
processes

Article

Global Stability Analysis of a Bioreactor Model for Phenol and
Cresol Mixture Degradation

Neli Dimitrova 1,*,† and Plamena Zlateva 1,2,†

����������
�������

Citation: Dimitrova, N.; Zlateva, P.

Global Stability Analysis of a

Bioreactor Model for Phenol and

Cresol Mixture Degradation. Processes

2021, 9, 124. https://doi.org/

10.3390/pr9010124

Received: 18 November 2020

Accepted: 5 January 2021

Published: 8 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 8,
1113 Sofia, Bulgaria

2 Institute of Robotics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Block 2, 1113 Sofia, Bulgaria;
plamzlateva@abv.bg

* Correspondence: nelid@math.bas.bg
† These authors contributed equally to this work.

Abstract: We propose a mathematical model for phenol and p-cresol mixture degradation in a
continuously stirred bioreactor. The model is described by three nonlinear ordinary differential
equations. The novel idea in the model design is the biomass specific growth rate, known as sum
kinetics with interaction parameters (SKIP) and involving inhibition effects. We determine the
equilibrium points of the model and study their local asymptotic stability and bifurcations with
respect to a practically important parameter. Existence and uniqueness of positive solutions are
proved. Global stabilizability of the model dynamics towards equilibrium points is established. The
dynamic behavior of the solutions is demonstrated on some numerical examples.

Keywords: mathematical model; continuous bioreactor; biodegradation; phenol and p-cresol mixture;
SKIP model; equilibrium points; stability analysis; global stabilizability; numerical simulation

1. Introduction

Organic chemical mixtures are among the most persistent environmental pollutants.
Different aromatic compounds such as phenol, cresols, nitrophenols, benzene, etc. coexist
as complex mixtures in wastewaters from petroleum refineries, coal mining and other
industrial chemical sources [1]. Biological degradation has recently become a viable tech-
nology for remediation of organic pollutants as an alternative to the traditional physical
and chemical methods that can be costly and produce hazardous products. Most of the
current research has been directed to the isolation and study of microbial species with
high-degradation activity and capabilities of degrading chemical compounds. The review
paper [2] reports on hundreds of isolated bacteria capable of degrading aromatic com-
pounds, among them different strains of Aspergillus awamori, Arthrobacter, Burkholderia,
Mycobacterium, Pseudomonas, Rhodococcus, Staphylococcus, Trametes hirsute etc. The biodegra-
dation of one or all chemical components depends on the composition of the particular
mixture and the used microorganisms [3–5]. The adequate analysis of interactions between
the compounds and their influence on microbial growth is very important for understand-
ing the simultaneous metabolism of phenolic mixtures [6].

Most research on microbial potentials to degrade chemical pollutants has been per-
formed on a laboratory scale. Based on batch processes various mathematical biodegra-
dation kinetic models have been recently developed and widely used. Among them are
Monod’s, Haldane’s (known also as Andrews), sum kinetic models, sum kinetics with
interaction parameter (SKIP) models, etc. [7,8]. It is known that Monod’s and Haldane’s
models are appropriate for single substrate utilization. The Monod model describes the
biodegradation rate in dependence of the biomass concentration. When a substrate inhibits
its own degradation then Haldane’s model is more appropriate. In [9] the Haldane equation
modified with a Monod-like switching function is proposed and applied to the biological
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removal of mixtures of phenolic compounds in sequential batch bioreactors. In [10] the
aerobic biodegradability of phenol, resorcinol and 5-methylresorcinol and their different
two-component mixtures is investigated and various kinetic models are tested to obtain
the best curve fit.

In the case when a mixture of two or more substrates occurs, the sum kinetic and SKIP
models predict better the outcome of biodegradation experiments. The latter have been
proposed for the first time in [11] and widely used by many researchers. The (no-interaction)
sum kinetics model for cell growth is usually represented as a sum of the specific growth
rates on each substrate, e.g., as a sum of Monod- and/or Haldane-type specific growth
rates. These models were evaluated in [12,13] for biodegradation of benzene, toluene and
phenol mixtures using Pseudomonas putida F1 and Burkholderia sp. strain JS150 and found
that the interactions between these substrates could not be described by sum kinetics
models. On the contrary, the SKIP model predicts better the outcome of the mixed-culture
experiments. This is due the fact that the SKIP models extend the sum kinetics models by
incorporating interaction parameters to describe more accurately the biodegradation of the
chemical mixture.

The biodegradation of benzene, toluene and phenol is studied in [14] by adaptation
of Pseudomonas putida F1 ATCC 700007. For the substrate mixtures, a SKIP model is used.
The latter provides an excellent prediction of the growth kinetics and the interactions
between these substrates.

In [15] biodegradation kinetics of different multiple substrate mixtures of mono-
aromatic volatile organic carbon (VOCs) such as toluene, ethyl benzene and o-xylene
are studied. A general mixed-substrate biodegradation model is developed which can
describe the biodegradation kinetics of common industrial VOCs when present as a mixture,
incorporating parameters for interaction effects.

The paper [16] examines biodegradation kinetics of styrene and ethylbenzene, inde-
pendently and as binary mixtures, using a series of aerobic batch degradation. The SKIP
model and the purely competitive enzyme kinetics model are employed to evaluate any
interactions. The SKIP model is found to more accurately describe the interactions.

Here, we propose a mathematical model for biodegradation of phenol and 4-methylph-
enol (p-cresol) in a continuously stirred tank bioreactor, in which the biodegradation kinetics
is described by a SKIP model. The bioreactor model presents an extension of the growth
kinetic model proposed in [17]. There, the growth behavior and degradation capacity of
Aspergillus awamori NRRL 3112 microbial strain on the binary mixture phenol/p-cresol are
investigated. Based on laboratory experiments, the growth kinetic model is first evaluated
by a sum kinetic model involving Haldane’s specific growth rate. An alternative model is
then formulated by adding interaction parameters into the sum kinetics model to produce
the SKIP model. It is shown that the SKIP model describes better the degradation patterns
in the biological system.

