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Abstract: Dynamic flux balance models (DFBM) are used in this study to infer metabolite concentra-
tions that are difficult to measure online. The concentrations are estimated based on few available
measurements. To account for uncertainty in initial conditions the DFBM is converted into a variable
structure system based on a multiparametric linear programming (mpLP) where different regions of
the state space are described by correspondingly different state space models. Using this variable
structure system, a special set membership-based estimation approach is proposed to estimate un-
measured concentrations from few available measurements. For unobservable concentrations, upper
and lower bounds are estimated. The proposed set membership estimation was applied to batch
fermentation of E. coli based on DFBM.

Keywords: set membership estimation; dynamic flux balance model; multiparametric programming;
observability; variable structure system

1. Introduction

The increasing demand of bio-pharmaceutical products requires continuous improve-
ment in monitoring and control strategies for the fermentation processes. Model-based
control and optimization strategies are crucial to boost productivity. Unlike traditional
unstructured biochemical models, dynamic flux balance models (DFBM) have gained
increasing attention since they contain more detailed information about the distribution of
metabolic fluxes [1,2]. The strength of DFBM relies on their use of stoichiometric informa-
tion about the cell metabolic network. The use of this information often results in models
that require a smaller number of parameters as compared to another type of modelling
approaches and thus are less prone to over-fitting. However, regardless of the choice of
model, monitoring and control of industrial fermentation processes remains challenging
because feedback control strategies require many states to be measured online. In reality,
most states cannot be measured online either due to the expense of measuring equipment
and its maintenance or the lack of online measurement devices [3–5]. Some states, including
concentration of amino acids, metals, vitamins, ATP and precursors have great effect on
the fermentation process but are either difficult or impossible to measure online.

To address the lack of online measurements, soft sensors have been proposed. Soft
sensors are algorithms that estimate the values of the states based on few available online
measurements. Data-driven soft sensors are currently very popular, driven by the interest
in the artificial intelligence research area. Reported data-driven soft sensors are generally
based on artificial neural networks, support vector machines, partial least squares, and
fuzzy inference [4]. However, despite their popularity, the main drawback of data-driven
soft sensors is their limited applicability to the region of data used for model training
and the scarcity of data available for calibration [6]. Moreover, the lack of mechanistic
information of these black box models introduces concerns about the safety and reliability
of the controllers designed based on these models [6].

Another category of soft sensors are state observers based on mechanistic models such
as a Luenberger observer, Kalman filter, and particle filter. These state observers estimate
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the values of some states based on convergence of state prediction errors and provided
that sufficient measurements are available [7]. A key prerequisite of theses state observer
designs is that some observability condition is satisfied with respect to the estimated states.
It will be shown later in the manuscript that, unless enough states of a DFBM model are
measured online, it is difficult to satisfy full observability for all the states.

In the absence of observability of some states, instead of estimating their specific
values it is possible to estimate intervals (ranges) of values based on a priori known range
of initial conditions, i.e., range of values at time = 0. This type of problem is referred to in
the literature as an initial values problem with parameter uncertainty or set-valued ODE
integration. The parameter here refers to either uncertain initial states or some model pa-
rameter such as a kinetic constant. In the past several decades, different methods have been
proposed to find tight bounds containing the reachable sets, including interval analysis [8],
Taylor models with different remainder bounds [9], set-base parameter estimation [10],
and different relaxation methods [11]. Due to the uncertainty amplification effect, interval
analysis can diverge quickly and only suits a small part of the system. Set-based parameter
estimation is computationally expensive because the parameter space need to be validated
in a piecewise manner and each validation test requires the solution of a semi-definite
programming problem. Taylor models can be used to find tight and nonconvex bounds of
reachable sets but cannot be easily formulated to take measurements into consideration.
To find the reachable sets compatible with available measurements, different relaxation
methods and domain reduction are required which are computationally expensive.

When measurements are available, the trajectories that are not compatible with those
measurements should be removed from the reachable sets. Estimation algorithms that effi-
ciently deal with reachable sets subject to measurements including interval observers and
set membership estimation algorithms [12,13]. An interval observer is usually composed
of two classical observers (framers) which estimate the lower and upper bounds of states,
respectively. However, sufficient measurements and fulfillment of observability are still
required to build the two classical observers [14,15]. Most interval observers exploit the
order-preserving properties of cooperative systems to estimate bounds of states [16]. Set
membership estimation is an alternative method for estimating the uncertainty of a set of
states that has been applied to linear systems [17]. The propagation of uncertainty along
time is performed by a series of affine mapping operations over sets. Different shapes of
sets have been used to contain the uncertainty, including zonotopes [18], parallelotopes [17]
and ellipsoids [19].

In this research, a set membership estimation approach is proposed for nonlinear
systems described by DFBM models. The DFBM is converted into a variable structure
system composed of several continuous systems in different region of state space by
multiparametric linear programming. To address the lack of measurements an Extended
Kalman Filter (EKF) is used to estimate nominal values of some states which are important
for determining metabolic fluxes. Then, a set membership estimation algorithm is applied
for DFBM to estimate bounds of all states. A detector is proposed to detect the switch
between different subsystems.

The paper is organized as follows. Section 2.1 introduces background of DFBM.
Section 2.2 describes the use of multiparametric linear programming to convert the
DFBM into a variable structure system composed of subsystems. Section 2.3 describes
the EKF used to estimate some states which are important for determining metabolic
fluxes. Section 2.4 presents the main ideas of set propagation and error compensation
for calculation of states’ bounds. Section 2.5 presents the algorithm for detecting the
switch between different subsystems. Section 3 provides the application of the proposed
techniques to the batch fermentation of E. coli. Section 4 presents a Discussion of the
results followed by Conclusions.
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2. Materials and Methods
2.1. Dynamic Flux Balance Models

Dynamic flux balance models (DFBM) are structured genome-based metabolic models
developed from flux balance models. The key assumption of DFBM is that the cells act as
agents distributing resources through metabolic reaction networks to boost a biological
objective, e.g., growth rate [1]. Accordingly, the DFBM is formulated as an optimization
problem. In the literature [20], both dynamic and static optimization approaches are
reported. In the dynamic approach, the nonlinear programming problem is solved over a
relatively large time period which is computationally expensive and thus less convenient
for uncertainty propagation. In this investigation, static optimization approach is adopted
for its simplicity. DFBM is interpreted as a local linear programming problem to maximize
a biological objective. In terms of dynamics of intracellular metabolites, there are two
type of DFBM models in the literature. One type of DFBM differentiates intracellular
and extracellular environments and assumes that the intracellular metabolic reactions are
fast enough such as it can be assumed at quasi-steady state [2,21]. Accordingly, only the
extracellular metabolites and the biomass are described by dynamic state equations. It
has been argued that the intracellular metabolite concentrations are not constant and may
change over time [22]. Accordingly, there is a second type of DFBM, used in the current
study, which does not differentiate between intracellular and extracellular compartments
and the dynamics of all the metabolites are considered [20,23]. The governing equations of
DFBM are based on discretized mass balances for all metabolites and these are defined by
Equations (1a)–(1d).

