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Abstract: In this work, the relaxation parameter (τ) and fractionality order (α) in the fractional single
phase lag (FSPL) non-Fourier heat conduction model are estimated by employing the conjugate
gradient inverse method (CGIM). Two different physics of skin tissue are chosen as the studied cases;
single and three-layer skin tissues. Single-layer skin is exposed to laser radiation having the constant
heat flux of Qin. However, a heat pulse with constant temperature is imposed on the three-layer skin.
The required inputs for the inverse problem in the fractional diffusion equation are chosen from the
outcomes of the dual phase lag (DPL) theory. The governing equations are solved numerically by
utilizing implicit approaches. The results of this study showed the efficiency of the CGIM to estimate
the unknown parameters in the FSPL model. In fact, obtained numerical results of the CGIM are in
excellent compatibility with the FSPL model.

Keywords: inverse fractional non-Fourier; fractional heat conduction; parameter estimations; tissues

1. Introduction

Inverse analysis has received more attention recently due to its wide applications
in engineering and industry. Inverse problems are often used in engineering problems
where direct measurements are difficult in the body. An inverse problem in heat transfer
is important and includes obtaining surface temperature, diffuse heat flux, heat source,
conductivity and displacement coefficients, and so on. The available literature shows the
use of inverse analysis in the non-Fourier heat conduction problem is novel. The unknown
or non-measurable parameters in the problems can be estimated using inverse analysis
methods such as the conjugate gradients method with/without adjoint problem and the
Levenberg–Marquardt algorithm.

The dual-phase-lag (DPL) non-Fourier technique base on the Levenberg–Marquardt
non-linear parameter estimation (LMNPE) approach is utilized to predict the thermal
diffusivity and the time lags at the presence of a pulse heating [1]. Hsu and Chu [2]
studied a non-Fourier heat conduction electronic device to obtain the temperature of
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the surface. They used the linear least-squares method to obtain the solution. Yang [3]
estimated boundary conditions in the 2D field of hyperbolic heat conduction problems.
The modified Newton–Raphson technique is employed for the inverse analysis and it is
observed that this method leads to simpler expressions compared to the non-linear least-
squares technique. Hsu [4] provided a linear least-squares inverse technique to estimate
the unknown temperature on the boundary in a 3D non-Fourier heat conduction problem.
Moreover, various types of heat transfer Fourier [5,6] and non-Fourier [7,8] and bioheat
transfer [9–11] problems have been investigated in the literature.

Liu and Lin [12] obtained the phase lag times of tissue by employing the DPL
model, utilizing the experimental input. In this work, a hybrid scheme of the least-
squares technique, change of variables for a direct problem, and Laplace transform are
applied. They also investigated the impact of measurement locality on the computed
results. Azimi et al. [13] employed the ACGM in an inverse non-Fourier heat transfer
problem to compute the root temperature of a fin having diverse profiles. They used the
function-estimation form of ACGM, utilizing the border temperature evaluation. They
found that ACGM can be used to analyze the non-Fourier inverse heat transfer of fins in
various conditions.

Das et al. [14] estimated the coefficients of extinction and conduction-radiation by
minimizing the objective function in a non-Fourier conduction-radiation heat transfer
problem. The genetic algorithm (GA) is used for this purpose. Ghazizadeh et al. [15]
estimated the relaxation time and fractionality order in the fractional single-phase lag (FSPL)
heat model for two different physics. The LMNPE method is used to solve the inverse FSPL
heat conduction. Their results illustrated that the LMNPE technique can be successfully
used to solve the problem of inverse fractional heat transfer. Azimi et al. [16] estimated
root temperature distribution in several fins having non-Fourier behavior. This study
considered the function-estimation form of the ACGM applying boundary temperature
valuations to solve the inverse problem. The results showed that the ACGM method
can be recognized as a stable and reliable method for determining temperature boundary
conditions in the non-Fourier problems.

Wu et al. [17] employed a conjugate gradient inverse method (CGIM) to estimate the
unknown boundary pulse heat flux in a limitless-length cylinder. They solved the problem
with the hyperbolic heat conduction and DPL heat transfer theory. Mozafarifard et al. [18]
employed FSPL and DPL techniques to investigate transient non-Fourier heat transfer
in an upstanding expanded surface with an energy source at the presence of a periodic
temperature imposed on the expanded surface root. This study, for the first time, used
LMNPE to obtain the heat flux relaxation time and fractional derivation orders for an
upstanding fin with the mentioned conditions.

