
 

 
 

 

 
Processes 2021, 9, 129. https://doi.org/10.3390/pr9010129 www.mdpi.com/journal/processes 

Article 

Controlling Nanoparticle Formulation: A Low-Budget Proto-

type for the Automation of a Microfluidic Platform 

Dominik M. Loy 1,*, Rafał Krzysztoń 2,3, Ulrich Lächelt 1, Joachim O. Rädler 2,3 and Ernst Wagner 1  

1 Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, 

Bavaria, Germany; ulrich.laechelt@cup.uni-muenchen.de (U.L.); ernst.wagner@cup.uni-muenchen.de 

(E.W.); 
2 Faculty of Physics, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539 Munich, 

Bavaria, Germany; rafal.krzyszton@stonybrook.edu (R.K.); raedler@lmu.de (J.O.R.) 
3 Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität München,  

Geschwister-Scholl-Platz 1, 80539 Munich, Bavaria, Germany  

* Correspondence: dominik.loy@cup.uni-muenchen.de 

Supplemental Information 

1. Formulation module 

1.1. Materials 

Table 1. Materials formulation module. 

Material Source 

Biopsy puncher (dinner = 0.96 mm; douter = 1.26 mm) 
World precision in-

struments1 

Fluidmedic polyethylene tube (dinner = 0.38 mm; douter = 1.09 mm, 

thicknesswall = 0.35 mm) 
ProLiquid2 

Object slide 76x26x1.0 mm Plano3 

Object slide 76x50x1.0 mm Plano3 

Sylgard 184 polydimethylsiloxane (PDMS) silicon elastomer base 

& crosslinker 
Dow Corning4 

1 World Precision Instruments, 175 Sarasota Center Blvd. Sarasota, FL 34240, USA. 2 ProLiquid GmbH, Heiligenbreite 19, 

88662 Überlingen. 3 Plano GmbH, Ernst-Befort-Straße 12, 35578 Wetzlar, Germany. 4 Dow Corning GmbH, 

Rheingaustrasse 34, 65201 Wiesbaden, Germany 

  



Processes 2021, 9, 129 2 of 25 
 

 

1.2. Schematics 

 

Figure S1: Channel design of the single meander channel. 

Circles on the left represent inlets, a circle on the right an outlet. Liquids are pumped from left to 

right. The inserts a, b, and c present the details of the regions marked with squares in the channel 

sketch. Modified from Loy et al., 2019, https://doi.org/10.7717/peerj-matsci.1/supp-11 



Processes 2021, 9, 129 3 of 25 
 

 

 

Figure S2: Channel design of the double meander channel. 

Circles represent inlets, except the circle on the bottom of the left side, which is an outlet. Liquids 

are pumped from top left to bottom left. The inserts a, b, and c present the details of the regions 

marked with squares in the channel sketch. Modified from Loy et al., 2019, 

https://doi.org/10.7717/peerj-matsci.1/supp-12 

  



Processes 2021, 9, 129 4 of 25 
 

 

2. Control module 

2.1. Materials 

Table S2. Materials control module 

Material Source 

Jumper wires, JKMF40, JKFF40 Makerfactory Conrad1 

Raspberry Pi model 3B Almost Anything Ltd2 

TECHly USB serial wire (USB 2.0 - RS232) Conrad1 

Transcend TS16GUSDHC10E Class 10 

microSDHC 16GB 

Transcend Information, Inc.4  

Universal Power Supply RPI-012 Pimoroni Ltd.3 
1 Conrad Electronic SE, Klaus-Conrad-Str. 1, 92240 Hirschau, Germany. 2 Thornaby Cecil Avenue, Salisbury, Wiltshire, 

Great Britain. 3 2 Manton Street, Sheffield, S2 4BA, United Kingdom.  
4 Flughafenstraße 52b (Airport-Center), 22335 Hamburg, Germany 

2.2. Software 

Table S3. Software control module 

Software Version 

PuTTY 0.71 

Python 3.7.3 (Van Rossum & Drake Jr, 2009) 

Python package: pySerial 3.4 (Liechti, 2017) 

Python package: RPi.GPIO 0.7.0 (Croston, 2019) 

Raspbian Raspbian GNU/Linux 9 (stretch) 

WinSCP 5.15.5 (Build 9925) 

 

3. Feeding Module 

3.1. Materials 

Table S4. Materials feeding module 

Material Source 

Needles: NDL ga27, 90 mm, pst4 Hamilton1 

Syringe 1 ml 1001 TLL, dinner = 4.61 mm, Hamilton1 

Syringe 100 µl 1710 TLL-XL, dinner = 1.46 mm Hamilton1 

Syringe 500 µl 1750 TLL-XL, dinner = 3.26 mm Hamilton1 

Syringe pump LA-120 Landgraf2 

Syringe pump LA-122 Landgraf2 

Syringe pump LA-160 Landgraf2 
1 Hamilton Bonaduz AG, Bonaduz, Switzerland. 2 Landgraf Laborsysteme HLL GmbH, Langenhagen, 

Germany. 

 

3.2. Description of the python modules 

The software for controlling the syringe pumps consists of seven modules: 

‘channels.py’, ‘syringes.py’, ‘Module_pumps.py’, ‘setup.py’, ‘ramping_class.py’, 

‘mixing_class.py’, and ‘main.py’. The UML class diagram showing the structure of the 

software and indicating the relations between all classes is shown in Figure S3. 



Processes 2021, 9, 129 5 of 25 
 

 

 

Figure S3: UML class diagram of the control software of the syringe pumps. 

Each box represents a class. The name of the class is compounded from the module’s name, and 

the class’s name separated by a dot. Each box lists all functions from the respective class. An arrow 

indicates that one class can access the other. A diamond indicates dependence: for example, class 

‘Pump’ cannot exist without class ‘Chain’. 