The paper is organized as follows. The next Section 2 presents a short description of
the proposed mathematical model. Section 3 includes steady states computations. Local
stability analysis and bifurcations of the equilibrium points are presented in Section 4.
Section 5 reports on general and important properties of the model solutions and provides
results on the global stabilizability of the system towards an interior equilibrium point.
The last Section 6 presents numerical examples as illustration of the theoretical studies on
the model dynamics.
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2. Model Description

We consider the following mathematical model for phenol and p-cresol mixture
degradation in a continuously stirred bioreactor

dX(t)
dt

=
(

µ(Sph, Scr)− D
)

X(t) (1)

dSph(t)
dt

= −kph µ(Sph, Scr)X(t) + D(S0
ph − Sph(t)) (2)

dScr(t)
dt

= −kcr µ(Sph, Scr)X(t) + D(S0
cr − Scr(t)), (3)

where µ(Sph, Scr) is the specific growth rate, presented by

µ(Sph, Scr) =
µmax(ph)Sph

ks(ph) + Sph +
S2

ph
ki(ph)

+ Icr/phScr

+
µmax(cr)Scr

ks(cr) + Scr +
S2

cr
ki(cr)

+ Iph/crSph

. (4)

The definition of the state variables X, Sph and Scr as well as of the model parameters
is given in Table 1. The numerical values in the last column are validated by laboratory
experiments and given in [17].

The specific growth rate µ(Sph, Scr) represents a SKIP (sum kinetics with interaction
parameters) model for biological degradation of the chemical compounds. The interaction
parameters Icr/ph and Iph/cr indicate the degree to which substrate p-cresol affects the
biodegradation of substrate phenol, and substrate phenol affects the biodegradation of
substrate p-cresol, respectively. The larger value of Icr/ph (see Table 1) indicates that p-cresol
inhibits the utilization of phenol much more than phenol inhibits the utilization of p-cresol.

The kinetic function µ(Sph, Scr) also involves inhibition terms
S2

ph
ki(ph)

and S2
cr

ki(cr)
for cell growth

on phenol and p-cresol, respectively. Obviously, µ(Sph, 0) and µ(0, Scr) are the well-known
Andrews (or Haldane) model functions, which are unimodal and achieve their maximum
at Sph =

√
ks(ph)ki(ph) and Scr =

√
ks(cr)ki(cr) respectively.

The influent concentrations S0
ph, S0

cr and the dilution rate D are the parameters that can

be manipulated by the operator of the bioreactor. In our analysis we assume that S0
ph and

S0
cr are constant and consider the dilution rate D as a varying control parameter. Clearly,

D > 0 should be fulfilled.
The same model (1)–(3) has been considered in [18] using a more simple specific

growth rate function µ(Sph, Scr) which does not involve the inhibition terms
S2

ph
ki(ph)

and S2
cr

ki(cr)

for cell growth on phenol and p-cresol. Adding these terms makes the dynamics (1)–(3)
more complicated, but as shown in [17], see also [5], the SKIP model (4) describes the trend
of experimental data much better than other kinetic models.
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Table 1. Model variables and parameters.

Definitions Values

X biomass concentration [g/dm3] –
Sph phenol concentration [g/dm3] –
Scr p-cresol concentration [g/dm3] –
D dilution rate [h−1] –

S0
ph influent phenol concentration [g/dm3] 0.7

S0
cr influent p-cresol concentration [g/dm3] 0.3

kph metabolic coefficient [Sph/X] 11.7
kcr metabolic coefficient [Scr/X] 5.8

ki(ph)
inhibition constant for cell growth on phenol
[g/dm3]

0.61

ki(cr)
inhibition constant for cell growth on cresol
[g/dm3]

0.45

Iph/cr

interaction coefficient indicating the degree
to which phenol affects the p-cresol biodegra-
dation

0.3

Icr/ph

interaction coefficient indicating the degree
to which p-cresol affects the phenol biodegra-
dation

8.6

µmax(ph)
maximum specific growth rate on phenol as
a single substrate [h−1]

0.23

µmax(cr)
maximum specific growth rate on p-cresol as
a single substrate [h−1]

0.17

ks(ph)
saturation constant for cell growth on phenol
[g/dm3]

0.11

ks(cr)
saturation constant for cell growth on p-cresol
[g/dm3]

0.35

3. Existence of Equilibrium Points

We shall investigate existence of the model equilibrium points in dependence of the
control parameter D.

The equilibrium points of (1)–(3) are solutions of the following system of algebraic
equations (

µ(Sph, Scr)− D
)

X = 0 (5)

−kph µ(Sph, Scr)X + D(S0
ph − Sph) = 0 (6)

−kcr µ(Sph, Scr)X + D(S0
cr − Scr) = 0. (7)

Obviously, the point E0 = (0, S0
ph, S0

cr) (with X = 0) is an equilibrium point of the
model for all D > 0.

We are looking now for solutions of (5)–(7) assuming that X 6≡ 0.
After multiplying Equation (6) by −kcr, Equation (7) by kph and summing the latter,

we obtain
− kcr(S0

ph − Sph) + kph(S0
cr − Scr) = 0. (8)

Let us express Sph from (8) as a function of Scr. Denoting

K =
kph

kcr
, S0 = S0

ph − KS0
cr, (9)

We obtain

Sph = S0
ph −

kph

kcr

(
S0

cr − Scr

)
= S0 + KScr. (10)

After replacing the latter presentation of Sph into the equation µ(Sph, Scr) = D from
(5) we obtain an equation with respect to Scr of the form
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µ(S0 + KScr, Scr) = D,

or equivalently

µmax(ph)
(
S0 + KScr

)
ks(ph) + S0 + KScr +

1
ki(ph)

(S0 + KScr)2 + Icr/phScr

+
µmax(cr)Scr

ks(cr) + Scr +
1

ki(cr)
S2

cr + Iph/cr(S0 + KScr)
= D.