Ali et al. [19] used an inverse method to determine the time-dependent source term for
the space-time fractional differential equation based on Caputo derivative in two problems.
They investigated the stability and well pose of the inverse problem. Cheng et al. [20]
obtained the space-dependent source term in the time-fractional diffusion equation based
on Caputo derivative. They used the CGM method to solve the inverse problem. Their
results show the effectiveness of the CGM method to obtain unknown functions. Sun
and Liu [21] applied the CGM method to obtain a time-dependent source in the time-
fractional diffusion equation. Their results were validated by several numerical examples.
Tuan et al. [22] determined an unknown source term for fractional diffusion equation based
on the Riemann-Liouville derivative. They employed the quasi-boundary value approach
to arrange the unstable inverse problem. Their results show convergence of the method.

In the present research, for the first time, the CGIM algorithm is utilized to estimate the
undetermined parameters of τ and α of the fractional non-Fourier model in two different
physics of skin tissues with single or three-layer tissues. The single-layer tissue is affected
by laser radiation having the constant energy of Qin. However, three-layer skin tissue
is heated by a source having a constant temperature. These two physics with different
conditions were studied by Goudarzi and Azimi [23] to develop the capability of FSPL. The
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relaxation and fractionality order parameters in a try and error manner are investigated to
capture FSPL results by employing DPL parameters as inputs.

2. Conjugate Gradient Inverse Method

The CGIM is a powerful iterative technique for solving linear and nonlinear inverse
problems of parameter estimation. In the iterative procedure of the CGIM, at each iteration,
appropriate step size is chosen along a descanting direction to minimize the objective
function [24]. Herein, the fractionality order, i.e., α, and the relaxation parameter, i.e., τ, in
the FSPL model are unknown. This inverse problem is solved by utilizing the measured
outcomes of the case studies presented in [25,26]. This method minimizes the least-squares
norm of the evaluated temperatures resulted from DPL, i.e., θDPL, and FSPL, i.e., θC, as
expressed below [24]:

S(P) = [θC(P)− θDPL][θC(P)− θDPL]
Tr (1)

where PTr = [τ , α]. In the current work, an alternative technique is used for the estimation
of unknown parameters in the CGIM based on [20]. The CGIM algorithm can be found
in [24] in detail. By initial guess for unknown parameters, i.e., α0 and τ0, the iteration
process starts. Then, the governing equations are solved and follow the iterative procedure
until the stopping criterion. The stopping criterion is as follows:∣∣∣Pm+1 − Pm

∣∣∣ < ε (2)

where ε is a suitable tolerance and m is the iterations number. It is worth mentioning that
the discretized equations are implemented using FORTRAN programming language. The
governing equations of each case study are separately given below.

3. Governing Equations and Discretization

In this research, two different cases are studied. One is related to single-layer skin
tissue and the other one is for three-layer tissue. As previously discussed, these cases
were investigated by Goudarzi and Azimi [23]. They used the numerical FSPL method
to simulate non-Fourier heat conduction in the skin tissue to calculate undetermined the
parameters by try and error approach. In the present research, inverse analysis based on
the conjugate gradient method is used.

3.1. Test Case 1
3.1.1. Direct Problem

Figure 1 depicts a schematic view of the single-layer skin. The thickness, i.e., h, and
initial temperature, i.e., θ0, of the skin are 1 mm and 37 ◦C, respectively. When t = 0+, laser
radiation having an energy of Qin is radiated on the left side of the domain for 5 s, then it is
stopped. The governing equation of this case is as the following [23]:

∂q
∂t

+ τq
α ∂1+αq

∂t1+α
= D

∂2q
∂x2 + Dwbρbcb

∂θ

∂x
(3)

The controlling boundary conditions can be defined as the following:

∀ x, t| x = 0, 0 < t < 5 s⇒ q = Qin(1− Rd)
∀ x, t| x = h, 0 < t < 40 s⇒ q = 0

(4)

The initial conditions are as follows:

∀ x, t| 0 < x < h, t = 0⇒ q(x) = 0,
∂q
∂t

= 0 (5)
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The controlling equation of temperature field is:

ρc
∂θ

∂t
= − ∂q

∂x
+ wbρbcb(θb − θ) + qmet + qext (6)

The discretization of the governing equations and the numerical method can be found
in [23]. In Figure 1 one can find the following parameters, like P is a general node, E and
W are its neighboring nodes to the east and west. The east and west sides of the control
volume are identified as e and w. ∆x and h are the size of control volume and the thickness
of the skin tissue, respectively.
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Figure 1. A schematic view of the physical model.