The workflow of this program is straightforward (Figure S4). First, either the module 

‘main.py’ for manual parameter input or the module ‘main_[…]_automated.py’ for 

automated parameter input needs to be customized to the specific experiment. Second, 

the user executes the program (Figure S4, first orange box), and the software will either 

ask for parameter input during runtime (manual approach, orange boxes in Figure S4), or 

execute the program automatically (automated approach).  

The following paragraphs describe the functions of each module.  

 

 



Processes 2021, 9, 129 6 of 25 
 

 

 

Figure S4: Flowchart describing the automation process of polyplex formulations. 

Green ellipses signify the beginning and end of the process. Blue rectangles denote a process 

executed by the program or by the user. Orange non-symmetrical parallelograms denote user 

input. Pink symmetrical parallelograms indicate manual operations. 



Processes 2021, 9, 129 7 of 25 
 

 

3.2.1.Module: channels.py 

The module ‘channels.py’ holds the class ‘Channel()’ that reads the specifications of any 

channel from a *.txt file and stores them in variables. This approach guarantees the 

accuracy of the specifications’ data and makes adding or adjusting values a matter of 

changing a simple text file. The file needs to be stored in the same folder as the module. A 

set of regular expressions is used to extract the relevant information from the file enabling 

the simple implementation of additional channel designs to the program. The text files for 

the single or double meander channel can serve as templates for custom specification files. 

It is important to transfer the names of the variables from the template file to the new 

specifications file when new channels are added since the regular expressions recognizes 

the variable names and write their value to the respective variables of the program. An 

excerpt from the ‘_set_from_spec_file()’ function with an example of a regular expression 

is shown in Code 1. 

Additionally, the class defines the functions to calculate the volume of any section of the 

target channel from the variables. 

 

def _set_from_spec_file(self, filename): 
    """ This function opens the file specified in filename. If/elif 
    statements are used to detect keywords. If a keyword is detected, regex 
    is used to extract the desired information. The information is stored 
    in variables defined in __init__. 
    """ 
 
    with open(filename, "r") as file:  # file is closed automatically when 
                                         scope is exited. 
        for line in file: 
            if "inlets_number" in line: 
                digit = [float(s.replace(",", ".")) for s in line.split() 
                        if re.findall(r'\d+\.*\d*', s)] 
                self.inlets_number = digit[0] 
[…]  

Code 1: Excerpt from the ‘_set_from_spec_file()’ function. 

Lines 108 – 119 from the module ‘channels.py’. The function opens the file specified in filename 

and searches for keywords in every line (here: ‘inlets_number’). When a keyword is detected, the 

desired information is extracted using regular expressions and it is stored in the target variable 

(here: the number of inlets of the channel is extracted and stored in ‘self.inlets_number’). 

3.2.2. Module: syringes.py 

The module ‘syringes.py’ holds the class ‘Syringes()’ and maps each syringe to its inner 

diameter inside a dictionary. In order to enable the implementation of additional syringes, 

it defines the function ‘import_syringes()’ to add specifications of new syringes to the 

program. Additionally, new syringes can be added permanently to the program by 

customizing the dictionary in the ‘syringes.py’ module which maps the name of the 

syringes to their diameter in mm. 

 

3.2.3. Module: Module_pumps.py 

The module ‘Module_pumps.py’ holds two classes and the logging function 

‘start_logging()’. Code 2 shows the last lines of the logging function. In this excerpt, two 

separate loggers for the pumps and the collector are instantiated. The function of the 

loggers is assured by writing “started” to the screen and the log file. The logger writes all 

events with their respective timestamp to a *.txt file and saves the file in the folder ‘logs’. 

When used for the first time, this folder is created in the same directory as the module 

‘Module_pumps.py’. Additionally, the module contains the class ‘Chain(serial.Serial)’ 

which enables the initialization of the serial connection to the syringe pumps, and the class 



Processes 2021, 9, 129 8 of 25 
 

 

‘Pump()’ which defines all functions to control the basic parameters of each pump, for 

example, functions for setting the pumping rate or the volume to be dispensed. If a pump 

with a different command structure is to be used, all commands in this module which are 

sent to the pump must be adjusted. First, the dictionary holding the units for rates and 

volumes (self.units_dict) must be updated. Second, all occurrences of 

‘self.serialcon.write()’ must be reviewed to find deviations from the required syntax. 

 

[…] 
# Define loggers which represent areas in the application: 
logger_pump = logging.getLogger('pump') 
logger_collector = logging.getLogger('collector') 
# Confirm the function of the loggers by printing "started" to the console 
# and to the log file. 
logger_pump.info("started") 
logger_collector.info("started") 
return logger_pump, logger_collector 

  

Code 2: Excerpt from the initialization of the logger function. 

Lines 47 – 54 from the module ‘Module_pumps.py’. The appearance of ‘logger_pump‘ and 

‘logger_collector’ at any point in the code will write the string between the brackets to the log file 

(always) and to the screen (except the argument ‘.debug’ is given).  

3.2.4. Module: setup.py 

The module ‘setup.py’ holds two classes and the ‘countdown()’ function. The countdown 

function prints the remaining time of the current operation to the screen. The code of the 

function is shown in Code 3. The function takes two inputs: the time of the operation in 

seconds and the name of the operation. The output is the remaining time in minutes 

together with the name of the operation, e.g. ”operation: 10:22”.  

 

def countdown(t, name): 
    """ This function takes two inputs: t in seconds (float or int) and any 
    string as name. The time is converted to minutes and seconds and every 
    second the name and the time (dd:dd) is printed to the screen  
    effectively counting down to zero.  
    """ 
    t = round(t) 
    while t >= 0: 
        mins, secs = divmod(t, 60) 
        timeformat = '{:02d}:{:02d}'.format(mins, secs) 
        print("{}: {}".format(name, timeformat), end= '\r') 
        time.sleep(1) 
        t -= 1 
    print("\n")  

Code 3: countdown() function. 