Straightforward calculations lead to a polynomial equation of the form

A1S4
cr + A2S3

cr + A3S2
cr + A4Scr + A5 = 0, (11)

where

A1 = −D · 1
ki(cr)

· 1
ki(ph)

;

A2 = µmax(ph)
K

ki(cr)
+ µmax(cr)

1
ki(ph)

− D

[
(1 + Iph/crK)

1
ki(ph)

+
1

ki(cr)

(
Icr/ph + K + 2KS0 1

ki(ph)

)]
;

A3 = µmax(ph)

[
S0 1

ki(cr)
+ K(1 + Iph/crK)

]
+ µmax(cr)

[
K + Icr/ph + 2KS0 1

ki(ph)

]

− D

[
1

ki(ph)
(ks(cr) + Iph/crS0) + (1 + Iph/crK)

(
K + Icr/ph + 2KS0 1

ki(ph)

)

+
1

ki(cr)

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

;

A4 = µmax(ph)

[
S0(1 + Iph/crK) + K(ks(cr) + Iph/crS0)

]
+ µmax(cr)

(
ks(ph) + S0 +

1
ki(ph)

S02
)

− D

[
(ks(cr) + Iph/crS0)

(
K + Icr/ph + 2KS0 1

ki(ph)

)

+ (1 + Iph/crK)

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

;

A5 =

[
µmax(ph)S

0 − D

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

(ks(cr) + Iph/crS0).

All coefficients Ai, i = 1, 2, . . . , 5, depend on the parameter D.
Obviously, if A5 = 0, then Equation (11) possesses a solution Scr = 0. We have

A5 = 0 ⇐⇒ D = Dcr :=
S0µmax(ph)ki(ph)

S02 + ki(ph)S0 + ki(ph)ks(ph)
= µ(S0, 0). (12)

The latter value of Dcr is biologically reasonable only if S0 > 0. Using the numerical
values of the model coefficients in the last column of Table 1, we obtain

S0 = S0
ph − KS0

cr ≈ 0.09483 > 0,
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and so,

Dcr = µ(S0, 0) ≈ 0.09933.

This means that for D = Dcr there exists an equilibrium point with Scr = 0. Further
from (10) we compute the component of Sph = S0, and from (7) we get the corresponding

component of X =
S0

cr
kcr

. Thus, at D = Dcr there exists a steady state

E1 = E1(Dcr) =

(
S0

cr
kcr

, S0, 0
)
= (0.05172, 0.09483, 0). (13)

Considering the cubic equation A1S3
cr + A2S2

cr + A3Scr + A4 = 0 at D = Dcr (i.e., with
A5 = 0), numerical computations produce the following roots of the latter equation

−4.484933737, 0.2614282531± i 0.2468184467,

so, the real root is negative and cannot serve as a component of the model equilibrium point.
If D 6= Dcr then Equation (11) may possess up to 4 real positive solutions with respect

to Scr. If there exists at least one positive solution of (11), say S∗cr, such that S∗cr < S0
cr for

some values of D, we shall have an interior (with positive components) equilibrium of
the form

E∗ = (X∗, S∗ph, S∗cr), S∗ph = S0 + KS∗cr < S0
ph, X∗ =

S0
cr − S∗cr

kcr
=

S0
ph − S∗ph

kph
. (14)

Remark 1. If we express Scr from (8) as a function of Sph and denote K̂ =
kcr

kph
=

1
K

, Ŝ0 =

S0
cr − K̂S0

ph, then we shall have Scr = Ŝ0 + K̂Sph. Similar calculations as above will produce

a polynomial equation of the form Â1S4
ph + Â2S3

ph + Â3S2
ph + Â4Sph + Â5 = 0, where the

coefficients Âi are similar to Ai, i = 1, 2, . . . , 5, within Ŝ0 and K̂ instead of S0 and K, respectively.
In this case we have

Â5 =

(
µmax,cr − D

(
ks(cr) + Ŝ0 +

Ŝ02

ki(cr)

))
(ks(ph) + Icr/phŜ0).

Obviously, Â5 = 0 at D̂ = µ(0, Ŝ0). But in this case Ŝ0 = − 1
K S0 ≈ −0.047 < 0, thus there

is no value of D at which Sph = 0 is a root of the polynomial ∑5
i=1 ÂiS5−i

ph = 0. As we shall see in
the following, this is the case with the equilibrium component Sph.

Numerical computations show that if D > Dcr then there are no positive real roots
of Equation (11). Therefore, we can expect interior (coexistence) equilibria of the form
E∗ if D ∈ (0, Dcr), in case that the equilibrium components with respect to Scr satisfy the
inequality Scr ≤ S0

cr. Further we obtain numerically the following results:

• There exists a value D = D(1)
cr ≈ 0.0745599, so that Equation (11) possesses a double

root Scr ≈ 0.04327 for D = D(1)
cr .

• If D < D(1)
cr then there are no positive roots of (11) which are less than or equal to S0

cr.

• Denote D(2)
cr := µ(S0

ph, S0
cr) ≈ 0.08651 < Dcr. If D ∈

(
D(1)

cr , D(2)
cr

)
then there are two

positive roots of (11) which are less than S0
cr.

• If D ∈
(

D(2)
cr , Dcr

)
, Dcr = µ(S0, 0) ≈ 0.09933, then there is only one positive root of

(11) which is less than S0
cr.
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The left plot in Figure 1 shows the graph of the function µ(S0 + KScr, Scr) for Scr ∈
[0, S0

cr] = [0, 0.3]; the horizontal dash lines correspond to the values of D(1)
cr , D(2)

cr and Dcr.
Therefore, the model (1)–(3) possesses two interior equilibrium points depending on

the values of D. Denote them by

E2 = E2(D) =
(

X(2), S(2)
ph , S(2)

cr

)
, D ∈

(
D(1)

cr , Dcr

)
;

E3 = E3(D) =
(

X(3), S(3)
ph , S(3)

cr

)
, D ∈

(
D(1)

cr , D(2)
cr

)
, with S(3)

cr > S(2)
cr .