xk+1 = Bxk + ∆txbio,k Avk + h (1a)

yk = Cxk + rk (1b)

x0 ∈ P0 (1c)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (1d)

where xk is a vector of nx state variables at the time step k. The state vector x includes
concentrations of metabolites and biomass xbio. y is a vector of ny measured variables.
B ∈ Rnx ×Rnx is a constant diagonal matrix with diagonal elements bj, j = 1, · · · , nx. ∆t
is a constant discrete time step size. A ∈ Rnx ×Rnrct is a stoichiometry coefficient matrix,
where nrct is the number of reactions considered in the metabolic network. v ∈ Rnrct is the
metabolic flux vector and its calculation is discussed below. h ∈ Rnx is a constant vector.
The initial state x0 is assumed to be bounded by a finite polyhedron P0 as Equation (1c).
The underlying assumption is that in practice the initial concentrations of the culture
medium components are known to be within specific ranges of values P0. This assumption
is based on the fact that some variation in media formulation occurs due to human factor
and variability in raw materials. Hence, this research focuses on the initial uncertainty and
we assume all parameters in the state equations to be known accurately. In other words,
the method proposed in this research cannot deal with model structure uncertainty like
uncertainty in matrix A. However, the method can be extended to deal indirectly with
uncertainty in parameters θ defined in the following paragraphs.

rk ∈ Rny are measurement noise vectors of which the elements follow the truncated
multivariate normal distribution (TN) [24,25]. The probability density function p for
TN(µ, Σ, l, u) are defined as per Equation (2).

p(x, µ, Σ, l, u) =
exp{− 1

2 (x− µ)TΣ−1(x− µ)}∫ u
l exp{− 1

2 (x− µ)TΣ−1(x− µ)}
(2)

For rk, the mean vector of TN is 0 ∈ Rny ; the covariance is Σ ∈ Rny ×Rny ; the corresponding
variance vector is σ2 ∈ Rny ; the lower bound and upper bound are l ∈ Rny and u ∈ Rny ,
respectively. | · | indicates the absolute value of a vector. It is assumed that |l| ≤ 3σ and
|u| ≤ 3σ, which indicate that the absolute values of the lower bound and upper bound,
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respectively, are within the range of 3σ. For simplicity, the current study assumes the
process noise to be zero. Process noise could be included as an additional state but this is
beyond the scope of the current work.

Following the assumption that the cell allocates resources optimally, the metabolic
flux v vector at each time step is obtained by solving a linear programming (LP) problem,
defined by Equations (3a) and (3b).

max
vk

cTvk (3a)

subject to Gvk ≤ Fθk(xk) + z (3b)

where c ∈ Rnrct , F ∈ RnG × Rnθ , z ∈ RnG , G ∈ RnG × Rnrct , θ ∈ Θ ⊆ Rnθ . nG is the
number of linear constraints. The parameter vector θ is a nonlinear vector-valued function
of states x. nθ denotes the number of elements in the parameter vector θ. Usually, each
element θ is only function of two states at most and one of these two states is biomass
concentration. Θ denotes the parameter space where the optimal solution of the LP resides.
Equation (3a) denotes the objective of the LP that cells are optimizing where the most
commonly used objective is the biomass production rate, i.e., growth rate. Thus, cells
try to maximize growth rate by allocating limited resources. The LHS (left hand-side) in
Equation (3b) describes either the rate of change of metabolite concentrations or the change
of metabolite concentrations over a discretization time step ∆t. Matrices G are constant
matrices containing the information of the stoichiometry of reactions. RHS in Equation (3b)
is a function of xk, denoting the metabolic reaction bounds for each step. The matrix F is a
matrix of which the elements are the part of the right hand side of the constraints that are
functions of states at the previous time interval. z is a vector containing constant values
such as constant uptake rate limits. Therefore, linear constraints of flux v in Equation (3b)
are reaction rate limits or bounds on available resources (nutrients). Numerical examples
of these matrices and vectors are shown for the E. coli model in the results section.

2.2. Multiparametric Linear Programming for DFBM
2.2.1. Multiparametric Linear Programming

While set -based methods are available for uncertainty propagation for linear state
space equations, these methods are not directly applicable to DFBM. The reason is that
the fluxes used in the state equations are obtained from an LP and thus the problem is
nonlinear due to the nonlinear function θ(x) and the occurrence of different sets of active
constraints. To tackle the dependency of the state equations on the LP, the concept of
multiparametric linear programming (mpLP) is used to convert the DFBM into a variable
structure system which is composed of subsystems. Multiparametric linear programming
divides the parameter space (Θ) into different regions corresponding to different sets of
active constraints and generates explicit expressions for calculating optimal solutions (v)
for each region [26–28].

Let assume a given optimal solution v of the LP (Equation (3)) where subscript A
and I denote indices of active and inactive constraints, respectively. Using this notation
Equation (3b) is decomposed into two parts, equalities GAvk = FAθk(xk) + zA and
inequalities GIvk ≤ FIθk(xk)+ zI . Without loss of generality, let us assume that GA
is linear independent (linear redundant rows can always been removed by Gaussian
elimination). Let H = G−1

A FA and g = G−1
A zA, then the optimal solution can be obtained

by Equation (4).
vk = Hθk(xk)+ g (4)

Substituting Equation (4) into the inequality constraints results in Equation (5).

(GIH − FI )θk(xk) < zI −GI g (5)

Equation (5) defines a polyhedral region of θ where the existence of the optimal solution is
ensured by Equation (4). The region defined by Equation (5) is referred to as a critical region
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in the multiparametric programming literature. Different critical regions are defined by
different combinations of A and I . Then, the entire parameter space Θ can be decomposed
into connected critical regions denoted by {Θi}, i = 1, · · · , nΘ. nΘ denotes the total
number of critical regions in Θ. In practice, critical regions that are very small are ignored
and assumed to be covered by the adjacent critical region. Correspondingly, superscript i
is used to denotes the i-th critical region. Assume for a specific θ ∈ Θi, the optimal flux v
vector can be calculated analytically by vi

k = Hiθk + gi thus bypassing the need for solving
the LP. Following the literature and our previous studies, for a given θ, multiple optimal
solutions can coexist [29,30]. In other words, multiple Equation (4) can coexist which
results in different ways to divide the parameter space Θ. When such multiplicity issue
occurs it results in different time trajectories. For simplicity, multiplicity is not addressed
in the current study and it is addressed in a separate work by different methods from the
one presented here.