3.1.2. Inverse Problem

The conjugate gradient parameter estimation method is used to evaluate the unde-
termined parameters in the FSPL model, described in Section 2 in detail. There are two
undefined parameters, namely τ and α. Hence, two sensitivity equations along with the
initial and boundary conditions are needed to be solved: one is for τ and the other one is
for α. To obtain the sensitivity equation for τ, Equations (3)–(5) should be derived with
respect to τ.

∂

∂τ

(
∂q
∂t

)
+

∂

∂τ

(
τq

α ∂1+αq
∂t1+α

)
=

∂

∂τ

(
D

∂2q
∂x2

)
+

∂

∂τ

(
Dwbρbcb

∂θ

∂x

)
(7)

∂

∂τ

(
ρc

∂T
∂t

)
=

∂

∂τ

(
− ∂q

∂x

)
+

∂

∂τ
(wbρbcb(θb − θ)) +

∂qmet

∂τ
+

∂qext

∂τ
(8)

with the following boundary conditions:

∀ x, t| x = 0, 0 < t < 5s⇒ ∂q
∂τ = ∂

∂τ (Qin(1− Rd))

∀ x, t| x = h, 0 < t < 40s⇒ ∂q
∂τ = 0

(9)

The initial condition is

∀ x, t| 0 < x < h, t = 0⇒ ∂θ(x)
∂τ

=
∂θb
∂τ

= 0,
∂q
∂τ

= 0,
∂

∂τ

(
∂q
∂t

)
= 0 (10)

As presented in Appendix A, the sensitivity coefficients equation of the relaxation
time is expressed as the following:

∂Jqτ
∂t + τq

α ∂1+α Jqτ
∂t1+α = D ∂2 Jqτ

∂x2 + D wbρbcb
∂Jτ
∂x − α τq

α−1 ∂1+αq
∂t1+α

ρc ∂Jτ
∂t = − ∂Jqτ

∂x −wbρbcb Jτ
(11)

with the following boundary conditions:

∀ x, t| x = 0, 0 < t < 5s⇒ Jqτ = 0
∀ x, t| x = h, 0 < t < 40s⇒ Jqτ = 0

(12)
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Initial condition is:

∀ x, t| 0 < x < h, t = 0⇒ Jτ = 0, Jqτ = 0,
∂Jqτ
∂t

= 0 (13)

where Jqτ and Jτ are the heat flux and temperature sensitivities with respect to τ, respec-
tively. Transferring Equations (3)–(5) to α space leads to the following equations:

∂

∂α

(
∂q
∂t

)
+

∂

∂α

(
τq

α ∂1+αq
∂t1+α

)
=

∂

∂α

(
D

∂2q
∂x2

)
+

∂

∂α

(
Dwbρbcb

∂θ

∂x

)
(14)

∂

∂α

(
ρc

∂θ

∂t

)
=

∂

∂α

(
− ∂q

∂x

)
+

∂

∂α
(wbρbcb(θb − θ)) +

∂qmet

∂α
+

∂qext

∂α
(15)

According to the Appendix A, the sensitivity coefficients equations of fractionality
order can be obtained as:

∂Jqα
∂t + τq

α ∂
∂α

(
∂1+αq
∂t1+α

)
= D ∂2 Jqα

∂x2 + D wbρbcb
∂Jα
∂x − τq

α ln(τ) ∂1+αq
∂t1+α

∂Jα
∂t = − ∂Jqα

∂x + D wbρbcb(θb − Jα)
(16)

with the boundary and initial conditions expressed below:

∀ x, t| x = 0, 0 < t < 5s⇒ Jqα = 0
∀ x, t| x = h, 0 < t < 40s⇒ Jqα = 0
∀ x, t| 0 < x < h, t = 0⇒ Jα = 0, Jqα = 0, ∂Jqα

∂t = 0
(17)

where Jqα and Jα are the heat flux and temperature sensitivities with respect to α, respec-
tively. The finite volume method is employed to discretize Equations (11)–(13), (16), and
(17) as presented in Appendix B. Then, the tridiagonal matrix algorithm is applied to solve
the algebraic form of controlling equations.