Lines 7 – 20 from the module ‘setup.py’. Inputs are t in seconds and any string for a name. When 

the function is executed, the name is printed next to the remaining time in minutes + seconds 

(name: 10:22). The function terminates when the time reaches 00:00. 

The first class in the ‘setup.py’ module is called ‘GlobalPhaseNumber()’ which defines the 

functions that control the global phase numbers. This number is used to serialize events 

on the syringe pumps. It contains two classmethods that are used independently of the 

current scope of any function to assign numbers to individual steps. This class ensures 

sequence consistency over all steps. The class is shown in Code 4. 

 



Processes 2021, 9, 129 9 of 25 
 

 

class GlobalPhaseNumber(object): 
    """ This class holds two classmethods to control the phase number. 
    'next' increases the phase number by +1, while 'reset' resets it to 0.  
    This class is used to assign a phase number to every event, creating a 
    defined sequence of steps. 
    """ 
    curr_phn = 1 
 
    @classmethod 
    def next(cls): 
        cls.curr_phn += 1 
        return cls.curr_phn - 1 
 
    @classmethod 
    def reset(cls): 
        cls.curr_phn = 0  

Code 4: ‚GlobalPhaseNumber()‘ class. 

Lines 22 – 36 from the module ‘setup.py’. This class holds two classmethods to control the phase 

number. 'next' increases the phase number by +1, while 'reset' resets it to 0. This class is used to 

assign a phase number to every event, creating a defined sequence of steps. 

The second class in the ‘setup.py’ module is called ‘Setup()’. It combines the functions and 

variables from ‘syringes.py’, ‘channels.py’, and ‘Module_pumps.py’ to enable the 

connection to the pumps and to select the utilized channel and syringes. Connection to 

each pump is established with functions from the ‘Module_pumps.py’ module, and the 

status of each pump is printed to the screen during instantiation of this class (Code 5). The 

washing function from this module is used to prepare the channel for the intended 

experiment. This function is based on two assumptions: all active pumps are used for 

washing and that the same type of syringes is connected to all inlets of the channel. 

Subsequently, the channel is washed with twice its volume and with the combined 

flowrates equaling the maximal flow rate defined in the variable ‘self.max_flowrate’ from 

the class ‘Setup()’. The countdown function (Code 3) is used to print the washing 

sequence’s remaining time to the screen. 



Processes 2021, 9, 129 10 of 25 
 

 

 

class Setup(object): 
    """ This class holds all functions and variables related to the setup 
     of the micro mixer. Upon instantiation, it creates an instance of the 
     Chain class from 'Module_pumps.py' and from the Syringes Class from 
     the module 'syringes.py'. Afterwards, each pump is contacted and  
     their status (active / inactive) is stored in a variable. 
     The functions in this class are used to select the utilized channel 
     and syringes and to wash the setup. 
     """ 
    def __init__(self, pumps): 
[…] 
        self.max_flowrate = 1500  # ul/h 
[…] 
        # get the information which pumps are active 
        try: 
            self.LA120 = p.Pump(self.chain, str(sorted(pumps)[0]), 
                                str(pumps[sorted(pumps)[0]])) 
            self.pumps_active["LA120"] = True 
            self.dict_pump_instances["LA120"] = self.LA120 
 
        except p.PumpError: 
            p.logger_pump.info("{} is not responding at address 
                               {}.".format(sorted(pumps)[0], 
                               pumps[sorted(pumps)[0]])) 
[…]  

Code 5: Excerpt from the ‘Setup()’ class. 

Lines 39 – 47, 54, and 57 – 64 from the module ‘setup.py’. Upon instantiation of the class, the 

‘__init__()’ function is called automatically. Here, the variable ‘self.max_flowrate’ is set to 1500, 

and the connection to the pump LA120 is established. If the pump LA120 were offline, the logger 

would print ‘LA120 is not responding at address 01’ to the screen and to the log file. 

 

The exact configuration of the setup, for example, the mapping of inlets to pumps, is 

provided to the program by the user. To avoid unnecessary errors, the program checks 

each input for plausibility before it is committed to a variable. Simple checks verify the 

format of the input, for example, flow rates and volumes must be numbers, while more 

elaborate checks safeguard the integrity of the device by ensuring that the maximum total 

flow rate or the maximum volume of a syringe are not exceeded. Code 6, for example, 

shows the routine for checking if the number of inlets connected to each syringe pump 

does not exceed the number of syringes each pump can hold.  

 
def check_connections(self): 
    """Checks if the number of syringes matches the number of inlets.""" 
    check_LA120 = sum(1 for x in self.dict_inlets_pumps.values() if  
                      x == "LA120") 
[…] 
    if check_LA120 > self.pump_max_syr["LA120"]: 
        print("""Pump LA120 cannot hold {} syringes.  
              Please repeat the selection process.""".format(check_LA120)) 
        self.tubing_connections() 
[…]  

Code 6: Excerpt from the ‘check_connections()’ function. 

Lines 207 – 223 from the module ‘ramping_class.py’. The function counts the occurrences of the 

name of the pump (e.g. “LA120”) in the dictionary ‘dict_inlets_pumps’. This dictionary maps the 

inlets of the channel to the pumps as specified by the user. If a pump is mapped to more inlets 

than it has channels, a message is printed to the screen, and the mapping process is repeated.    



Processes 2021, 9, 129 11 of 25 
 

 

Another way to avoid unnecessary errors is the confirmation of selections. The logging 

function described in Code 2 confirms every selection by simultaneously printing it to the 

screen and writing it to the log file. A typical line of code that confirms the selection of a 

flow rate is shown in Code 7. If the automated approach is chosen, only the result of the 

function is printed. If the manual approach is chosen, then the call to the ‘rate()’ function 

from the ‘mixing_class.py’ module prints a question to the screen depending on the 

number of runs selected previously (e.g., ‘What is the flow rate for run 2 for pump 

LA120?’) and the program waits for the input of the user. The input is converted to a 

floating-point number (float), if possible, and the selection is confirmed by printing it to 

the screen (e.g., ‘Run 2: LA120’s rate is 500’).  