By substituting the optimizer equation vi
k = Hiθk + gi into Equation (1a), we obtained

a set of governing state equations as per Equations (6a)–(6e). Since different θk are within
different critical regions as Equation (6b), each critical region corresponds to different state
equations Equation (6a). Thus the set {Θi} defines a family of state space models and this
family is referred to as a variable structure system. A variable structure system is a piece-
wise continuous system composed of subsystems where each subsystem corresponds to a
different region of the state space. Furthermore, the region of the state space corresponding
to a specific subsystem is referred to as a critical region. Each subsystem is described by
a different set of state equations. Accordingly, the state equations need to be changed as
soon as the states enter into a new critical region. Here, the superscript i denotes the i-th
subsystem corresponding to a critical region Θi. Equations (6c)–(6e) remain the same form
as Equations (1b)–(1d).

xk+1 = Bxk + ∆txbio,k A(Hiθk(xk)+ gi) + h (6a)

θk(xk) ∈ Θi i = 1, · · · , nΘ (6b)

yk = Cxk + rk (6c)

x0 ∈ P0 (6d)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (6e)

2.2.2. Reaction Rate Estimability

To further simplify the system described by Equations (6a)–(6e) it is possible to exploit
the sparseness of the H matrix. For instance, to take advantage of zero columns of H,
Equation (4) can be re-written as shown in Equation (7). For conciseness, the subscript k is
omitted here because Equation (7) applies for all time steps.

vi = Hiθ(x)+ gi =
[
Hi

N Hi
Z
][θi

N(xi
N)

θi
Z(x)

]
+ gi = Hi

N θi
N(xi

N)+ gi (7)

In Equation (7) N and Z denote the indices of the nonzero and zero columns of the H
matrix, respectively. Because HZ is a submatrix containing the zero columns of H, the
flux v is only a function of parameters θN(xN) according to Equation (7). Moreover,
while the parameters θ are a function of states x (see Equations Equations (1a)–(1d)
and (3)), only some elements of x actually determine the entire flux vector v. The vector xN
contains, according to Equation (7), the states that determine the flux vector. Notice that
for different critical regions flux-determining vector xN contains different states. Therefore,
Equation (6a) can be simplified into Equation (8).

xk+1 = Bxk + ∆txbio,k A(Hi
N θi

N(xi
N,k)+ gi) + h (8)

The biological interpretation of the flux-determining state vector xN is that only some
resources are limiting the growth of cells, either because they are limited or because the
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activity of enzymes in the related reactions (fluxes) is limiting. As the fermentation pro-
gresses, the states transit into new critical regions from old critical regions. Different critical
regions can be interpreted as different metabolic stages where xN are different. Similar
interpretations have been reported in [26] in the context of steady state flux balance analysis.

In Equation (8), the term ∆txbio,k A(H i
N θi

N(xi
N ,k) denotes the change of metabolite

concentrations contributed by metabolic reactions. Therefore, the reaction rates are
xbio,k A(H i

N θi
N(xi

N ,k). It is noted that this nonlinear reaction rate term is not only a
function of the flux-determining states vector xN but also of biomass concentration
xbio , because the fluxes are defined per unit biomass, i.e., more biomass demands more
nutrients to satisfy the requirement of the growth. Once the states that determine the
reaction rates, i.e., the states xN together with the value of xbio , can be estimated, the
estimation problem can be simplified greatly. Since in some cases xN contains xbio but
in some cases it does not, we define a reaction-rate-determining state vector xM in
Equation (9). Hence, the reaction-rate-determining state vector xM always contains the
flux-determining states xN and the biomass state xbio without any redundancy.

xM =


xN , if xN contains the biomass state xbio .[

xN

xbio

]
, otherwise.

(9)

The vector xM for critical region Θi is denoted by xi
M . We define reaction rate estima-

bility as the ability to determine the reaction rates xbio,k A(Hi
N θi

N(xi
N,k) in the metabolic

networks which is needed for the calculation of Equation (8). Following the above, once
reaction-rate-determining state vector xM at time step k can be estimated, the dynamic
evolution of the culture at step k + 1 as per Equation (8) can be predicted. In addition, it
should be noticed that it is not necessary to measure all the reaction-rate-determining states
for reaction rate estimability and instead some states can be estimated by an observer from
available measurements. However, if an observer is used to estimate xi

M , some particular
combination of measurements is necessary for observability of xi

M . Considering different
measurement combinations Ωi

1, Ωi
2... for the critical region Θi, only some combinations

provide full observability of xi
M . Let Ωi

O be defined as a family of sets of measurements,
which contains all measurement combinations that fulfill observability of xi

M .
Although many different critical regions and corresponding combinations of measure-

ments could be considered, in practice the possibilities will be limited because industrial
fermentations usually operate in a narrow range of operating conditions. Thus, the dy-
namic trajectories of states only pass through a limited set of critical regions. Assume for
∀x0 ∈ P0, the set of critical regions that the trajectories traverse are Γ. Then, the minimum
set of measurements required for the reaction rate estimability of the critical region set Γ is
ΩΓ as per Equations (10a)–(10c).

ΩΓ = min
j
|
⋃

i
Ωi

j| (10a)

subject to i ∈ Γ (10b)

Ωi
j ∈ Ωi

O (10c)

where | · | is the cardinality of a finite countable set, i.e., the number of elements of a set.
In Equation (10c), Ωi

j ∈ Ωi
O indicates that the measurement combination Ωi

j can fulfill the

observability of reaction-rate-determining states xi
M of critical region Θi. If all states in set

ΩΓ are measured, the reaction rate term of any trajectory starting from P0 can be estimated
by the observer. In other words, although xi

M in different critical regions may be different,
requiring different measurements for observability, xi

M is always observable if the chosen
set of measurements satisfy Equation (10c).
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2.3. Extended Kalman Filter (EKF)

Using the minimum required set of measurements, ΩΓ is defined in Equation (10c),
xM can be estimated by an observer. xM corresponds to the observable subspace of the
governing equation (Equations (1a)–(1d)) for each critical region. The state equation of the
observable subspace for critical region Θi is given by Equations (11a)–(11c).

xi
M,k+1 = f i(xi

M,k) = Bxi
M,k + ∆txbio,k AM(Hi

N θi
N(xi

N,k)+ gi) + hM (11a)

yk = Ci
M xi

M,k + rk (11b)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (11c)

where xi
N,k and xi

M,k are the flux-determining state vector and the reaction-rate-determining
state vector for critical region Θi, respectively; AM is the stoichiometry submatrix cor-
responding to xM . Similarly hM is a sub-vector of h corresponding to xM . It should be
noticed that, for different critical regions, xM involves different states. Accordingly, each
critical region requires the use of a different EKF. In addition, it should be noticed that the
Ci

M matrices are different for each critical region but the measured variables ΩΓ are the
same since the same sensors are used for the entire fermentation.

To estimate xi
M , an standard EKF is used due to its effective and simple structure [31].