3.2. Test Case 2
3.2.1. Direct Problem

Initially, the skin is exposed to a heat pulse with a constant temperature of 100 ◦C for
15 s. The heat flux applied to the skin can be resulted from immediate contact with the hot
water. After heating, cooling the skin surface is done by a water-ice mixture of 0 ◦C for 30 s.
Figure 2 depicts a schematic view of physics.

The governing equations can be formulated as follows:

∂θ
∂t + τq

α ∂1+αθ
∂t1+α + wbρbcb

ρici
τq

α ∂αθ
∂tα = Di

∂2θ
∂x2 + wbρbcb

ρici
(θb − θ)

+ qext+qmet
ρici

+
τq

α

ρici
∂α

∂tα (qext + qmet) +
τq

α

ρici
∂α

∂tα (wbρbcbθb)
(18)

Here i is the number of layers.
The boundary conditions are as follows:

∀ x, t| x= 0, 0 < t ≤ 45⇒ θ(t) = 100(1− u(t− 15))
∀ x, t| x = h, 0 < t⇒ θ(t) = θb = 37 ◦C

(19)

Moreover, the initial conditions are as the following:

∀ x, t| 0 < x < h, t = 0⇒ θ(x) = θb = 37 ◦C,
∂θ(x)

∂t
=

∂2θ(x)
∂t2 = 0 (20)

The discretization of the governing equations and the utilized numerical method are
discussed in [23] in detail.
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3.2.2. Inverse Problem

Similar to the previous one, for using the conjugate gradient method, two sensitivity
equations should be obtained with their initial and boundary conditions: one is for τ and
the other one is for α. Equations (18)–(20) can be derived with respect to τ as the following:

∂

∂τ

(
∂θ

∂t
+ τq

α ∂1+αθ

∂t1+α
+

wbρbcb
ρici

τq
α ∂αθ

∂tα

)
=

∂

∂τ

(
Di

∂2θ

∂x2 +
wbρbcb

ρici
(θb − θ) +

qext + qmet

ρici

)
(21)

with the boundary and initial conditions:

∀ x, t| x= 0, 0 < t ≤ 45 , ∂θ(t)
∂τ = ∂

∂τ (100− 100u(t− 15))
∀ x, t| x = h, 0 < t , ∂θ(h,t)

∂τ = ∂θb
∂τ

∀ x, t| 0 < x < h, t = 0 , ∂θ(x)
∂τ = ∂θb

∂τ and ∂
∂τ

(
∂θ(x)

∂t

)
= ∂

∂τ

(
∂2θ(x)

∂t2

)
= 0

(22)

The equation expressed below is the sensitivity coefficients equation of the relax-
ation time:

∂Jτ
∂t

+ τq
α ∂1+α Jτ

∂t1+α
+

wbρbcb
ρici

τq
α ∂α Jτ

∂tα
= Di

∂2 Jτ
∂x2 −

wbρbcb
ρici

Jτ − ατq
α−1 ∂1+αθ

∂t1+α
(23)

with the initial and boundary conditions expressed below:

∀ x, t| 0 < t < 45, t = 0⇒ Jτ(x) = 0 and ∂Jτ(x)
∂t = ∂2 Jτ(x)

∂t2 = 0
∀ x, t| x = 0, 0 < t < 45⇒ Jτ = 0
∀ x, t| x = h, 0 < t⇒ Jτ = 0

(24)

where Jτ is the temperature sensitivity to τ.
The sensitivity equations of the layers for α can be obtained by transferring Equa-

tions (18)–(20) to the α space:

∂

∂α

(
∂θ

∂t
+ τq

α ∂1+αθ

∂t1+α
+

wbρbcb
ρici

τq
α ∂αθ

∂tα

)
=

∂

∂α

(
Di

∂2θ

∂x2 +
wbρbcb

ρici
(θb − θ) +

qr + qm

ρici

)
(25)

The controlling boundary and initial conditions are:

∀ x, t| x= 0, 0 < t ≤ 45 , ∂θ(t)
∂α = 100 ∂

∂α (1− u(t− 15))
∀ x, t| x = h, 0 < t , ∂θ(h,t)

∂α = ∂θb
∂α

∀ x, t| 0 < x < h, t = 0 , ∂θ(x)
∂α = ∂θb

∂α and ∂
∂α

(
∂θ(x)

∂t

)
= ∂

∂α

(
∂2θ(x)

∂t2

)
= 0

(26)
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As shown in Appendix A, the sensitivity coefficients equation for the fractionality
order, i.e., α, is expressed below.