 

def rate(self, pumps_active, **kwargs): 
""" This function asks the user to provide rates for each run. The 
rates' unit is selected once for all subsequent runs on this pump. 
Alternatively, the rates and the respective unit can be passed directly 
to the function via the kwargs. The names of the arguments should be 
<name_of_pump>_rate for rates and <name_of_pump>_unit for units. Rates 
must be stored in a list. All active pumps must be used. 
Example: LA120_rates = [120,140,160], LA160_rates = [1200, 1400, 1600], 
LA120_unit = 'ul/h', LA160_unit = 'ul/h'. 
""" 

[…] 
    print("What is the flow rate for run {} for pump 
          {}?".format(i+1, sorted(pumps_active)[0])) 
          rate = input("> ").replace(",", ".") 
          try: 
              self.rates_LA120.append(float(rate)) 
              p.logger_pump.info("Run {}: {}'s rate is {}.".format(i+1, 
                                  sorted(pumps_active)[0], 
                                  self.rates_LA120[-1])) 
          except ValueError: 
              print("Please choose a number.") 
              return self.rate(pumps_active) 
[…]  

Code 7: Excerpt from the ‘rate()’ function. 

Lines 152 – 359 from the module ‘mixing_class.py’. Every time the user assigns a flow rate to a 

pump the function ‘rate()’ is called. If the automated approach is chosen, the function gets its 

parameters via the **kwargs. If the manual approach is chosen, the function asks the user for the 

respective flow rates and units for each pump. In both cases, the input is validated and stored in a 

separate list for each pump, e.g., ‘rates_LA120’ and the result is printed to the screen and the log. 

After the setup of the device and the washing of the channel have been completed, the 

ramping and the mixing process must be defined.  

 

3.2.5. Module: ramping_class.py 

The module ‘ramping_class.py’ holds two classes. The class ‘Ramping()’ defines all 

functions related to bringing the reactants to the mixing zone at the intended point in time. 

First, it reads the parameters from the ‘Setup()’ class. The program assumes that the 

channel type is not changed after it has been washed, but the syringes can be replaced. 

Second, functions from the class are used to calculate volumes and rates for the respective 

pumps and write the ramping sequence (default: ten steps) to the pumps. The rate at 

which the reactants reach the mixing zone is also the first rate at which the 

‘mixing_class.py’ module mixes reactants. When all information about the upcoming 

mixing process has been gathered, the ramping protocol is executed to bring all reactants 



Processes 2021, 9, 129 12 of 25 
 

 

to the mixing zone at the same time. This approach prevents waste of reactants and the 

formation of unwanted side products due to unintended mixing ratios. Moreover, this 

approach minimizes the displacement of reactants pumped with relatively small flow 

rates from the mixing zone by reactants pumped with relatively higher flow rates. 

To this end, the flow rate of the first mixing operation is taken as the target flow rate for 

each pump, and a ten-step descending, or ascending sequence of flow rates and respective 

volumes is calculated. The direction of the ramping sequence is dependent on the 

magnitude of the target flow rate relative to the mean flow rate of all flow rates. If the 

target flow rate of a pump is lower than the mean flow rate, the ramping sequence will be 

descending and vice versa for target flow rates above the mean. This approach minimizes 

the displacement of reactants due to pressure gradients. The implementation of the 

calculation in the program is shown in Code 8. 

 

def ramping_calc(self): 
    """This function calculates the flow rate and volume of each step 
    and stores them in a list""" 
 
    for key in self.dict_rates_pumps.keys(): 
        if "LA120" in key:  # surrogate test: is pump LA120 being used? 
            # Decides if ramping to the final flow rate (FR) is done from a 
            # higher or lower FR 
 
            if self.dict_rates_pumps[key] > self.total_flowrate / 
            sum(self.pump_configuration_n.values()): 
                self.rates_LA120.append(self.total_flowrate * 0.25) 
 
                while len(self.rates_LA120) < self.steps: 
                    self.rates_LA120.append(round(self.rates_LA120[-1] 
                    + (self.dict_rates_pumps[key]  
                    - self.rates_LA120[0])/9, 3)) 
            else: 
                if self.dict_rates_pumps[key] <= self.total_flowrate / 
                sum(self.pump_configuration_n.values()): 
                    self.rates_LA120.append(self.mean_flowrate * 2 
                    - self.dict_rates_pumps[key]) 
 
                    while len(self.rates_LA120) < self.steps: 
                        self.rates_LA120.append(round(self.rates_LA120[-1] 
                        + (self.dict_rates_pumps[key]  
                        - self.rates_LA120[0])/9, 3)) 
 
            p.logger_pump.debug("Ramping rates LA120: {}".format( 
                                ",".join(str(x) for x in self.rates_LA120)) 
                                ) 
[…]  

Code 8: Excerpt from the ‘ramping_calc()’ function 

Lines 418 – 435 from the module ‘ramping_class.py’. In this excerpt, the calculation of the flow 

rates for the pump LA120’s ramping process is shown. ‘dict_rates_pumps’ holds the first flow rate 

of the mixing process mapped to the respective pump. This dictionary is used to decide if a 

ramping sequence must be calculated for this pump (i.e., if the pump is active). The next if-clause 

decides if the target flow rate of the pump LA120 is lower or higher than the mean flow rate of all 

active pumps. The while-clause nested inside the if-clause calculates the respective sequence of 

flowrates and stores them in the list ‘rates_LA120’. At the end of this function, the sequence of 

rates is written to the log file without printing it to the screen by the logger function. 

 

The class ‘EmptyClass()’ is used to illustrate that the named arguments ‘LA120’. ‘LA122’, 

and ‘LA160’ in the function ‘writing()’ from the ‘Ramping()’ class expect an instance of the 



Processes 2021, 9, 129 13 of 25 
 

 

respective pump from the class ‘Pump()’ from the module ‘Module_pumps.py’. If the 

default ‘EmptyClass()’ is passed to the named argument, an error message detailing the 

problem is printed to the screen when the function is called. 

