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Abstract: In this paper, we propose a novel clustering approach based on P systems and grid- density
strategy. We present grid-density based approach for clustering high dimensional data, which first
projects the data patterns on a two-dimensional space to overcome the curse of dimensionality
problem. Then, through meshing the plane with grid lines and deleting sparse grids, clusters are
found out. In particular, we present weighted spiking neural P systems with anti-spikes and astrocyte
(WSNPA2 in short) to implement grid-density based approach in parallel. Each neuron in weighted
SN P system contains a spike, which can be expressed by a computable real number. Spikes and
anti-spikes are inspired by neurons communicating through excitatory and inhibitory impulses.
Astrocytes have excitatory and inhibitory influence on synapses. Experimental results on multiple
real-world datasets demonstrate the effectiveness and efficiency of our approach.
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1. Introduction

Spiking neural P systems (SN P in short) are a kind of parallel and distributed neural-like
computation model in the field of membrane computing [1,2]. SN P systems, which are inspired by
neural cells [3], have a series of spikes and information processing rules, called firing and forgetting
rules [4]. Inspired by different biological phenomena and mathematical motivations, several families
of SN P systems have been constructed, such as SN P systems with anti-spikes [5], SN P systems
with weight [6], SN P systems with astrocyte [7], stochastic numerical P systems [8], SN P systems
with threshold [9], numerical spiking neural P systems [10], double layers self-organized spiking
neural P systems [11], SN P systems with rules on synapses [12], SN P systems with structural
plasticity [13]. For applications, SN P systems are used to design logic gates, logic circuits [7] and
operating systems [14], perform basic arithmetic operations [15], solve combinatorial optimization
problems [16], and realize fingerprint recognition [11]. Pǎun who initiated the P systems pointed out
that solving real problems by membrane computing needs to be addressed [17]. The comparative
analysis of dynamic behaviors of a hybrid algorithm indicates that the combination of evolutionary
computation with P systems can produce a better algorithm for balancing exploration and
exploitation [18–20]. However, the hybrid algorithm does not use objects and rules defined by P
systems. On account of the P system is still in the phase of solving addition, subtraction, multiplication,
and division [13]. How does the P system realize more complex and universally applicable functions?
Clustering algorithm has universal applicability, and its inherent characteristics make it especially
suitable for parallel operation through P system to realize the possibility of reducing time complexity.
The whole process of clustering algorithm proposed in this paper is implemented through changes of
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objects by rules in membranes. In which, objects encode data. Membrane rules working on objects
achieve the clustering goal. Real-world datasets always have multiple attributes, so these datasets often
include high-dimensional data with features of multiple dimensions. Grid-based clustering is usually
used for the more complex and high-dimension data. Data space is partitioned into certain number
of cells. Cells are basic units for clustering operations [21]. OPTIGRID [22] is designed to obtain
an optimal grid partitioning. CLIQUE is probably the most intuitive and comprehensive clustering
technique [23]. The shifting grid approach (SHIFT) has been reported to be somehow similar to the
sliding window technique. However, grid-based clustering methods face the curse of dimensionality.
In other words, as the dimensionality increases, the number of grids increases exponentially. In order
to solve this problem, some methods proposed to select two features to form a plane before meshing.
In [24], random projection is used to reduce the dimensionality of the data. The dynamic feature mask
is proposed to deal with the feature selection problem [25]. However, the features selected through
these methods are not always the most distinguishable. In order to further improve the clustering effect,
we propose to select features based on the data distribution histogram of each dimension. Inspired by
AGRID [26], we combine the grid-based clustering method with the density-based clustering method.
Based on the above considerations, this paper develops a hybrid optimization method, grid-density
based algorithm by weighted SN P systems with anti-spike and astrocyte. Characteristic of each
dimension is calculated and compared by rules independently in different membranes synchronously.
Communications among membranes is utilized to explore clusters. Experimental results on multiple
real-world datasets demonstrate the effectiveness and efficiency of our approach.

2. Methods

2.1. Weighted Spiking Neural P Systems with Anti-Spikes and Astrocytes

Weighted spiking neural P systems with anti-spikes and astrocytes (called WSNPA2) of degree
m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, ast1, . . . , astk, In, Out)

where, O is the set of spikes, O = {a, ā}, a is spike, ā is anti-spike. The empty string is denoted by
λ; σ1, σ2, . . . , σm are neurons, m is the degree of neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, Where,
ni is the initial number of spikes contained in σi, Ri is a finite set of rules with: (1)E/sc → s, s is
spikes or anti-spikes, c is the number of spikes in the rule, c ≥ 1, E is a regular expression over a
or a; (2)se → λ, e is the number of spikes, e ≥ 1. syn ⊆ {1, 2, . . . , m} × {1, 2, . . . , m} ×ω are synapses
between neurons, ω is the weight on synapse (i, j), ω ∈ Z. For each (i, j), there is at most one synapse
(i, j, ω). A rule E/sc → s is applied as follows. If neuron σi contains r spikes/anti-spikes, r ≥ c, then the
rule can fire, c numbers of spikes/anti-spikes are consumed, r − c numbers of spikes/anti-spikes
remain in σi and one spikes/anti-spikes is released. The number of spikes/anti-spikes is multiplied by
ω and pass immediately to all neurons with (i, j, ω) ∈ syn. se → λ is forgetting rules. e numbers of
spikes/anti-spikes are omitted from the neuron immediately.