The estimate x̂i
M,k and covariance Pi

k of xi
M for critical region Θi are described by Equa-

tion (12a) and Equation (12b), respectively.

x̂i
M,k = f i(x̂i

M,k−1) + Kk(yk − Ci
M f i(x̂i

M,k−1)) (12a)

Pi
k
−1

= Φi
k−1Pi

k−1Φi
k−1

T
+ Ci

M
T
(ΣΣT)−1Ci

M (12b)

where

Kk = Φi
k−1Pi

k−1Φi
k−1

T
Ci

M
T
(Ci

MΦi
k−1Pk−1Φi

k−1
T

Ci
M

T
+ ΣΣT)−1 (13a)

Φi
k =

∂ f i

∂xi
M
(x̂i

M,k) (13b)

The measurement noise is assumed to be a truncated multivariate normal distribution as
Equation (11c). This assumption is needed for estimating finite bounds as explained in
the following section. Recall in Equation (2) that |l| ≤ 3σ and |u| ≤ 3σ, the lower and
upper bounds are located within the range of 3σ. The covariance matrix Pk is always
overestimated to ensure boundedness. Although the EKF resulting from this assumption is
sub-optimal, it is still sufficient to estimate xi

M .

2.4. Set Propagation and Error Compensation

Since the minimum set of measurements defined by Equations (10a)–(10c) can only
ensure the observability of xM , the estimation of other states needs different estima-
tion strategies. The idea is to exploit the a priori knowledge of the initial ranges of
initial conditions to estimate all states. Instead of predicting specific values of states,
set membership estimation (SME) approach is used to predict sets containing all pos-
sible states by a series of set operations. These set operations usually include linear
mapping, projection, translation, Minkowski addition, intersection, union, and outer
approximation. In this research, all sets and multiparametric linear programming op-
erations are performed with the Multi-Parametric Toolbox 3.0 (https://www.mpt3.org/
accessed on 15 July 2021) [32] and MATLAB R2018a. The E. coli example can be found
online (https://github.com/SetMembershipEstimationDFBM/E.coliExample, accessed on
25 September 2021). For DFBM, SME propagates the initial set P0 by affine mapping as
Equation (14). Affine mapping involves two operations: linear mapping of the previous set
and translation.

https://www.mpt3.org/
https://github.com/SetMembershipEstimationDFBM/E.coliExample
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X̂k+1 ≈ BX̂k︸︷︷︸
linear mapping

+ ∆tx̂bio,k A(Hi
N θi

N(x̂i
N,k)+ gi) + h︸ ︷︷ ︸

translation

(14)

where X̂k represents the set of states at time step k and X̂0 = P0, i.e., the set of initial
conditions assumed to be known. In Equation (14), the translation term is approximated by
using the estimate x̂i

M,k obtained by the EKF. In the application of EKF, the estimate x̂i
M,k

needs several time steps to converge to the true flux-determining states xi
M,k. Thus the SME

described by Equation (14) may underestimate bounds while the EKF is converging. To
mitigate this problem, a correction is implemented to compensate for the estimate error as
described below. Since no extra information is available, the compensation of the estimate
error is based on the worst case scenario.

The error in the estimate incurred by the observer for critical region Θi is ei
M =

xi
M,k− x̂i

M,k. Since xi
M,k always contains biomass xi

bio,k and xi
N,k, the corresponding estimate

errors are defined as ei
N,k = xi

N,k − x̂i
N,k and ei

bio = xi
bio,k − x̂i

bio,k. Let us assume that the
function θ is first-order differentiable and define Jacobian matrix ψi

k.

ψi
k =

∂θi
N

∂xi
N
(x̂i

N,k) (15)

Substituting the estimate error ei
k, ei

bio and Jacobian matrix ψi
k into Equation (8), a corrected

state equation that accounts for the estimate error is obtained as Equations (16a) and (16b).
Equations (16a) and (16b) uses a first order approximation to account for the state deviation
εi

k caused by the estimate error ei
M,k, while the EKF is converging. The error compensation

based on linearization provides satisfactory bounds because the error between estimate
and measured is small and decreases quickly due to the convergence of EKF.

xk+1 = Bxk + ∆tx̂bio,k A(Hi
N ψi

k x̂i
N,k + gi) + h + εi

k (16a)

εi
k = Dkei

N,k + ebio,k Mkei
N,k + Lkebio,k (16b)

where

Dk = x̂bio,k∆tAHi
N ψi

k + h (17a)

Mk = ∆tAHi
N ψi

k (17b)

Lk = ∆tA(Hi
N θi

N,k(x̂i
N,k)+ gi) (17c)

In this work, the noise was assumed to follow a truncated multivariate Gaussian
distribution. The corresponding standard multivariate Gaussian distribution of noise
contains the truncated one. As illustrated in Figure 1, when an EKF is used to estimate the
states, the distribution of states with a standard Gaussian noise should similarly contain the
one with the truncated Gaussian noise, which is the true distribution of states. Moreover,
the distribution of states by standard EKF is also a multivariate Gaussian distribution.
For Gaussian distribution, 99.7% of the samples are within the interval of 6 standard
deviations from both sides of the mean for each state. Thus, an interval set based on
6 standard deviations can contain the distribution by standard EKF and eventually contain
the true distribution of states as in Figure 1. Since Pi

k is the covariance of a standard EKF,
the diagonal elements of matrix Pi

k are the variances for each state. Therefore, diagonal
elements of Pi

k can be used to define the interval set to bound the error εi
k.
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Figure 1. Illustration of the interval set containing the distribution of states.

To formulate an error compensation operation scheme several set operations are
introduced first as follows. The n-dimensional interval set is S(p, q) with lower bound
p and upper bound q as S(p, q) = {x ∈ Rn : p ≤ x ≤ q}. The outer approximation
operation Q(·) of a bounded setW is denoted by Q(W), which involves the mapping of
the setW to a new interval set. If the infimum and supremum are denoted by inf(·) and
sup(·), respectively, the outer approximation of the setW is Q(W) = S(inf(W), sup(W)).
The operator ⊕ is the Minkowski addition of two sets. For example, for two sets α and β,
α⊕ β = {a + b : ∀a ∈ α, ∀b ∈ β}.

Notice that the diagonal elements of Pi
k are the variances of each state. Then, if the

standard deviation of ei
N,k is ηi

N,k and of ei
bio,k is ηi

bio,k, two interval sets EN,k and Ebio,k can be
defined to bound ηi

N,k and ηi
bio,k, respectively, based on the choice of 3 standard deviation

ranges, as ei
N,k ∈ EN,k = S(−3ηi

N,k, 3ηi
N,k) and ei

bio,k ∈ Ebio,k = S(−3ηi
bio,k, 3ηi

bio,k). In
Equation (16b), since |ei

bio,k| < 3ηi
bio,k, we have ebio,k Mkei

N,k ∈ 3ηi
bio,k MkEN,k. Similarly, the

other two terms in Equation (16b) can be bounded as Dkei
N,k ∈ DkEN,k and Lkebio,k ∈

LkEbio,k, respectively. Therefore, the state deviation εi
k term can be contained within the

interval set Eε,k according to Equation (18).

εi
k ∈ Eε,k = Q((Dk + 3ηi

bio,k Mk)EN,k)⊕Q(LkEbio,k) (18)

where the sets DkEN,k and 3ηi
bio,k MkEN,k occurring in Equation (18) are combined together.