The mixing operations will start seamlessly when the ramping process has finished. The 

countdown printed to the screen will follow the individual steps and inform the user 

when to start gathering the product from the outlet and when to discard the product (e.g., 

because of the overlap volume between mixing operations).  

 

3.2.6. Module: mixing_class.py 

The module ‘mixing_class.py’ holds the class ‘Mixing()’ which defines the functions to 

write the mixing protocol to the pumps. It also has the capability to purge the product 

from the mixing zone after the last mixing step was executed in order to reduce the waste 

of educts. To be precise, the program expects the number of separate mixing operations 

and their parameters, how much total overlap volume between fraction will be given, and 

the number of pumps which will purge the channel.  

The overlap volume is chosen once by the user. The program calculates the relative 

overlap volume for each pump, depending on the volume the pump is pumping relative 

to the total volume. The calculated volumes are then inserted between all mixing 

operations to avoid cross-contamination of consecutive products. An excerpt of this 

function can be inspected in Code 9. 

The ‘end_process()’ function defines the pumps designated to purging the channel. When 

the mixing protocol has completed, a fraction of the last formulation remains in the 

channel section from the mixing zone to the outlet. In order to gather this product as well, 

the channel needs to be purged. Therefore, we advise to purge the channel after the last 

run. The purging function calculates the required flow rate, volume, and time for each 

pump, and appends them to the respective lists holding the values for each pump. 

In theory, the program can store an almost unlimited number of steps. However, the 

internal memory of our pumps is limited to 41 steps or phases (e.g., combinations from 

flow rates and volumes). Although, usually, the volume of the syringes is the limiting 

factor for the length of the program.   

 

 



Processes 2021, 9, 129 14 of 25 
 

 

def overlap_calc(self, overlap=None): 
""" This function asks for the overlap between runs and stores them 
in the variable ‘self.overlap’. A sensible value is 8 µl. Afterwards, 
it adds volumes and rates in between runs in self.rates_LAxxx und 
self.vol_LAxxx.  

 Alternatively, the overlap volume can be passed to the function via 
the kwargs. The name of the argument must be 'overlap'. For example: 
overlap = 8 
""" 

[…] 
# calculate relative overlap for each pump 
def _relative_overlap_calc(rates_list): 

""" 
This function takes the list of the rates from one pump as  

 parameter and calculates the relative overlap volume for each pump. 
""" 
for j in range(0, len(rates_list)): 
    # calculate total flow rate 
    flowrate = 0 
    if self.rates_LA120: 
        flowrate += self.rates_LA120[j] * 

        self.pump_configuration_n["LA120"] 
[…] 

# checks, if self.rates_LA120 exists, calculates the necessary  
# overlaps and inserts them into the pump volume's list. 
# Additionally, the name of the overlap is inserted into the 
# variable self.name which is used to inform the user with the 
# countdown function. 
if self.rates_LA120: 
    _relative_overlap_calc(self.rates_LA120) 
    for i in range(len(self.overlap_LA120)): 
        self.name.insert(i*2, "overlap {}".format(i)) 
    del self.name[0] 

[…] 
 # insert relative overlap into each self.volume 

for i in range(0, len(self.volumes_LA120)): 
    self.volumes_LA120.insert(i*2, self.overlap_LA120[i]) 
if self.volumes_LA120: 

    # removes first item in the list. Overlap is only necessary 
     # between runs. 

    del self.volumes_LA120[0]   
 

[…] 
# insert overlap flow rate (rate of the next run) into each self.rate 
for i in range(0, len(self.rates_LA120)): 
    self.rates_LA120.insert(i*2, self.rates_LA120[i*2])   
  # *2 because with each iteration of the loop the 
    # length of rates.LA120 grows  

Code 9: Excerpt from the ‘overlap_calc()’ function. 

Lines 462 – 579 from the module ‘mixing_class.py’. For brevity reasons, only the code for pump 

LA120 is shown. This function consists of four parts. First, the relative overlap for each pump is 

calculated. Second, the string ‘overlap’ and its number is inserted into the list holding the names 

of all operations. The names in the list are used for the ‘countdown()’ function. Third, and fourth, 

the respective overlap volume and flowrate is inserted in the respective lists. The contents of 

self.rates_LA120 and self.volumes_LA120 are subsequently written to the respective pump by 

another function and the list ‘self.name’ is used to inform the user about the name of the current 

pumping operation. 

 

 



Processes 2021, 9, 129 15 of 25 
 

 

 

3.2.7. Modules: main[…].py 

The module ‘main.py’ holds the sequence of functions from all the modules above to 

execute the mixing protocol. It can be customized in order to fit any mixing regime by 

altering the sequence of functions and their respective arguments.  

Arguments to the respective functions can be provided in two ways: either manually 

during execution of the ‘main.py’ module or automatically by passing the variables 

directly to the respective functions via the ‘**kwargs’ arguments inside the ‘main.py’ 

module.  

The advantage of the manual approach is the increased flexibility during the experiment 

since variables can be changed on the fly and the ease of use since no python code must 

be customized. However, the disadvantage of this approach is the increased time 

consumption during the experiment due to the many user inputs required. A ‘main.py’ 

module for the manual approach can be inspected in Code 10. 

The advantage of the automated approach is the ability to automated complete 

experiments without requiring a single user input during execution. However, some 

python knowledge is essential to leverage the full potential of this approach. Two modules 

– one for the single meander channel and one for the double meander channel – 

showcasing the potential of the automated approach are available on GitHub as well: 

‘main_single_meander_automated.py’ and ‘main_double_meander_automated.py’ (Loy, 

2020). 



Processes 2021, 9, 129 16 of 25 
 

 

import ramping_class as r_c 
import mixing_class as m_c 
import setup 
# -- Program: -- 
# Usage: E.g., Formulation of core nanoparticles from two or more  
# components. 
# All relevant parameters are asked from the user during program execution. 
 