Numerical computations also produce the following results:

E2(Dcr) = E1 = (0.05172, 0.09483, 0), Dcr = µ(S0, 0) = 0.09933;

E2(D(1)
cr ) = E3(D(1)

cr ) = (0.04426, 0.18211, 0.04327), D(1)
cr = 0.0745599;

E3(D(2)
cr ) = E0 = (0, S0

ph, S0
cr) = (0, 0.7, 0.3), D(2)

cr = µ(S0
ph, S0

cr) = 0.08651.

Figure 1. (Left): graph of the function µ(S0 + KScr, Scr) for Scr ∈ [0, S0
cr]. (Right): the equilibrium components S(2)

cr (dash

line) and S(3)
cr (solid line), parameterized on D. The horizontal dash-dot&solid line passes trough S0

cr. On the horizontal axis,

the solid circle denotes D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr. The vertical dot line passes through D(2)
cr .

Figure 1 (right plot) and Figure 2 visualize the components Scr, Sph and X of the
equilibria E0, E2 and E3. In the three plots, the components of the equilibrium point E0
are marked by horizontal dash-dot&solid lines, the components of E2 are marked by dash
lines and the ones of E3 are shown by solid lines.
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Figure 2. (Left): the equilibrium components S(2)
ph (dash line) and S(3)

ph (solid line), parameterized on D. The horizontal dash-

dot&solid line passes trough S0
ph. (Right): the equilibrium components X(2) (dash line) and X(3) (solid line), parameterized

on D. The horizontal dash-dot&solid line passes trough 0. On the horizontal axis (left and right plot), the solid circle denotes

D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr. The vertical dot line passes through D(2)
cr .

4. Local Stability of the Equilibrium Points

In this section we shall study the conditions for local asymptotic stability of the model
equilibrium points.

It is well known that an equilibrium point is locally asymptotically stable, if all
eigenvalues of the Jacobi matrix evaluated at this equilibrium have negative real parts,
cf. e.g., [19]. The eigenvalues of the Jacobi matrix coincide with the roots of the correspond-
ing characteristic polynomial.

To simplify notations, in the following we shall sometimes write µ instead of µ(Sph, Scr).
The Jacobi matrix J related to the model Equations (1)–(3) has the form

J =


µ(Sph, Scr)− D ∂µ

∂Sph
X ∂µ

∂Scr
X

−kphµ(Sph, Scr) −kph
∂µ

∂Sph
X− D −kph

∂µ
∂Scr

X

−kcrµ(Sph, Scr) −kcr
∂µ

∂Sph
X −kcr

∂µ
∂Scr

X− D

.

The characteristic polynomial corresponding to J is defined by det(J − λI3), where λ
is any complex number and I3 is the (3× 3)–identity matrix

det(J − λI3) =

∣∣∣∣∣∣∣∣∣∣∣

µ(Sph, Scr)− D− λ
∂µ

∂Sph
X ∂µ

∂Scr
X

−kphµ(Sph, Scr) −kph
∂µ

∂Sph
X− D− λ −kph

∂µ
∂Scr

X

−kcrµ(Sph, Scr) −kcr
∂µ

∂Sph
X −kcr

∂µ
∂Scr

X− D− λ

∣∣∣∣∣∣∣∣∣∣∣
.

Multiplying the second row of the above determinant by − kcr

kph
and adding the latter

to the third row, we obtain
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det(J − λI3) =

∣∣∣∣∣∣∣∣∣∣∣

µ(Sph, Scr)− D− λ
∂µ

∂Sph
X ∂µ

∂Scr
X

−kphµ(Sph, Scr) −kph
∂µ

∂Sph
X− D− λ −kph

∂µ
∂Scr

X

0 kcr
kph

(D + λ) −D− λ

∣∣∣∣∣∣∣∣∣∣∣
.

Straightforward calculations deliver the following characteristic polynomial

det(J − λI3) = (D + λ)2

[
µ(Sph, Scr)− D− λ− X

(
kph

∂µ

∂Sph
+ kcr

∂µ

∂Scr

)]
. (15)

Denote by J(Ei) the Jacobian matrix evaluated at the equilibrium point Ei, i = 0, 1, 2, 3.
It follows from (15) that λ1,2 = −D < 0 are always eigenvalues of J(Ei), i = 0, 1, 2, 3.
The third eigenvalue λ3 is determined from the second multiplier of (15).

Proposition 1.

(i) If D < D(2)
cr = µ(S0

ph, S0
cr) then the equilibrium point E0 =

(
0, S0

ph, S0
cr

)
(with X = 0)

is locally asymptotically unstable (a saddle).

(ii) If D > D(2)
cr then E0 is locally asymptotically stable (a stable node).

(iii) At D = D(2)
cr the equilibrium E0 is neither stable, nor unstable: J(E0) possesses a zero

eigenvalue, λ3 = 0, thus D(2)
cr is a bifurcation parameter value.

(iv) The equilibrium point E1 = E1(Dcr) =

(
S0

cr
kcr

, S0, 0
)

, (see (13)), is locally asymptotically

unstable.

Proof. (i)–(iii) We obtain from (15)

det(J(E0)− λI3) = (D + λ)2(µ(S0
ph, S0

cr)− D− λ),

thus the third root λ3 satisfies

λ3 = µ(S0
ph, S0

cr)− D


> 0, if D < D(2)

cr = µ(S0
ph, S0

cr),

< 0, if D > D(2)
cr ,

= 0, if D = D(2)
cr .

(iv) The characteristic polynomial corresponding to the equilibrium E1 is presented by

det(J(E1)− λI3) = −(Dcr + λ)2

(
S0

cr

(
K

∂µ

∂Sph
(S0, 0) +

∂µ

∂Scr
(S0, 0)

)
+ λ

)
.