On the other hand, LkEbio,k originates from a different set Ebio,k and thus Minkowski
addition must be used to add the different sets. However, linear mapping of interval sets
can lead to irregular convex sets. In computational geometry, traditional algorithms that
perform Minkowski addition for two convex irregular high-dimensional polytopes are
computationally expensive [33]. On the other hand, Minkowski addition of two interval
sets is computationally efficient because intervals are axis-aligned. Thus, the operator Q(·)
that converts the irregular set to the axis-aligned set is applied to speed up the computation
of the Minkowski addition.

Following the above, the set of states X̂k+1 is bounded by the prior estimate set P−k+1
according to Equations (19a) and (19b).

P−k+1 = Q{ BP+
k︸ ︷︷ ︸

linear mapping

+∆tx̂bio,k A(Hi
N θi

N(x̂i
N,k)+ gi) + h︸ ︷︷ ︸

translation

} ⊕ Eε,k (19a)

X̂k+1 ⊂ P−k+1 (19b)

where the set of the posterior estimates is P+
k . BP+

k denotes the scaling of the set P+
k by the

diagonal matrix B. Then the set BP+
k is translated by the vector in the big curly brackets.

To compensate for the deviation during the convergence of EKF, the interval set Eε,k is
added by Minkowski addition.

Considering the truncated measurement noise, rk = yk − Cxk is bounded by the
lower l and upper bounds u; let us define a setMk = {xk ∈ Rnx : l < yk − Cxk < u}.
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Then, the posterior estimate set P+
k+1 is given by Equations (20a)–(20c). In this study, it is

assumed that P+
k and P−k+1 are much smaller than the volumes of the critical regions.

P+
k+1 = P−k+1

⋂
Mk+1 (20a)

X̂k+1 ⊂ P+
k+1 (20b)

P+
0 = P0 (20c)

Figure 2 illustrates the set propagation using intervals for an example involving two
states, e.g., glucose and biomass concentrations. The initial set P0 contains all possible
initial values of glucose and biomass. Then P+

1 is generated through set operations by
computational geometry algorithms. Since an interval set is used, it is computationally
efficient to project the setP+

1 onto the biomass and glucose axes to obtain the corresponding
lower bounds lglc, lbio and upper bounds uglc, ubio as shown in the figure for the set P+

1 .

Figure 2. Illustration of set propagation of SME by set operations.

2.5. Detecting the Transition between Critical Regions

The proposed use of multiparametric programming converts the DFBM into a variable
structure system composed of subsystems where each critical region corresponds to a
subsystem. Along a given time trajectory the states may transit from one critical region to
another. When the states estimated by the EKF leave a critical region Θi to enter another
critical region Θj, the estimate x̂M,k and the covariance Pk must be reinitialized because
xM for different critical regions may be different, even though the measured states are the
same. Moreover, a criterion is required to detect whether the states are entering into a new
critical region.

When the system is traversing from one critical region to another, it needs to cross
a boundary between the critical regions. Over time the states may cross over several
boundaries along their trajectories and these crossings must be detected. Two neighboring
critical regions share a boundary where an active constraint will become inactive or vice
versa. The activation of a constraint may require the change of constraints related to
x̂N,k. For a given constraint, θ is usually only function of two states at most because of
commonly used Michaelis-–Menten kinetics [34] or constraints to prevent the depletion
of nutrients [23] and one of these two states is biomass. So two special cases should be
considered as follows when system switches from one critical region to the next:

Case i—xi
N of the old critical region Θi have one more observable state than the xj

N of
the new critical region Θj. For this case, the switch between critical regions is determined
by Equation (21). Equation (21) calculates the norm of the difference between the flux
estimates obtained with Equation (7) in the two neighboring regions. Notice that the flux
estimate of Θj is based on estimate x̂i

N,k of the old critical region. The value of γ(i, j, k) is
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used to detect the occurrence of a switch. If the system is exactly at the boundary of these
two critical regions, the flux equation Equation (7) for these two critical regions should
result in the same flux value and γ(i, j, k) will be zero. A schematic example is shown in
Figure 3. Polygons in different colors represent different critical regions in the parameter
space Θ. As the state evolves with time, the corresponding θ changes along the dash
line in the parameter space Θ. As the θ approaches the boundary between the critical
region Θ1 and Θ2, γ(i, j, k) approaches zero. Correspondingly, a value of γ(i, j, k) smaller
than a user specified tolerance indicates a switch between critical regions, thus requiring
reinitialization of the EKF as follows: x̂j

N,k is set equal to x̂i
N,k and Pj

k is set equal to Pi
k.

γ(i, j, k) =
∥∥∥v̂i

k − v̂j
k

∥∥∥ =
∥∥∥Hi

N θi
N(x̂i

N,k)+ gi − (H j
N θ

j
N(x̂i

N,k)− g j)
∥∥∥ (21)

Figure 3. Illustration of detecting a critical region switch.

Case ii—xj
N of the new critical region Θi has one more observable state than the xj

N of
the old critical region Θi. To reinitialize the EKF, x̂j

N,k and Pj
k can be set to the old values

except for the new observable state that is not observable in the old critical region, and
thus it needs to be estimated for calculating γ(i, j, k). By projecting the set P+

k , the lower
lun,k and upper bounds uun,k can be calculated. Since no extra information is available,
the mean value of the upper bound and lower bound is used as the nominal value of the
unobservable state as per Equation (22).

x̂i
un,k =

1
2
(uun,k + lun,k) (22)

Equation (23) is used to calculate γ(i, j, k). The flux estimate for the new critical region Θj

is based on the nominal values of the unobservable state x̂i
un,k combined with x̂i

N,k of the
old critical region.

γ(i, j, k) =
∥∥∥v̂i

k − v̂j
k

∥∥∥ =
∥∥∥Hi

N θi
N(x̂i

N,k)+ gi − (H j
N θ

j
N(x̂i

un,k, x̂i
N,k)− g j)

∥∥∥ (23)

To reinitialize the EKF, the estimate and covariance are used together with the estimation of
the new state that is added in the new critical region. Assuming the states are close enough
to the boundary between the critical regions, then Equation (24) holds.∥∥∥Hi

N θi
N(x̂i

N,k)+ gi − (H j
N θ

j
N(x̂j

N,k, x̂j
un,0)− g j)

∥∥∥ = 0 (24)

The initial estimate of new observable state x̂j
un,0 in the new region can be calculated by

solving the Equation (24). Since the new state is between the upper bound and lower
bound by SME, the half length between uun,k and lun,k is the worst possible deviation. Then,
using a 3 standard deviation range, the initial variance η2

un,k can be estimated according



Processes 2021, 9, 1762 12 of 20

to Equation (25) and all other covariance terms related to the new state are assumed to
be zero.

ηun,k =
1
3
· 1

2
(uun,k − lun,k) (25)

Bounds of states estimated by the SME are rigorously guaranteed in each critical region
separately but subject to accurate tuning of the tolerance that is used to switch between the
subsystems. The tolerance of γ(i, j, k) is the only user specified parameter in this research.
If the tolerance is too large or small, the EKF may switch the subsystem too early or too
late. Accordingly, if the wrong state equations are used in estimation, the bounds on the
states may be violated. To avoid such a situation, exhaustive simulations that are initialized
with P0 are conducted to find the tolerance used to switch between critical regions. As an
alternative, an overestimated covariance can also be used to reinitialize the EKF when the
state enters a new critical region to avoid bound violations.