# ------------------------------------------------------------------------- 
# -- Initialize the pumps and prepare the channel -- 
 
# Define Name and address of all pumps: 
pumps = {"LA120": "01", "LA122": "02", "LA160": "03"} 
 
# instantiate global phase number 
phase_number = setup.GlobalPhaseNumber() 
 
# test which pumps are active, select the channel and the syringes, 
# wash the channel  
pumps_setup = setup.Setup(pumps) 
pumps_setup.select_syringe_washing() 
pumps_setup.select_channel() 
pumps_setup.washing() 
 
# -- ramp your educts to the mixing zone -- 
ramping = r_c.Ramping(pumps_setup.channel_used) 
ramping.syringes_number(pumps_setup.pumps_active) 
ramping.syringes_type(pumps_setup.dict_pump_instances, 
pumps_setup.pumps_active) 
ramping.tubing_connections() 
ramping.first_rate() 
ramping.calc_mean_flowrate(pumps_setup.channel) 
ramping.ramping_calc() 
ramping.writing(phase_number, 
                LA120=pumps_setup.dict_pump_instances["LA120"], 
                LA122=pumps_setup.dict_pump_instances["LA122"], 
                LA160=pumps_setup.dict_pump_instances["LA160"]) 
 
# -- mixing: formulate your products -- 
mixing = m_c.Mixing(ramping_instance=ramping) 
mixing.number_of_runs() 
mixing.rate(pumps_setup.pumps_active) 
mixing.volume(pumps_setup.pumps_active) 
mixing.overlap_calc() 
mixing.end_process(pumps_setup.channel, 
                   pumps_setup.pumps_active) 
mixing.writing(pumps_setup.dict_pump_instances, 
               pumps_setup.pumps_active, 
               phase_number) 
mixing.mixing(pumps_setup.channel_used, 
              setup.countdown, 
              pumps_setup.dict_pump_instances, 
              pumps_setup.channel, 
              pumps_setup.pumps_active, 
              pumps, 
              ramping_time=ramping.ramping_time, 
              dict_rate_pumps=ramping.dict_rates_pumps) 
 
# -- washing -- 
pumps_setup.select_syringe_washing() 
pumps_setup.select_channel() 
pumps_setup.washing() 

 



Processes 2021, 9, 129 17 of 25 
 

 

Code 10: ’main.py‘ module 

Lines 1 – 55 from the ‘main.py’ module. The first three lines import all the other modules to enable 

access to their functions. Subsequently, the code for setting up the machine (‘pumps_setup.*’), 

ramping the educts to the mixing zone (‘ramping.*’), and producing the formulation (‘mixing.*’) is 

executed. In the end, another washing step is appended. A flow chart of this module is shown in 

Figure S4. 

4. Collection Module 

4.1. Materials 

Table S5. Materials collection module 

Material Standard / Source 

Brass hexagonal bar 50 X 12  

Clamping plate for toothed belt T5  

Dowel pin Ø4 X 25  

L298N H Dual-Bridge DC stepper motor driver 

controller 

Boboshop2 

Linear ball bearing Ø10 X Ø17  

M2,5x10 screw DIN 963  

M3x10 screw DIN 84  

M3x10 screw DIN 963  

M3x16 screw DIN 912  

M3x8 grub screw  

M4 screw, knurled head, plastic  

M4 x10 screw, plastic  

M4x16 screw DIN 912  

M4x40 screw DIN 912  

M6 washer  

M6x20 screw DIN 912  

NEMA 14 bipolar stepper 1.8 °, 40 Ncm, 1.5 A, 

4.2V 35x35x52 mm 

Stepper online3 

 

NEMA 14 bipolar stepper, 1.8 °, 13.7 Ncm, 1 A, 

12 V, 35x35x40 mm 

Phidgets Inc.4  

 

PChero mechanical end switch P&Cstore 5 

Revolt universal switching power supply, 1000 

mA, 3-12 V 

PEARL6 

Rod bar, stainless steel, Ø10  

Toothed belt disk 21 T5 14/2 Sahlberg1 

Toothed belt Type AT5, PU, 10, T5 mm, 480 mm, 

Optibelt alpha torque 

Sahlberg1 

Toothed belt Type AT5, PU, 10, T5 mm, 545 mm, 

Optibelt alpha torque 

Sahlberg1 

Source indicated unless Standard Part. 1 Sahlberg GmbH, Friedrich-Schüle-Str. 20, 85622 Feldkirchen, Germany. 2 

Boboshop, Zhejiang Quxiu Ecommerce Co., Limited, Quzhou Zhejiang 324000, China. 3 Stepper online, OMC corp. Ltd., 

#7 Zhongke Road, Jiangning District Nanjing City, 211100 China. 4 Phidgets Inc. nit 1 - 6115 4 St SE Calgary AB T2H 2H9 

Canada. 5 P&Cstore Brunhuberstr.116, Wasserburg, Germany. 6 PEARL GmbH Pearl-Straße 1-3 79426 Buggingen 

 

4.2. Description of the python modules 

The control program for the fraction collector consists of three modules, 

‘initialize.py’, ‘move.py’ and ‘main.py’. ‘initialize.py’ and ‘move.py’ contain the code to 

initialize the fraction collector and to move the dispenser head around. ‘main.py’ imports 



Processes 2021, 9, 129 18 of 25 
 

 

both aforementioned modules and executes a customizable sequence of their functions 

according to the needs of the user. Figure S5 shows an UML class diagram to illustrate 

the dependencies between the classes of the modules. A complete list of all classes and 

functions of the two modules can be found on GitHub (Loy, 2020). 

 

Figure S5: UML class diagram of the fraction collector’s control software. 

Each box represents a class. The name of the class is compounded from the name of the module, 

and the name of the class separated by a dot. An arrow indicates that one class has access to the 

functions of the other class. The diamond indicates dependence: class ‘Move’ cannot exist without 

class ‘Initialize’. 