∂Jα
∂t + τq

α ∂1+α Jα
∂t1+α + wbρbcb

ρici
τq

α ∂α Jα
∂tα = Di

∂2 Jα
∂x2 −

wbρbcb
ρici

Jα − τq
α ln τ ∂1+αθ

∂t1+α

−τq
α ∂σ1+α

∂α

n
∑

j=1
w1+α

j

(
θ

n−j+1
i − 2θn−j

i + θ
n−j−1
i

)
− τq

ασ1+α

n
∑

j=1

∂w1+α
j

∂α

(
θ

n−j+1
i − 2θn−j

i + θ
n−j−1
i

) (27)

The initial and boundary conditions in the α space are defined as the following:

∀ x, t| 0 < x ≤ h, t = 0⇒ Jα(x) = 0 and ∂Jα(x)
∂t = ∂2 Jα(x)

∂t2 = 0
∀ x, t| x = 0, 0 < t ≤ 45⇒ Jα = 0
∀ x, t| x = h, 0 < t⇒ Jα = 0

(28)

From the above equations, Jα is the sensitivity equation to α. The tridiagonal matrix
algorithm is utilized to solve the governing algebraic system of equations resulting from
the finite difference method. It is worth noting that the values of relevant parameters used
in the present work are for real skin tissue as presented in [25].

4. Results and Discussion

In this section, the calculated numerical results, including the time lag and fractionality
order in the FSPL non-Fourier model are presented. In both cases, the initial values of
α and τ are accidentally chosen. Then, the direct and inverse problems, as well as the
sensitive equations, are solved by using the inverse conjugate method introduced above.
The solution process continues to iterate until satisfying the convergence criteria according
to Equation (2). The tolerance in the stopping criterion, i.e., ε = 10−4, is considered for both
cases in Equation (2).

4.1. Test Case 1

For test case 1, the initial guesses of α0 = 0.9 and τ0 = 10 are used. The direct problem
with Equations (3)–(6), and the sensitivity problem with Equations (11)–(13), (16), and (17)
are solved and the convergence occurs after 38 iterations. The time-lag and fractionality as
two unknown parameters are obtained as the follows:

τ = 16 s, α = 0.9985068

Figure 3 depicts the temperature history on the skin surface obtained by conjugate
gradient parameter estimation inverse analysis. As shown, the CGIM in the estimation
of unknown parameters in the non-Fourier heat conduction fractional single-phase lag
model is accurate and reliable. Figure 4 illustrates the Jacobian coefficient of the order
of fractionality and the relaxation time. To obtain the correct estimation, the Jacobian
coefficients should not be linearly related to each other. As can be seen in Figure 4, there is
no linear dependence between Jacobian coefficients.
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4.2. Test Case 2

Herein, the initial guesses are α0 = 0.9 and τ0 = 15. The direct problem with the
governing Equations (18)–(20), and the sensitivity problem with Equations (23)–(28) are
solved and the convergence occurs after 52 iterations. The two unknown parameters are
estimated as the following:

τ = 9.888 s, α = 0.986

The temperature history resulted from conjugate gradient parameter estimation in-
verse analysis is depicted in Figure 5. Figure 6 shows the Jacobian coefficient of the
fractionality order and the relaxation time. As can be observed, the Jacobian coefficients
are non-zero and non-linearly related to each other. Therefore, the required conditions for
obtaining the unknown parameters are provided. Once again, the accuracy of the CGIM
for estimating unknown parameters in the non-Fourier heat conduction FSPL model is
proved. For other values of temperature phase lag in the DPL method, the CGIM is utilized
to determine the fractionality and time-lag as the unknown parameters. The results are
tabulated in Table 1. As τT tends to zero, the fractionality, i.e., α, approaches one. This
means that the fractional non-Fourier model is approaching the single phase non-Fourier
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thermal wave model. It is also observed that an increment in τq leads to increasing time-lag,
meaning an increase in non-Fourier effects.
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5. Conclusions