3. Results
3.1. DFBM Model of E. coli

A DFBM model of E. coli reported in [20] is used to illustrate the proposed method-
ology. The DFBM in batch operation includes four states, glucose concentration xglc,
oxygen concentration xoxy, acetate concentration xace, and biomass concentration xbio as

in Equations (26a)–(26e). Thus, the state vector is x =
[
xglc xoxy xace xbio

]T . The
substrates are glucose, oxygen, acetate.

xglc,k+1 = xglc,k + ∆txbio,k Aglcvk (26a)

xoxy,k+1 = (1− kLa∆t)xoxy,k + ∆txbio,k Aoxyvk + 0.21kLa∆t (26b)

xace,k+1 = xace,k + ∆txbio,k Aacevk (26c)

xbio,k+1 = xbio,k + ∆txbio,k Abiovk (26d)

x0 ∈ P0 = S(
[
0.38 0.1995 0.19 0.00095

]T ,
[
0.42 0.2205 0.21 0.00105

]T
) (26e)

where kLa = 4 h−1 is the oxygen mass transfer coefficient. The initial state vector x0 is
defined by the interval set P0 according to Equation (26e). The matrix A contains the
stoichiometric coefficients corresponding to four reactions according to Equation (27).
Each column of this matrix corresponds to one reaction and each row correspond to one
component.

A =


Aglc
Aoxy
Aace
Abio

 =


0 −9.46 −9.84 −19.23
−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

1 1 1 1

 (27)

The flux vector vk is obtained by solving the following linear programming problem as
Equations (28a)–(28g):

max
vk

Abiovk (28a)

subject to − Aoxyvk ≤ OURmax (28b)

Aacevk ≤ 100 (28c)

− ∆tAglcvk ≤
xglc,k

xbio,k
= θ1,k (28d)

− ∆tAoxyvk ≤
(1− kLa∆t)xoxy,k + 0.21kLa∆t

xbio,k
= θ2,k (28e)

− ∆tAacevk ≤
xace,k

xbio,k
= θ3,k (28f)
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− Aglcvk ≤
GURmaxxglc,k

Km + xglc,k
= θ4,k (28g)

where OURmax = 12 mM/(g-dw·h) is the maximum oxygen uptake rate and g-dw is grams
of dry weight of biomass; GURmax = 6.5 mM/(g-dw·h) denotes the maximum glucose
uptake rate. Equation (28a) describes that the objective of the cells is to maximize the
biomass growth rate. Equation (28b) indicates that the oxygen consumption rate is limited
by a maximum uptake limit. Equation (28c) indicates that the acetate generation rate is
bounded by 100 mM/(g-dw·h). Equation (28g) indicates that the glucose consumption rate
is bounded by an upper limit. All the other constraints are positivity constraints to prevent
depletion of metabolites. To express these constraints in Equations (28a)–(28g) compactly,
the constraints in (28a)–(28g) can be expressed in the form of Equation (3):

Gvk ≤ Fθk(xk)+ z (29a)

G =



−Aoxy
Aace
−∆tAglc
−∆tAoxy
−∆tAace
−Aglc

 (29b)

F =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (29c)

z =



OURmax
100
0
0
0
0

 (29d)

3.2. Determination of Minimum Measurements

Due to the assumption that the initial state is contained in an interval, the problem
in Equations (28a)–(28g) can be formulated as a multiparameteric linear programming
(mpLP) problem. The vector θ is composed of four parameters which are nonlinear
functions of states. Using the Multi-Parametric Toolbox 3.0, it can be found that the
entire parameter space Θ can be decomposed into a maximum of 24 critical regions. For
each critical region, the mpLP solver calculates the constraints that form the boundaries
of the region and the equations that generate the optimal solutions. In order to reduce
the computational effort, extensive simulations are conducted with randomly chosen
initial values in set P0 to identify which critical regions are relevant for the problem. It
is found from these simulations that, for the chosen range of initial conditions, the states
only traverse through two neighboring critical regions Θ1 and Θ2 assuming small critical
regions are ignored. According to the results of the mpLP solver, the two critical regions
can be defined as Equations (30a) and (30b). Critical regions Θ1 and Θ2 share a boundary
defined in Equation (30c). Since θ is a function of x, the critical regions are next to each
other in the state space.
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Θ1 :



−0.9988 0 0 0.0499 0
0 −1 0 0 0
0 0 −0.9971 −0.0767 0
0 0 0 −0.0033 −1
0 0 0 1 0
0 0 0 −1 0

θ(x) ≤



0
−0.6
−0.6740
0.0171
8.7864

0

 (30a)

Θ2 :



−0.9988 0 0 0.0499 0
0 −0.7469 0.6630 0.0510 0
0 0 −0.0254 −0.0053 −0.9997
0 0 −1 0 0
0 0 0.9971 0.0767 0
0 0 0 −1 0

θ(x) ≤



0
0
0
0

0.6740
0

 (30b)

Θ1
⋂

Θ2 :
[
0 0 0.9971 0.0767 0

]
θ(x) = 0.6740 (30c)

Accordingly, the mpLP solver also calculates the matrix H and g used in the flux equation
Equation (7) for these two critical regions. By taking advantage of the sparseness of H for
these two critical regions, θN can be determined. The equations to calculate fluxes for these
two critical regions can be expressed as Equations (31a) and (31b).

v1
k =

[
−0.039 0.1057 0 0

]T
θ4(xglc,k) +

[
0.3429 0 0 0

]T (31a)

v2
k =

[
0.5072 0 0 0

]T
θ3(xace,k, xbio,k) +

[
0 0.1057 0 0

]T
θ4(xglc,k) (31b)

where θN for critical region Θ1 is θ4 and θN for critical region Θ2 is θ3 and θ4. By substitut-
ing the flux equation Equations (31a) and (31b) into Equations (26a)–(26e), the simplified
state equations of E. coli model can be rewritten compactly as in Equations (32a) and (32b).

xk+1 = Bxk + ∆txbio,k Av1
k(xglc,k) + h θ(xk) ∈ Θ1 (32a)

xk+1 = Bxk + ∆txbio,k Av2
k(xace,k, xbio,k, xglc,k) + h θ(xk) ∈ Θ2 (32b)

Following the calculations above, the original E. coli model is simplified into an equivalent
system comprised of two subsystems of interest. Equations (32a) and (32b) describe
subsystem 1 and subsystem 2, respectively. These two subsystems are continuous in
the state space and they share the same boundary as per Equation (30c). Once the state
crosses the boundary between the two subsystems, the governing equation is switched
from Equations (32a) and (32b). Because the initial state is randomly initialized in set P0,
P0 corresponds to a set in Θ1. Thus, the state evolves within the region of subsystem 1 and
gradually approximates the region of subsystem 2 governed by Equation (32b) until finally
crossing the boundary given by Equation (30c). As only part of θ is known, a detector is
used to detect the crossing of the boundary, thus ensuring that the switch between the
regions is performed accurately.