 

The workflow of this program is straightforward (Figure S6). First, the module ‘main.py’ 

needs to be customized to drive the dispenser head to the desired wells at the intended 

time. Second, the user executes the program (Figure S6, orange box), and the software 

will follow the instructions (Figure S6, blue boxes 2 - 5).  

 



Processes 2021, 9, 129 19 of 25 
 

 

 

 

4.2.1. Module: initialize.py 

The class ‘Initialize()’ from the module ‘initialize.py’ has three main functions. It maps the 

GPIO pins to the stepper motors and end switches, it defines the patterns to turn the 

stepper in the desired direction, and it holds the functions to enable the end switches. 

Whenever the program is executed, this class must be instantiated first because it lays the 

Figure S1: Flowchart describing the workflow of the fraction collector. 

Green ellipses signify the start and beginning of the process. Blue rectangles de-

note a process executed by the program or by the user. Orange non-symmetrical 

parallelograms denote user input. User input is possible either during run time 

or automated before execution. 



Processes 2021, 9, 129 20 of 25 
 

 

groundwork for the subsequent modules. The assignment of the GPIO pins and the 

definition of the step pattern to turn the motor left or right is shown in Code 11.  

 

class Initialize(object): 
    """ This class initializes the fraction collector. It maps the raspi's 
    GPIO pins to the steppers' coils and to the end switches. It defines 
    the patterns to turn the steppers in a specific direction and it holds 
    the functions to enable the end switches. 
    """ 
    def __init__(self): 
        # callable variables used in this Method 
[…] 
        self.mask_dl = []  # pattern to turn the stepper left 
        self.mask_dr = []  # pattern to turn the stepper right 
        # map pins to a stepper and its end switch 
        self.pins_stepper1 = {"A": 18, "B": 23, "C": 24, "D": 25, 
                              "stop_1": 27} 
        self.pins_stepper2 = {"A": 5, "B": 6, "C": 13, "D": 26, 
                              "stop_2": 17} 
[…] 

# define pattern for each step of the steppers 
patterns = [[1, 0, 1, 0], [1, 0, 0, 1], [0, 1, 0, 1], [0, 1, 1, 0]] 
# turn stepper in direction "left" 
self.mask_dl = patterns[0:4] 
# turn stepper in direction "right" 
self.mask_dr = list(reversed(patterns[0:4])) 

  
Code 11: Excerpt from the ‘Initialize()’ class. 

Lines 7 – 20 and 63 – 68 from the ‘initialize.py’ module. Upon instantiation of this class, the pins of 

stepper motor 1 and stepper motor 2 are stored in ‘self.pins_stepper1’ and ‘self.pins_stepper2’ and 

the pattern that drives the stepper motors left or right is generated and stored in ‘self.mask_dl’ 

and ‘self.mask_dr’. 

 

4.2.2. Module: move.py 

The class ‘Move()’ from the module ‘move.py’ holds all parameters related to moving the 

dispenser head around: defined speeds, the maximum number of steps in x and y 

direction, and the number of steps between wells of the default 96 well plate. Functions 

for reaching the starting position and moving the dispenser head left or right are defined 

in this class as well. As depicted in the UML class diagram (Figure S5), it must create an 

instance of the class ‘Initialize()’ to access its functions. Important variables for the 

physical integrity of the collector are shown in Code 12. 

The variable ‘speeds’ is a dictionary mapping strings – i.e., names given to certain speeds 

– to numbers defining the turning rate of the stepper motors. Functions moving a stepper 

motor in a particular direction use these numbers to determine the time in seconds to wait 

until the next step is taken (i.e., electrical current is directed to the next coil).  

The variable ‘maximum_steps_stepper1’ or ‘maximum_steps_stepper2’ defines the 

boundaries for the target stepper. The program counts the steps a stepper takes in the 

global variable ‘step_counter_stepper_1’ and ‘step_counter_stepper_2’, and it will stop 

the execution of the program if the value stored in this variable exceeds the maximum 

number of steps or if it falls below zero. The variables ‘steps_stepper_1’ and 

‘steps_stepper_2’ hold lists of empirically found distances between wells of – in this case 

– 96 well plates. Since the distance between wells cannot be covered exactly with full steps, 

variations of the number of steps between wells were introduced to account for this 

inaccuracy. If a different container (e.g., a 24 well plate) were to be used with this collector, 

these two variables would have to be adjusted accordingly. 

 



Processes 2021, 9, 129 21 of 25 
 

 

class Move(object): 
    """ 
    Holds all the commands and attributes to move both steppers. 
    Move_initial and move_initial2 move both steppers to position 0/0 on 
    the x/y grids coordinate system. move_left means that the stepper 
    is turning left. The carriage, however, is moving right due to the 
    positioning of the steppers. Same is true for move_right. 
    """ 
    def __init__(self): 
        # initialize components and wiring 
        # step counter to know the exact position of the dispenser head 
        global step_counter_stepper_1 
        global step_counter_stepper_2 
        # speeds: 0.3 sec is very slow -> no stepping errors 
        # 0.002 sec is possible without errors 
        self.speeds = {"s100": 0.005, "s75": 0.01, "s50": 0.025,  
                       "s25":0.05, "s0": 0.1} 
        # Instantiate the class 'Initialize' from 'initialize.py' to enable 
        # access to its functions and to set up the mapping of the GPIO 
        # pins to the steppers and end switches. 
        self.system = ini.Initialize() 
        step_counter_stepper_1 = 0 
        self.maximum_steps_stepper_1 = 260 
        step_counter_stepper_2 = 0 
        self.maximum_steps_stepper_2 = 340 
        self.total_sub_steps = len(self.system.mask_dl) 
        # steps for a 96 well plate. 
        self.steps_stepper_1 = [43, 28, 27, 27, 28, 27, 28, 28] 
        # steps from positions zero to wells A - H. 
        self.steps_stepper_2 = [35, 28, 27, 27, 28, 27, 28, 27,  
                                27, 28, 27, 28]  # steps from pos. 0 to 
                                                 # wells 12 - 1. 
[…]  

Code 12: Excerpt from the ‘Move()’ class. 