In this paper, conjugate gradient parameter estimation inverse analysis is employed
to determine the parameters of time-lag and fractionality in the fractional non-Fourier heat
conduction model for two different skin tissue cases. The finite volume and difference
numerical methods are used for solving the direct and sensitivity problems of test cases
1 and 2, respectively. The results show the ability and precision of the CGIM analysis for
parameter estimation in the FSPL heat conduction model. This investigation also expresses
that the CGIM analysis can be successfully applied for the parameter estimation of the
fractional heat equation. Moreover, it is concluded that the CGIM application can be
expanded for parameter estimation in fractional calculus.
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Nomenclature

Latin symbols
c tissue heat capacity, Jkg−1 K−1

cb blood heat capacity Jkg−1 K−1

D coefficient of thermal diffusion WJ−1 m−3

Dα
t time derivative order

f (t) continuous function
h skin thickness (mm)
Jqα sensitivity coefficient of heat respect to order of fractionality
Jqτ sensitivity coefficient of heat respect to time lag
Jα sensitivity coefficient respect to order of fractionality
Jτ sensitivity coefficient respect to time lag
k tissue thermal conductivity, Wm−1 K−1

m number of iterations
P unknown parameters in inverse problem
qgen generated heat in tissue, Wm−3

qmet metabolic heating source, Wm−3

Qin laser intensity, Wcm−2

Rd diffusion reflection
t time, s
tf time duration from the onset to the end, s
tτ time period of laser radiation on the skin, s
u(t) unit step function
wb blood perfusion rate, m3m−3 tissue
wj average of weighted arithmetic
wr weight function
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Greek symbols
α order of fractional derivative
α0 initial guess for order of fractional derivative
ε error tolerance
θ temperature of tissue, ◦C
θ0 initial temperature, ◦C
θb blood temperature, ◦C
θc calculated temperature, ◦C
θDPL measured temperature, ◦C
ρ density of tissue, kgm−3

ρb blood density, kgm−3

Γ gamma function
τ time lag
τT temperature gradient time lag
τq heat flux time lag
τ0 initial guess for time lag
Abbreviations
ACGM Adjoint Conjugate Gradient Method
CGIM Conjugate Gradient inverse Method
DF Dermic-Fat interface
DPL Dual Phase Lag
ED Epidermis-Dermic interface
FSPL Fractional Single-Phase Lag
SPL Single Phase Lag

Appendix A

In Equations (9) and (10), the derivative of the fractional operator relative to α should
be obtained. For this purpose, applying the Caputo fractional operator definition leads to a
relatively complex analytical relationship that requires the use of a numerical approxima-
tion to replace the fractional-order sensitivity coefficients. Therefore, we have:

∂
∂α

(
∂αθ
∂tα

)
= ∂σα

∂α

n
∑

j=1
wα

j

(
θ

n−j+1
i − θn−j

i

)
+σα

n
∑

j=1

∂wα
j

∂α

(
θ

n−j+1
i − θn−j

i

)
+ σα

n
∑

j=1
wα

j
∂

∂α

(
θ

n−j+1
i − θn−j

i

) (A1)

∂
∂α

(
∂1+αθ
∂t1+α

)
= ∂σ1+α

∂α

n
∑

j=1
w1+α

j

(
−2θn−j

i + θ
n−j+1
i + θ

n−j−1
i

)
+σ1+α

n
∑

j=1

∂w1+α
j

∂α

(
−2θn−j

i + θ
n−j+1
i + θ

n−j−1
i

)
+ σ1+α

n
∑

j=1
w1+α

j
∂

∂α

(
−2θn−j

i + θ
n−j+1
i + θ

n−j−1
i

) (A2)

∂σ1+α

∂α = σ1+α

[
− ∂Γ(1−α)

∂α
Γ(1−α)

+ 1
1−α − ln(∆t)

]
∂σα
∂α = σα

[
− ∂Γ(1−α)

∂α
Γ(1−α)

+ 1
1−α − ln(∆t)

]
∂Γ(1−α)

∂α = −Ψ(1− α) Γ(1− α)

(A3)

∂w1+α
j

∂α
=

∂wα
j

∂α
= (j− 1)1−α ln(j− 1)− j1−α ln(j) (A4)
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Appendix B