Based on the flux equation Equations (31a) and (31b), the reaction-rate-determining
states vector xi

M for Θ1 are biomass and glucose and for Θ2 are biomass, acetate and glucose.
Accordingly, the possible combinations of measurements needed for observing x1

M of Θ1

include Ω1
1 = {Bio}, Ω1

2 = {Glc} and Ω1
3 = {Bio, Glc}. Similarly, there are 7 possible

combinations of measurements for observing the vector x2
M in Θ2, namely Ω2

1 = {Ace},
Ω2

2 = {Bio}, Ω2
3 = {Glc}, Ω2

4 = {Ace, Bio}, Ω2
5 = {Bio, Glc}, Ω2

6 = {Ace, Glc}, and
Ω2

7 = {Ace, Bio, Glc}. To find a combination of measurements ΩΓ that will be suitable
for both critical regions, it is necessary to perform an analysis of observability for these
combinations. The Symbolic Toolbox calculation of MATLAB R2018a is used to develop an
analytical equation observability rank condition and rank of Φi

k of the nonlinear system
according to the criterion presented in [31]. Since the symbolic expressions of the rank
for each critical regions for Equation (11) are very complex, it is very difficult to infer a
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analytical condition of observability for all possible values of the states. Instead, the rank
values are calculated for different measurement combinations and rank of Φi

k using a
Monte Carlo algorithm based on 5 million samples of Θ1 and Θ2, respectively. According
to these Monte Carlo simulations, the only measurement required for observability of the
vectors x1

M in Θ1 and x2
M in Θ2 is the biomass concentration, namely ΩΓ = {Bio}.

3.3. EKF for the Two Subsystems and Detection of Transition between Subsystems

Based on the aforementioned observability analysis, the biomass concentration is the
only state that needs to be measured online as per Equation (33a) for implementation of
the EKF. Measurement noise is assumed as a truncated normal distribution as described
by Equation (33b). Since the initial P0 is assumed to be known, the EKF is initialized at
the center of P0 with a variance based on 3 standard deviations and zero covariance terms.
The state of the plant is initialized randomly by sampling a point within the region defined
by P0.

yk =
[
0 0 0 1

]
xk + rk (33a)

rk ∼ TN(0, 0.0042,−0.0004, 0.0004) k = 0, 1, 2 · · · (33b)

Based on the assumed P0, in the batch process the EKF starts in critical region Θ1

and later it transitions into critical region Θ2. Thus, two EKFs are required in this case
study to estimate the xM as summarized in Table 1. Based on the biomass measurement
yk, the glucose and biomass concentrations are estimated by the EKF for Θ1 as x̂N,bio,k and
x̂N,glc,k. With the same biomass measurement, the second critical region Θ2 has one more
observable state which is the acetate concentration x̂N,ace,k.

Table 1. Observable and unobservable subpace of two subsystems of the DFBM model of E. coli.

Subsystem of Θ1 Subsystem of Θ2

Observable Subspace (xM ) Glc, Bio Glc, Ace, Bio
Unobservable Subspace Ace, Oxy Oxy

Measurement Bio Bio

Since acetate and oxygen are unobservable in Θ1, they need to be estimated by bounds.
To find these bounds, SME propagates the initial set P0 by set operations to obtain a prior
estimate set P−k as Equation (19). After obtaining the measurement of biomass, a posterior
estimate set P+

k as in Equation (20) is calculated by set operations. The error due to lack of
convergence of the EKF is compensated by using Equation (18). By projecting P+

k onto the
axis of acetate and oxygen, respectively, the upper bound uun,k and lower bound lun,k of
these two states are obtained.

Since Θ2 has one more flux-determining state, acetate that is not observable from the
measurement of biomass, it must be estimated as explained in Equation (22). Using the
mean value of uun,ace,k and lun,ace,k the nominal values of the unobservable state x̂un,ace,k are
obtained. Using the EKF estimates of the observable flux-determining states x̂N,k together
with the nominal value of acetate x̂un,ace,k, the detection scheme explained in Section 2.5 can
be implemented. Accordingly, γ(i, j, k) is calculated from Equation (23) to determine the
switch from critical region Θ1 to critical region Θ2. The tolerance of γ(i, j, k) to determine
the switch between the critical regions is assumed as 0.08. This tolerance is the only tuning
parameter of the proposed method and it is determined by trial and error. After the switch
occurs the acetate concentration is initialized by the solution of Equation (24) and the
variance of acetate is initialized based on Equation (25). After the switch to critical region
Θ2, the EKF continues to generate estimates of glucose, acetate and biomass concentrations
in Θ2 and the SME approach is used to propagate the set P+

k as conducted in critical
region 1. Figure 4 presents the posterior estimate sets P+ and true plant state x at different
times. Since the model is 4 dimensional, the posterior estimate sets P+ are projected for
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visualization onto two dimensional spaces: the glucose–oxygen subspace and acetate–
biomass subspace. The 8 boxes denote the projected posterior estimate sets between 0 h
and 7 h, and each box represents an hour. The arrows in Figure 4 indicate the direction of
time evolution. The black dots denote the true plant state. Since biomass is measured, the
length of the boxes along the biomass dimension is relatively smaller, as compared to the
other dimensions. The switch between the critical regions occurs at around 5 h.

Figure 4. Posterior estimate sets projected onto the glucose–oxygen subspace and the acetate–biomass
subspace at different times.

3.4. Set Membership Estimation

To verify the estimate and bounds generated by the proposed algorithm, we use a
special Monte Carlo Algorithm (MCA) that takes biomass measurements into account.
MCA randomly samples 100,000 different points from P0 and use them as initial states’
values, and then calculates the corresponding trajectories with respect to time. Since, for the
measurement of biomass, a truncated normal distribution measurement noise was assumed,
some trajectories are not within the confidence interval of measurements. Once a trajectory
is found out of the measurement range, the evolution of the trajectory is stopped and the
corresponding trajectory is removed while trajectories which are still within the confidence
interval of measurements are kept. Accordingly, only a part (2581) out of the trajectories
starting from P0 are used for comparison to the bounds calculated by the proposed method.
It should be noticed the fraction of trajectories kept for comparison is small because only a
very narrow set of solutions are within the measurement range from the from the beginning
to the end. In other words, only a small part of the samples considered in the simulation
are compatible with the biomass measured trajectory that is assumed for the calculation
of bounds by the set-based approach. Using parallel computation, 4 hour and 4 minutes
of CPU time were required to complete all simulations. For comparison, the method
proposed in this work can generate bounds with only 41 sec of CPU time without parallel
computation. It should be remembered that the MCA was conducted for a specific trajectory
of biomass measurements so as to enable a fair comparison with the method proposed in
the current study. While it could be argued that MCA could be used to calculate bounds
for all possible biomass trajectories, this will be computationally prohibitive. Thus, the
proposed technique is a practical and analytical approach to the online estimation problem.