The third root λ3 of the latter polynomial is computed numerically and is equal to

λ3 = −S0
cr

(
K

∂µ

∂Sph
(S0, 0) +

∂µ

∂Scr
(S0, 0)

)
≈ −(−0.7574) > 0,

which means that E1(Dcr) is a saddle equilibrium point. This proves the proposi-
tion.
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The equilibrium components S(i)
ph and S(i)

cr of the equilibria Ei, i = 2, 3, satisfy the
equation µ(Sph, Scr) = D, so that from (15) we obtain

det(J(Ei)− λI3) = −(D + λ)2

[
λ + X(i)

(
kph

∂µ

∂Sph
(S(i)

ph , S(i)
cr ) + kcr

∂µ

∂Scr
(S(i)

ph , S(i)
cr )

)]
,

i = 2, 3.

The third root λ
(i)
3 = −X(i)

(
kph

∂µ
∂Sph

(S(i)
ph , S(i)

cr ) + kcr
∂µ

∂Scr
(S(i)

ph , S(i)
cr )
)

is found numeri-
cally by computing the right-hand side expression on a discrete mesh of values for D,
where D ∈ (D(1)

cr , Dcr) for E2, and D ∈ (D(1)
cr , D(2)

cr ) for E3. Figure 3 visualizes the three
eigenvalues of J(E2) and J(E3). One can see that the eigenvalues of J(E3) are negative
(right plot), and J(E2) possesses one real positive eigenvalue (left plot). Moreover, one
eigenvalue of J(E2) approaches zero at D = D(1)

cr , and one eigenvalue of J(E3) approaches
zero at D = D(1)

cr and D = D(2)
cr , thus D(1)

cr and D(2)
cr are bifurcation parameter values.

Figure 3. Eigenvalues corresponding to the equilibrium points E2 (left) and E3 (right), parameterized on D. On the

horizontal axis, the solid circle denotes D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr.

We summarize the above results in the next proposition.

Proposition 2.

(i) The equilibrium E2, defined for D ∈ (D(1)
cr , Dcr), is locally asymptotically unstable (a

saddle).

(ii) The equilibrium E3, defined for D ∈ (D(1)
cr , D(2)

cr ), is locally asymptotically stable (a stable
node).

(iii) At D = D(1)
cr , the two interior equilibrium points, E2 and E3, are ’born’, thus D(1)

cr is a
bifurcation value of the parameter D. At D = D(1)

cr the steady states E2 and E3 undergo a
saddle-node bifurcation.

(iv) At D = D(2)
cr the equilibrium points E3 and E0 coalesce and exchange stability for D >

D(2)
cr . Thus, at D = D(2)

cr the steady states E3 and E0 undergo a transcritical bifurcation.
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Figure 1 (right plot) and Figure 2 also visualize the stability of E0, E2 and E3: the solid
lines correspond to the components of the stable equilibria, the dash and the dash-dot lines
mark the components of the unstable equilibria. Therefore, these three plots can also be
considered as bifurcation diagrams: a saddle node bifurcation occurs at the parameter
value D = D(1)

cr , and D = D(2)
cr serves as a transcritical bifurcation point.

5. Global Stabilizability of the Model Dynamics

First we prove that the model (1)–(3) exhibits the standard properties that we would
expect from a bioreactor model, namely uniqueness and positiveness of solutions for
non-negative initial conditions.

Theorem 1. Consider the model (1)–(3) and assume that X(0) ≥ 0, Sph(0) ≥ 0, Scr(0)) ≥ 0.

(i) If X(0) = 0 then all model solutions tend to the equilibrium point E0 = (0, S0
ph, S0

cr).

(ii) If X(0) > 0 then X(t) > 0, Sph(t) > 0, Scr(t) > 0 for all t > 0.

(iii) All solutions are uniformly bounded for all t ≥ 0.

Proof. (i) Let X(0) = 0 and Sph(0) ≥ 0, Scr(0) ≥ 0 be satisfied. It follows that X(t) = 0 for
all t ≥ 0 due to uniqueness of solutions of the Cauchy problem. Then the model (1)–(3)
reduces to

dSph(t)
dt

= D(S0
ph − Sph(t))

dScr(t)
dt

= D(S0
cr − Scr(t)).

The latter equations imply that Sph(t) and Scr(t) converge exponentially to S0
ph and

S0
cr respectively. The plane X = 0 is invariant for the model.

(ii)–(iii) Assume that X(0) > 0, Sph(0) ≥ 0, Scr(0)) ≥ 0. It follows from Equation (1)
that

dX
X

=
∫ t

0
(µ(Sph(τ), Scr(τ))− D)dτ,

X(t) = X(0)e
∫ t

0 (µ(Sph(τ),Scr(τ))−D)dτ > 0 for each t ≥ 0.

Denote Σ1(t) = Sph(t) + kphX(t)− S0
ph. Then Equations (1) and (2) imply

d
dt

Σ1(t) =
dSph

dt
+ kph

dX
dt

= D
(

S0
ph − (Sph + kphX)

)
= −DΣ1(t),

which means that Σ1(t) = e−DtΣ1(0), thus limt→∞ Σ1(t) = 0, or equivalently

lim
t→∞

(
Sph(t) + kphX(t)

)
= S0

ph.

Since X(t) > 0 for all t > 0 this means Sph(t) > 0 for all t > 0 as well. Moreover, X(t)
and Sph(t) are uniformly bounded.

Similarly, using Equations (1) and (3) and denoting Σ2(t) = Scr(t) + kcrX(t)− S0
cr we

obtain Σ2(t) = e−DtΣ2(0), which means that

lim
t→∞

(Scr(t) + kcrX(t)) = S0
cr. (16)

Therefore, Scr(t) > 0 for all t > 0 and Scr(t) is uniformly bounded for t ≥ 0. Hence,
the model solutions X(t), Sph(t), Scr(t) exist for all time t ≥ 0. This completes the proof of
Theorem 1.
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In the following we shall prove the global asymptotic stabilizability of system (1)–(3)
when the control parameter D belongs to the interval

(
D(1)

cr , D(2)
cr

)
, with D(2)

cr = µ(S0
ph, S0

cr).

