-step algorithm used in the simulations. 

Parameter Value 
Minimum Time Step Size (s) 0.0001 
Maximum Time Step Size (s) 10 
Minimum Step change factor 0.8 
Maximum Step change factor 1.2 

Initial Time Step size (s) 0.1 
 

S3. Fractal dimension of the flow pattern 
The fractal dimension of the flow pattern at the breakthrough time was computed 

based on image analysis and the fractal box-counting method [1], where a series of boxes 
of decreasing size are systematically laid over the flow pattern, and the number of these 
elements (N) in each sequence is determined. The fractal dimension is obtained from the 
slope of the line of the plot of the logarithm of N and the logarithm of the inverse of the 
box size (r) as described by Equation S1. 

 𝐷 =  𝑙𝑜𝑔 𝑁log 𝑟  (S1) 

         

where D is the fractal dimension of the analyzed pattern.  

S4. Phase behavior 
Phase behavior and its modeling are also considered in this research. Figure s.9 rep-

resents the phase behavior between crude oil and surfactant solution. 
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Figure S9. Phase behavior between crude oil and surfactant solution.  
 
As can be seen in Figure s.9, there is a type III Winsor behavior between the phases, 

where a petroleum microemulsion is formed in a separate phase between the petroleum 
and water phases. In this case, the system comprises a surfactant solution displacing mi-
croemulsion, which displaces oil [2,3]. Despite the knowledge of the behavior of phases, 
in the modeling, the implication of considering two phases mobilizing through the micro-
model is carried out, this is done in order to simplify the mathematical model, where the 
basis of additional research carried out with similar phenomenology was taken [4-7]. 

 

S4. Extensive Selection Flowchart 
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Figure S10. Extensive Selection Flowchart for micromodel experiments. 
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