The finite volume approach is employed to discretize the controlling equations. The
discretization of the sensitivity equation for τ, discussed in [23] in detail, can be obtained
as the following:

aP Jt+∆t
qτP

= aE Jt+∆t
qτE

+ aW Jt+∆t
qτW

+ b
aE = D ∆t

∆x , aW = D ∆t
∆x

aP = aE + aW + ∆x + ∆x τq
ασα

b =
[
∆x + 2∆x τq

ασα
]

Jt
qτP
− ∆x τq

ασα Jt−∆t
qτP

+ ∆x D wbρbcb
Jt
τE
−Jt

τW
2

−∆x τq
ασα [source 1− source 2]

−∆x τq
α−1σα[source 3− source 4]

(A5)

where

source 1 =
t+∆t
∑

j=2
wα

j

(
Jt−j+∆t−1
qτP − Jt−j+∆t

qτP

)
source 2 =

t
∑

j=2
wα

j

(
Jt−j−1
qτP − Jt−j

qτP

)
source 3 =

t+∆t
∑

j=1
wα

j

(
qt−j+∆t+1

P − qt−j+∆t
P

)
source 4 =

t
∑

j=1
wα

j

(
qt−j+1

P − qt−j
P

)
(A6)

where w is the weighted arithmetic mean [27],

σα = 1
Γ(2−α)

. 1
2−α . 1

∆tα

wα
j =

(
j2−α − (j− 1)2−α

) (A7)

the sensitivity of temperature, i.e., Jτ, is reached as the following:

Jτt+∆t
P = Jτt

P +
∆t
ρc

[
−

Jqτ
t+∆t
E − Jqτ

t+∆t
W

2∆x
− wbρbcb Jτt

P

]
(A8)

The discretization of the sensitivity equation for α is also obtained as the following:

aP Jt+∆t
qαP

= aE Jt+∆t
qαE

+ aW Jt+∆t
qαW

+ b
aE = D ∆t

∆x , aW = D ∆t
∆x

aP = aE + aW + ∆x + ∆x τq
ασ1+α

b =
[
∆x + 3∆x τq

ασ1+α

]
Jt
qP
− 3∆x τq

ασ1+α Jt−∆t
qP

+ 3∆x τq
ασ1+α Jt−2∆t

qP

+∆x D wbρbcb
Jt
τE
−Jt

τW
2 + ∆x τq

α σα ln τ [source 2− source 1]
+∆x τq

α ∂σ1+α

∂α [source 4− source 3] + ∆x τq
ασ1+α[source 6− source 5]

+∆x τq
ασ1+α[source 8− source 7]

(A9)
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where

source 1 =
t+∆t
∑

j=1
wα

j

(
qt−j+∆t+1

P − qt−j+∆t
P

)
source 2 =

t
∑

j=1
wα

j

(
qt−j+1

P − qt−j
P

)
source 3 =

t+∆t
∑

j=2
w1+α

j

(
qt+∆t−j+1

P − 2qt+∆t−j
P + qt+∆t−j−1

P

)
source 4 =

t
∑

j=2
w1+α

j

(
qt−j+1

P − 2qt−j
P + qt−j−1

P

)
source 5 =

t+∆t
∑

j=1

∂w1+α
j

∂α

(
qt+∆t−j+1

P − 2qt+∆t−j
P + qt+∆t−j−1

P

)
source 6 =

t
∑

j=1

∂w1+α
j

∂α

(
qt−j+1

P − 2qt−j
P + qt−j−1

P

)
source 7 =

t+∆t
∑

j=2
w1+α

j

(
Jt−j+∆t+1
qαP − 2Jt−j+∆t

qαP + Jt−j+∆t−1
qαP

)
source 8 =

t
∑

j=2
w1+α

j

(
Jt−j+1
qαP − 2Jt−j

qαP + Jt−j−1
qαP

)

(A10)

where w is the weighted arithmetic mean [27],

σ1+α = 1
Γ(1−α)

. 1
1−α . 1

∆t1+α

w1+α
j =

(
j1−α − (j− 1)1−α

) (A11)

Finally, the temperature sensitivity with respect to α, i.e., Jα, is obtained as follows:

Jαt+∆t
P = Jαt

P +
∆t
ρc

[
−

Jqα
t+∆t
E − Jqα

t+∆t
W

2∆x
− wbρbcb Jαt

P

]
(A12)
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