Similarly to the proof of Theorem 1, denote Σ3(t) = Sph(t) − KScr(t) − S0, where

K and S0 are defined in (9). After multiplying Equation (3) by −
kph

kcr
and adding to

Equation (2) we obtain

d
dt

Σ3(t) =
d
dt

(
Sph(t)− KScr(t)

)
= D

(
S0

ph − Sph(t)− KS0
cr + KScr(t)

)
= D

(
(S0

ph − KS0
cr)− (Sph(t)− KScr(t))

)
= −D

(
S0 − (Sph(t)− KScr(t))

)
= −DΣ3(t).

This means that Σ3(t) = e−DtΣ3(0), Σ3(0) ≥ 0, so limt→∞ Σ3(t) = 0. Then system
(1)–(3) may be written in the form

d
dt

Σ3(t) = −DΣ3(t)

d
dt

X(t) =
(

µ(S0 + KScr(t), Scr(t))− D
)

X(t)

d
dt

Scr(t) = −kcrµ(S0 + KScr(t), Scr(t))X(t) + D(S0
cr − Scr(t)).

Since limt→∞ Σ3(t) = 0, the positive ω-limit set of any solution of system (1)–(3) is
contained in the set

Ω3 =
{
(X, Sph, Scr) : X > 0, Sph ≥ 0, Scr ≥ 0, Σ3 = 0

}
.

Using the theory of the asymptotically autonomous systems (cf. [20,21]) it follows that
all trajectories forming the ω-limit set of any solution of (1)–(3) with initial conditions in
Ω3 are solutions of the following limiting system

dX(t)
dt

=
(
µ(S0 + KScr(t), Scr(t))− D

)
X(t)

dScr(t)
dt

= −kcr µ(S0 + KScr(t), Scr(t))X(t) + D(S0
cr − Scr(t)).

(17)

We consider Equation (17) on the set

Ω2 =
{
(X, Scr) : X > 0, Scr ≥ 0, S0 + KScr ≥ 0

}
.

Denote for simplicity µcr(Scr) = µ(S0 + KScr, Scr). Then obviously µcr(S0
cr) = µ(S0 +

KS0
cr, S0

cr) = µ(S0
ph, S0

cr) = D(2)
cr holds true.

Let us choose an arbitrary value D̄ ∈
(

D(1)
cr , D(2)

cr

)
, and consider the following system

obtained from (17) after substituting D = D̄ in the latter:

dX(t)
dt

= (µcr(Scr(t))− D̄)X(t) (18)

dScr(t)
dt

= −kcr µcr(Scr(t))X(t) + D̄(S0
cr − Scr(t)). (19)



Processes 2021, 9, 124 13 of 19

Let us recall, that at D = D̄ there are two interior equilibria of the model (1)–(3),

E2(D̄) = (X(2)(D̄), S(2)
ph (D̄), S(2)

cr (D̄)) and

E3(D̄) = (X(3)(D̄), S(3)
ph (D̄), S(3)

cr (D̄)) with S(2)
cr (D̄) < S(3)

cr (D̄).

Denote

Ē = (X̄, S̄cr) =
(

X(3)(D̄), S(3)
cr (D̄)

)
.

Obviously, Ē is an equilibrium point of (18) and (19).
We make the following assumption.

Assumption 1. There exist points S−cr and S+
cr such that 0 < S−cr < S+

cr < S0
cr and µcr(Scr) is

monotone increasing for all Scr ∈ (S−cr, S+
cr).

Assumption 1 identifies the equilibrium Ē with the projection of E3(D̄) in the plane
Sph−KScr = S0. If we choose for S−cr the Scr-component of the double root of Equation (11),

i.e., S−cr = S(2)
cr (D(1)

cr ) = S(3)
cr (D(1)

cr ), and S+
cr = S0

cr, then µcr(Scr) is monotone increasing in
(S−cr, S+

cr), see the left plot in Figure 1.
Based on the above considerations, the problem for global stabilizability of the model

(1)–(3) is reduced to proving the global stabilizability of the well known basic bioreactor
(chemostat) model (17), which is well studied in the literature, see e.g., [20,22–24] and the
references therein. The next Theorem 2 is also a corollary from Theorem 2.1 in [25]. We
present the proof here for reader’s convenience.

Theorem 2. Let Assumption 1 be fulfilled. Assume that D̄ ∈
(

D(1)
cr , D(2)

cr

)
. Then for any initial

point (X(0), Scr(0)) ∈ Ω2 the corresponding solution of (18) and (19) converges asymptotically
towards the equilibrium point Ē.

Proof. Let us fix an arbitrary initial point (X(0), Scr(0)) ∈ Ω2.
First we shall show that there exists time T > 0, such that Scr(t) < S0

cr for all t > T.
Assume that Scr(t) ≥ S0

cr holds true for each t > 0. Then we have from (19) that

dScr(t)
dt

= −kcr µcr(Scr)X(t) + D̄(S0
cr − Scr(t)) < 0.

Barbălat’s Lemma [26] implies

0 = lim
t→∞

dScr(t)
dt

= lim
t→∞

(
−kcr µcr(Scr)X(t) + D̄(S0

cr − Scr(t))
)

,

which leads to Scr(t)→ S0
cr and X(t)→ 0 as t→ ∞. Further we have that µcr(S̄cr) = D̄ <

D(2)
cr = µcr(S0

cr). The continuity of µcr(·) and the relation Scr(t)→ S0
cr as t→ ∞ imply that

there exists a number δ > 0 such that

µcr(Scr(t))− D̄ = µcr(Scr(t))− µcr(S̄cr) ≥ δ

for all sufficiently large t. Then it follows
dX(t)

dt
= (µcr(Scr(t)) − D̄)X(t) ≥ δX(t) for

all sufficiently large t, which contradicts the boundedness of X(t). Hence, there exists a
sufficiently large T > 0 with Scr(T) ≤ S0

cr. If the equality Scr(T) = S0
cr holds true, then

we have



Processes 2021, 9, 124 14 of 19

dScr

dt
(T) = −kcr µcr(Scr(T))X(T) + D̄(S0

cr − Scr(T))

= −kcr µcr(Scr(T))X(T) < 0.