In Figure 5, the grey area denotes the trajectories randomly sampled and the two black
lines represent the upper and lower bounds by SME. It is clear that the SME contains all
the solutions generated by MCA, especially for the unobservable states. It can be observed
that the switch from one critical region to the other occurs at approximately 5 h as shown
in Figure 2. Before 5 h, the reactor has enough resources for cell growth and the limiting
step is glucose uptake as Equation (31a) shows. Thus, critical region Θ1 corresponds to the
logarithmic phase of growth where the latter is driven by glucose consumption. At about
5 h, the simultaneous depletion of acetate and glucose leads to a metabolic switch from
the logarithmic phase to the stationary phase. Following this metabolic switch, the culture
is also acetate limited and thus acetate become a new flux-determining state. Since the
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oxygen feed rate is maintained constant in the model, the fact that the growth significantly
decreases after the switch explains why the oxygen concentration bounces back up.
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Figure 5. Comparison between MCA with bounds of 4 components estimated by SME in batch
fermentation of E. coli.

To further verify the proposed scheme, similar MCA simulations were conducted with
a larger initial uncertainty and measurement noise. In Figure 6, the bounds of 4 component
concentrations estimated by SME are shown. It is clear that the simulated trajectories
contained in the grey color band generated by MCA is within the bounds calculated by the
proposed methodology. From comparison of Figures 5 and 6, it can be found that the SME
approach copes with the larger noise and initial uncertainty by generating larger bounds.
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Figure 6. Comparison between MCA with bounds of 4 components estimated by SME with loud noise.

4. Discussion

DFBM models are advantageous since they contain significant detail about the cell
metabolism as compared to classical unstructured models. However, due to this level of
detail, DFBM contain many states thus resulting in more difficult state estimation problem.
The challenge of dealing with a large number of states is further exacerbated by the fact
that online measurements of metabolites are generally difficult to obtain or not available.
With limited online measurements, it is often impossible to produce observability for all the
states. Noticing that the diagonal matrix B in Equation (19) is a linear mapping of states,
if the nonlinear term ∆txbio,k Avk can be estimated then it is possible to estimate the other
states of the DFBM.
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Multiparametric LP is introduced to convert the original system into a series of
piecewise continuous subsystems based on the partitioning of the parameter space into
critical regions. The availability of an explicit expression for the calculation of the LP optima
for each critical region significantly simplifies the solution of the problem. Although many
critical regions may be mathematically possible, industrial fermentation is operated in a
narrow range of initial operating conditions and as such only a few critical regions need to
be considered.

Beyond their computational convenience the critical regions identified by the Multi-
parametric LP approach can be interpreted as corresponding changes in the cell metabolism.
The relative abundance of substrates, i.e., glucose, acetate and oxygen in the E. coli model
and their consumption towards biomass lead to the occurrence of different resources’
limitations at any given time. Within some ranges of concentration, the limiting substrate
remains the same corresponding to a specific metabolism strategy.

In the E. coli example, four reactions can synthesize the biomass from glucose, acetate
and oxygen. However, since the objective is to maximize growth subject to constraints, the
cell prioritizes these reactions differently at any given time due to their different efficiency
for biomass synthesis. The ratio of the stoichiometry coefficients in each column of matrix
A indicates the biomass yield of each substrate for each reaction. Reaction 1 is the only
reaction that consumes acetate to synthesize biomass. The yield of acetate to biomass is

1
39.43 for reaction 1, which is very low compared with reaction 2 and reaction 3. The biomass
yield of reaction 2 and reaction 3 by glucose is 1

9.46 and 1
9.84 , respectively. Reaction 4 is the

only reaction that do not consume oxygen to generate biomass but it is very inefficient.
Because the biomass yield of these reactions are different, reaction 2 is preferred over
reaction 1 and reaction 3 when glucose and oxygen are abundant. When oxygen is very low,
the cells switch their metabolism from aerobic to anaerobic to generate biomass through
reaction 4.

To maximize the biomass growth rate, cells take advantage of reaction 1 and 2 to
consume as much acetate and glucose as possible when oxygen is sufficient. However, the
glucose amounts that can be consumed by the cells is limited by the glucose uptake rate,
which is θ4. Similarly, oxygen consumption is limited by a constant oxygen uptake rate as
in Equation (28b). The oxygen is consumed first with glucose in reaction 2 to synthesize
biomass and the remaining oxygen is consumed for reaction 1. Multiparametric LP captures
the relative priority of different reactions towards maximization of growth and identify the
key limited resources. In critical region Θ1, glucose is the key resource that determines the
flux vector according to Equation (31a). As glucose and acetate are consumed by reactions 1
and 2, biomass increases exponentially and the oxygen concentration drops fast due to
oxygen demands as in Figures 5 and 6. At some point the concentration of acetate becomes
very low but acetate is necessary for reaction 2 to synthesize biomass. At this point, acetate
becomes the key limited resource and the system enters into a new critical region Θ2. Then
in Θ2, the metabolism is limited by the available acetate and glucose and as they deplete
the growth of cells decreases and ultimately stops. Accordingly, Θ1 corresponds to the
logarithmic phase and Θ2 to the stationary phase of growth.

The use of EKF for each subsystem is used to estimate the reaction-rate-determining
states thus reducing the need for online measurements. Since biomass is highly correlated
with the reaction-rate-determining states, EKF can take advantage of biomass measurement
to estimate these states. Because some of these reaction-rate-determining states are common
to different critical regions, only are fewer states required to be measured or estimated,
which greatly reduce the demand of online measurements of concentration. In the E. coli
example, only biomass needs to be measured. Once biomass is measured, glucose can be
estimated by the EKF in critical region Θ1 and glucose and acetate can be estimated in Θ2.

By using the SME upper and lower bounds for all states can be generated including
the unobservable ones such as acetate and oxygen in Θ1. Using the bounds of the acetate
and biomass estimates, it was possible to determine the switch from one critical region to
another and to re-initialize the estimates and covariance matrix for the EKF after the switch.
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This research is helpful in DFBM-based control in bio-processes when many compo-
nents cannot be measured online. Using the upper and lower bounds calculated by SME
of unobservable states and estimates by EKF of observable states, robust control methods
can be applied to achieve optimal operation in the presence of uncertainty. The method
developed can also be extended to monitor the bio-processes and differentiate between
normal and abnormal operations.

5. Conclusions

This research proposed a comprehensive DFBM-based approach to estimate the
metabolites concentrations with a minimal number of online measurements. The main
idea is to convert the DFBM model with uncertainty in initial conditions to an explicit
variable structure system that can be analyzed by multiparametric linear programming.
A key finding of the proposed work is that only a subset of the states, referred to as
reaction-rate-determining states, is needed to calculate the flux vector. Identification of
the reaction-rate-determining states for each critical region permitted the determination of
the minimum set of measurements required for full state estimation. EKFs were used to
estimate the observable states and set propagation by SME was used to identify bounds of
both the observable states and unobservable states.
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