Lines 8 – 34 from the ‘move.py’ module. This class holds all commands and attributes related to 

moving the dispenser head around. As soon as the class is instantiated, an instance of the class 

‘Initialize()’ from the module ‘initialize.py’ is created in order to access GPIO pin mappings and 

functions to control end switches. The ‘step_counter_stepper_1 or 2’ is used in combination with 

‘maximum_steps_stepper_1 or 2’ to ensure that the dispenser head is only moved inside the 

boundaries of the collector. 

 

4.2.3. Module: main.py 

The module ‘main.py’ utilizes the classes and functions from the other two modules. It 

must always start with an instance of ‘Move()’ from ‘move.py.’ to enable access to the 

functions moving the dispenser head around and defining the utilized GPIO pins. 

Subsequently, the ‘move_initial()’ function must be called to move the dispenser head to 

its initial position. Afterwards, any sequence of ‘move_left()’ and ‘move_right()’ 

commands can be programmed. The program counts the number of steps taken and will 

abort if its predefined maximum number of steps is reached. The function ‘sleep()’ from 

the ‘time’ module can be used to pause the dispenser head at any position. The program 

should be terminated with a call to ‘GPIO.cleanup()’ to reset the GPIO assignment. The 

structure of the ‘main.py’ module is shown in the Code 13. This code drives the dispenser 

head to its initial position and subsequently dispenses products in the first 24 wells of a 

96 well plate following the pattern A1 -> A12 -> B12 -> B1. The dispenser head pauses at 

each well for three seconds. A video documenting the execution of this code can be found 

on GitHub (Loy, 2020). 

 



Processes 2021, 9, 129 22 of 25 
 

 

import RPi.GPIO as GPIO 
import move 
from time import * 
 
# Instantiate the class 'Move' from the module 'move.py' to enable access 
to functions and variables. 
commands = move.Move() 
 
# Move the dispenser head to its initial position x/y = 0/0. 
commands.move_initial(commands.speeds["s25"], commands.speeds["s0"]) 
commands.move_initial2(commands.speeds["s25"], commands.speeds["s0"]) 
 
# program: serve wells from a 96 well plate: A1-> A12 -> B12 -> B1 
# go to well A1 
commands.move_left(2, sum(commands.steps_stepper_2) - 16, 
commands.speeds["s50"])  # -16: drives to far. 
commands.move_right(1, commands.steps_stepper_1[0], commands.speeds["s50"]) 
 
# wait 3s (i.e. the time to collect your sample) 
sleep(3) 
 
# for-clause. Iterates over the elements of the list 'steps_stepper_2' 
# and drives the target steps to the right (A1 -> A12) 
for i in list(reversed(commands.steps_stepper_2))[:-1]: 
    commands.move_right(2, i, commands.speeds["s50"]) 
    sleep(3) 
 
# drives stepper 1 target steps to the right (A12 -> B12) 
commands.move_right(1, commands.steps_stepper_1[1], commands.speeds["s50"]) 
sleep(3) 
 
# drives stepper 2 target steps to the left (B12 -> B1) 
for i in commands.steps_stepper_2[1:]: 
    commands.move_left(2, i, commands.speeds["s50"]) 
    sleep(3) 
 
# removes access to and any voltage from the GPIO pins. 
GPIO.cleanup()  

Code 13: The ’main.py‘ module of the fraction collector. 

Lines 1 – 35 from the ‘main.py’ module. The first three lines import all necessary modules to 

enable access to their functions. Subsequently, the code for setting up the machine (‘move.Move()’) 

and moving the dispenser head to its initial position (‘move_initial()’) is executed. The following 

lines drive the dispenser head from its initial position to the following 24 wells: A1 -> A12 -> B12 -> 

B1 with a pause of 3 s at each well.  In the end, access to GPIO pins is terminated 

(‘GPIO.cleanup()’). 

 

 

  



Processes 2021, 9, 129 23 of 25 
 

 

5. Oligomers 

 

Figure S7: Chemical structures of CO, LPO, LPOE. 

(A) CO. Calculated molecular weight: 3081.07 Da (B) LPO. Calculated molecular weight: 2929.16 

Da. (C) LPOE. Calculated molecular weight: 3187.39 Da. 

  



Processes 2021, 9, 129 24 of 25 
 

 

6. DLS measurements 

Table S6. Solvents used for DLS measurements 

Solvent Dispersant RI Viscosity [cP] 

HBG 1.337 1.037 

HBG (4.2 % [V/V] acetone) 1.340 1.119 

HBG (8.3 % [V/V] acetone) 1.342 1.188 

Note: Refractive indices (RI) and viscosities in centi poise (cP).  



Processes 2021, 9, 129 25 of 25 
 

 

7. References 

Croston B. 2019.raspberry-gpio-python. Available at https://sourceforge.net/projects/raspberry-gpio-python/ (accessed on January 18, 2020). 

Liechti C. 2017. pySerial. Available at https://pyserial.readthedocs.io/en/latest/index.html (accessed on January 7, 2021). 

Loy DM. 2020.Dominik Loy on GitHub. Available at https://github.com/Dominikmloy (accessed on November 7, 2020). 

Loy DM, Klein PM, Krzysztoń R, Lächelt U, Rädler JO, Wagner E. 2019. A microfluidic approach for sequential assembly of siRNA 

polyplexes with a defined structure-activity relationship. PeerJ Materials Science 1:e1. DOI: 10.7717/peerj-matsci.1. 

Van Rossum G, Drake Jr FL. 2009. Python 3 Reference Manual. CA: CreateSpace.  Scotts Valley, CA. 2009 ISBN 1441412697 