The last inequality shows that Scr(t) < S0
cr for each t > T.

Let us fix an arbitrary γ ∈
(
0, (µcr(S0

cr)− µcr(S̄cr))/2
)
. (Note that µcr(Scr) is monotone

increasing.) The continuity of µcr implies that there exists ε > 0 such that µcr(S̄cr) + γ <
µcr(Scr) for each Scr ∈

[
S0

cr − (1 + kcr)ε, S0
cr
)
. It follows from (16) that there exists time

Tε > 0 so that X(t) and Scr(t) satisfy

S0
cr − ε < Scr(t) + kcrX(t) < S0

cr + ε for each t ≥ Tε. (20)

Assume now that X(t̄) ≤ ε for some t̄ ≥ Tε; then we obtain from (20)

S0
cr > Scr(t̄) ≥ S0

cr − kcrX(t̄)− ε ≥ S0
cr − (1 + kcr)ε,

i.e., Scr(t̄) ∈
[
S0

cr − (1 + kcr)ε, S0
cr
)
. Hence,

d
dt

X(t̄) = (µcr(Scr(t̄))− D̄)X(t̄) = (µcr(Scr(t̄))− µcr(S̄cr))X(t̄) ≥ γX(t̄) > 0.

It follows then that X(t) ≥ e(t−t̄)γX(t̄). If there exists t1 ≥ t̄ such that X(t1) = ε, then

at every time t2 ≥ t1 with X(t2) = ε we have
d
dt

X(t2) = (µcr(Scr(t2))− D̄)X(t2) ≥ γε > 0.

Hence there exists time T1 > T such that X(t) ≥ ε for each t ≥ T1.
The above considerations mean that the ω-limit set of the corresponding trajectory of

(18) and (19) lies in the set

{(X, Scr) : X ≥ ε, 0 ≤ Scr ≤ S0
cr}.

For X > 0 and Scr ∈ (0, S0
cr) we define the following Lyapunov function

V = V(X, Scr) =
∫ X

X̄

η − X̄
η

dη +
∫ Scr

S̄cr

X̄(µcr(ξ)− D̄)

D̄(S0
cr − ξ)

dξ.

The derivative
d
dt

V of V along the solutions of (18) and (19) is presented by

d
dt

V =
X− X̄

X
(µcr(Scr)− D̄)X +

X̄(µcr(Scr)− D̄)

D̄(S0
cr − Scr)

(
−kcrµcr(Scr)X + D̄(S0

cr − Scr)
)

= X(µcr(Scr)− D̄)

(
1− X̄kcrµcr(Scr)

D̄(S0
cr − Scr)

)
= X(µcr(Scr)− D̄)

(
1− S0

cr − S̄cr

S0
cr − Scr

· µcr(Scr)

D̄

)
≤ 0

for each Scr ∈ (0, S0
cr) and X > 0. Applying LaSalle’s invariance principle it follows

that each trajectory of (18) and (19) approaches the equilibrium point Ē, i.e., Ē is globally
asymptotically stable. This proves the theorem.

It follows from Propositions 1 and 2 that when the control input D takes values
D > D(2)

cr = µ(S0
ph, S0

cr) then the model (1)–(3) possesses two equilibrium points—the

wash-out equilibrium E0 = (0, S0
ph, S0

cr) and the interior equilibrium E2, such that E0 is
locally asymptotically stable and E2 is locally asymptotically unstable. Using the reduced
model (17) it can be shown that the restriction Ē0 = (0, S0

cr) of the wash-out equilibrium
E0 is globally asymptotically stable if D > D(2)

cr = µcr(S0
cr). Although the proof can be

extracted from the more general Lemma 2.2 in [24], we present it below for completeness.
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Theorem 3. Assume that D > D(2)
cr holds true. Then for any initial point (X(0), Scr(0)) > 0 the

corresponding solution of (17) converges asymptotically towards the equilibrium Ē0 = (0, S0
cr).

Proof. Choose some D̄0 > D(2)
cr and consider system (18) and (19), where D̄ is replaced

by D̄0. Assume that limt→∞ X(t) = X∗ > 0. Then Barbălat’s Lemma [26] applied to
Equation (18) implies 0 = limt→∞

d
dt X(t) = limt→∞(µcr(Scr(t))− D̄0)X∗, which means

that limt→∞ µcr(Scr(t)) = D̄0 > µcr(S0
cr). From the continuity of µcr(·) it follows that

there exists time T > 0 and a positive number δ such that µcr(Scr(t)) − µcr(S0
cr) ≥ δ

for all t ≥ T. The latter inequality leads to d
dt X(t) ≥ δX(t), a contradiction with the

boundedness of X(t). Therefore, X(t)→ 0 as t→ ∞. From the theory of the asymptotically
autonomous systems (cf. [20,21]) it follows that the dynamics (18) and (19) can be reduced
to the limiting equation d

dt Scr(t) = D̄0(S0
cr − Scr(t)), which implies limt→∞ Scr(t) = S0

cr,
and this completes the proof.

6. Dynamic Behavior of the Model Solutions: Numerical Simulation

In this section we present two numerical examples that illustrate the dynamic behavior
of the model solutions.

Example 1. D = 0.08 ∈ (D(1)
cr , D(2)

cr )

In this case there exist two positive (coexistence) equilibrium points

E2 = (0.0491, 0.126, 0.0153) and E3 = (0.0318, 0.328, 0.116),

such that E2 is locally asymptotically unstable, E3 is the globally asymptotically stable
equilibrium point according to Theorem 2. The wash-out equilibrium E0 = (0, 0.7, 0.3) is
locally asymptotically unstable.

The left plot in Figure 4 visualizes the convergence of the solutions towards the
corresponding equilibrium components of E3 using two different starting points. The right
plot of Figure 4 as well as Figure 5 visualize projections of the trajectories in the phase planes
(X, Scr), (X, Sph) and (Sph, Scr) respectively with three different initial points, denoted by
circles. The corresponding projections of the invariant planes are marked by dash lines in
the three plots.

Figure 4. D = 0.08. (Left): time evolution of solutions X (solid line), Sph (dash-dot line) and Scr (dash line); the horizontal
dot lines pass through the corresponding components of the equilibrium point E3. (Right): projections of the trajectories in
the (X, Scr)-phase plane with three different initial points, denoted by circles. The corresponding equilibrium components
of E3 are marked by a solid box, of E2 are denoted by a box. The dash line presents the a projection of invariant plane
Scr + kcrX = S0

cr.



Processes 2021, 9, 124 16 of 19

Example 2. D = 0.095 > D(2)
cr ≈ 0.0865

In this case there exists only one interior equilibrium point E2 = (0.0514, 0.0987, 0.00191)
which is locally asymptotically unstable. The wash-out equilibrium E0 = (0, 0.7, 0.3) is the
globally asymptotically stable steady state according to Theorem 3.

The global stability of E0 for large values of the control parameter D means total
wash-out of the biomass X and thus no detoxification of the bioreactor medium.

The left plot in Figure 6 visualizes the convergence of the solutions towards the
corresponding components of E0 using two different starting points. The right plot of
Figure 6 as well as Figure 7 visualize projections of the trajectories in the phase planes
(X, Scr), (X, Sph) and (Sph, Scr) respectively with three different initial points, marked by
circles. The latter three plots also visualize the projections of the invariant planes in the
corresponding phase planes.

Figure 5. D = 0.08. Projections of the trajectories in the (X, Sph)-phase plane (left) and in the (Sph, Scr)-phase plane (right)
with three different initial points, denoted by circles. The corresponding equilibrium components of E3 are marked by solid
boxes, of E2 are denoted by boxes. The dash lines present projections of the invariant planes Sph + kphX = S0

ph (left) and

Sph − KScr = S0 (right).

Figure 6. D = 0.095. (Left): time evolution of solutions X (solid line), Sph (dash-dot line) and Scr (dash line); the horizontal
dot lines pass through the corresponding components of the equilibrium point E0. (Right): projections of the trajectories in
the (X, Scr)-phase plane with three different initial points, denoted by circles. The corresponding equilibrium components
of E0 are marked by a solid box, of E2 are denoted by a box. The dash line presents a projection of the invariant plane
Scr + kcrX = S0

cr.
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Figure 7. D = 0.095. Projections of the trajectories in the (X, Sph)-phase plane (left) and in the (Sph, Scr)-phase plane (right)
with three different initial points, denoted by circles. The corresponding components of E0 are marked by solid boxes, of E2

are denoted by boxes. The dash lines present projections of the invariant planes Sph + kphX = S0
ph (left) and Sph −KScr = S0

(right).

7. Conclusions

We perform a mathematical analysis of a dynamic model, describing phenol and 4-
methylphenol (p-cresol) biodegradation in a continuously stirred tank bioreactor. The model
is described by three nonlinear ordinary differential equations and presents an extension
of the batch growth model given in [17] to perform the ability of Aspergillus awamori strain
to degrade the mixture of phenol and p-cresol. The novel idea is the usage of sum kinetic
interaction parameters in the analytic expression of the microorganisms specific growth rate
µ(Sph, Scr) in the medium, as well as inhibition terms with respect to both phenol and
p-cresol concentrations. The advantages of using such kind of specific growth rates is
validated by practical laboratory experiments [17], see also [5]. To our knowledge, such
kind of dynamic models, describing biodegradation in continuous biorectors (chemostats),
are not studied in the literature until now.

We compute the equilibrium points of the model and investigate their local asymptotic
stability as well as existence of bifurcations in dependence of the input control parameter
D, the dilution rate. It is shown that an equilibrium E0 =

(
0, S0

ph, S0
cr

)
, corresponding

to total wash-out of the biomass in the bioreactor, exists for all D > 0. We find values
of D such that two interior (coexistence) equilibria E2 and E3 do exist: E3 is defined for
D ∈

(
D(1)

cr , D(2)
cr

)
, and E2 exists if D ∈

(
D(1)

cr , Dcr

)
. Local stability analysis shows that

E2 is locally asymptotically unstable and E3 is locally asymptotically stable where they
exist, E0 is locally asymptotically stable for D > D(2)

cr . Two types of bifurcations of the
equilibria occur, a saddle node bifurcation at D = D(1)

cr where E2 and E3 coalesce, and a
transcritical bifurcation at D = D(2)

cr , where E0 coincides with E3 and E3 disappears for
D > D(2)

cr . Practically, the bifurcation values D(1)
cr and D(2)

cr of D should be carefully avoided,
because small nearby perturbations may cause destabilization of the process, leading to
total wash-out of the biomass. Most of the computations are carried out numerically due
to the complicated expression of the model function µ(·) and the large number of model
parameters. The computations are performed in the computer algebra system Maple.
The most important property of the model solutions—existence, uniqueness and uniform
boundedness—is established theoretically in Theorem 1. We also prove (Theorem 2) the
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global asymptotic stability of the interior equilibrium point E3 when D takes values within
certain bounds, D ∈

(
D(1)

cr , D(2)
cr

)
, D(2)

cr = µ(S0
ph, S0

cr). The existence of these bounds for
D is not restrictive in practical applications, since the dilution rate D is proportional to
the speed of the pumping mechanism which feeds the bioreactor, thus there always exist
a lower and an upper bound for D [27]. Choosing D in the interval

(
D(1)

cr , D(2)
cr

)
ensures

practically long-term sustainability of the bioremediation process in the bioreactor. On the
other hand, large values of the dilution rate D, D > D(2)

cr = µ(S0
ph, S0

cr), may cause total
wash-out of the biomass in the reactor and may lead to process breakdown. This is due
to the fact that the wash-out equilibrium E0 = (0, S0

ph, Scr0) is the global attractor of the
dynamics (Theorem 3). The dynamic behavior of the model solutions is illustrated by some
numerical examples for different values of the dilution rate.
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