For spikes aq and anti-spikes ap (p, q ∈ Z are numbers of spikes and anti-spikes), an annihilation
rule aā→ λ is applied in a maximal manner. aq−p or a(a)p−q remain for the next step, provided that
q ≥ p or p ≥ q, respectively. ast1, . . . , astk are astrocytes, of the form asti = (synasti, ti), where synasti ⊆
syn is the subset of synapses controlled by the astrocyte, ti is the threshold of the astrocyte.
Suppose that there are k spikes passing along the neighboring synapses synasti. If k ≥ ti, then asti has
an inhibitory influence on synasti, and the k spikes are transformed into one spike by ak → a. a will
be sent into the neuron connected to asti. Otherwise, k < ti, then asti has an excitatory influence on
synasti, all spikes survive and reach their destination neurons.

In, Out ∈ {1, 2, . . . , m} indicate the input and output neurons, respectively.
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2.2. Grid-Density Based Clustering Algorithm for Multidimensional Dataset

2.2.1. Identify the Two Well-Informed Features

Generally, in grid-based methods, the computations will grow exponentially with high
dimensions, because of the evaluations should be done over all grid points. For example, a cluster
analysis with N dimensions and L grid partitions in each dimension, would result in LN grids. To avoid
this curse of dimensionality problem, we try to project data in actual feature space into a 2D space,
aim to discover the initial locations of spike clusters in a plane. The plane comprised by the two
well-informed features ni, nj ∈ N will be covered by a L × L lattice of grids with M data objects
Xp(p = 1, . . . , M).

At first, each dimension of objects is partitioned into K = [
√

M] bins, B = {b1, b2, . . . , bk} is as

ci(bk) =| {Xp, p = 1, . . . , M, | Xpi − bk |<| Xpi − bk′ |; bk, bk′ ∈ B, bk′ 6= bk} | (1)

xpi is the value of feature ni in data pattern Xp and | . | is the cardinality operator representing the
number of elements in a set. For each attribute of the Wine data set, we draw a histogram according
to the above rules. Since the data set has 13 attributes, we get 13 feature maps. Figure 1 depicts
this histogram for the 13 features of the known Wine data set. Because the number of peaks means
the ability to divide the data in this data set by this feature, we take ε, which represents the number
of peaks, as the measurement standard. As is shown in Figure 1, the ε in these histograms are
3,2,1,2,1,2,2,4,3,3,3,4,5, respectively. According to these values of ε, the features n8, n12 and n13 are
selected. If there are same maximum values of ε, we divide each dimension of the data object into K/2
bins to recalculate the number of peaks until two well-informed features are selected. These features
will then be used to do the cluster analysis.

ε(ni) =| {ci(bk) : ci(bk) > ci(bk−1) and ci(bk) > ci(bk+1)} | (2)

Figure 1. histogram for the 13 features of Wine data set.



Processes 2020, 8, 1132 4 of 10

2.2.2. Clustering by Grid-Density Based Algorithm

The plane comprised by the two well-informed features will be covered by a H = L× L lattice of
grids. Grids are denoted by G = {g1, g2, . . . , gH}. C(gh), h ∈ {1, 2, . . . , H} is the number of data Xp

partitioned in grid gh according to (3).

C(gh) =| {Xp : p = 1, . . . , M, Xp ∈ gh, gh ∈ G} | (3)

Next, non-dense grids are deleted. A grid is dense if C(gh) > θ, θ ∈ N+ is a threshold defined
before computation. The threshold is initialized to 2% of the number of data, and on this basis, it floats
upwards by 10% and downwards by 1%. Several experiments are performed to select the threshold
that makes the clustering effect the best. After getting the initial members of grid graph G, G is refined
by finding out dense grid. Those sparse girds are discarded. The refined grid graph is defined as:

Gr = {gh | C(gh) > θ} ⊆ G (4)

Each grid gh ∈ Gr has 4 neighbors connected with it as shown in Figure 2. When there is no dense
grid in the cluster that can be connected to the grid, a cluster is formed. A cluster is a set of neighbors
of dense grids. The process of clustering algorithm is shown in Algorithm 1 below.

Figure 2. Neighbors of grid gh ∈ Gr.

Algorithm 1: Algorithm: Grid-Density based clustering algorithm.
Inputs: Ω = {Xpi, 1 ≤ p ≤ M, 1 ≤ i ≤ N}, H = L× L, θ : densitythreshold
Outputs: CS = {CS1, CS2, . . . , CSt}
Begin
for all features ni, i = 1, 2, . . . , N
use K = [

√
M] bins to partition the feature ni

obtain the number of data in each bin B = {b1, . . . , bk} by (1)
compute the effectiveness measure ε(ni) for ni by (2)
rank ε(ni)

get the two top-ranked feature s
project data patterns into H = L× L grid s
obtain the capability C(gH) of each grid by (3)
select dense grid by (4)
form cluster set by combing neighbor dense grids
return the t clusters, CS = {CS1, CS2, . . . , CSt}
End
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2.3. Multi-WSNPA2 Design for Grid-Density Based Clustering

2.3.1. Grid-Density Based Clustering by Multi-WSNPA2

In this section, the weighted spiking neural P system with anti-spikes and astrocytes is designed
for grid-density based clustering. Objects in each neuron are organized as spikes and anti-spikes with
real-valued numbers corresponding to Ω = {Xpi, 1 ≤ p ≤ M, 1 ≤ i ≤ N}. Feature selection and
cluster analysis are implemented by rules of WSNPA2. WSNPA2 is divided into three subsystems:
feature selection, effectiveness comparison and clustering. The structure of WSNPA2 is shown
in Figure 3, where ovals represent neurons, rhombic stand for astrocytes and arrows indicate channels.
WSNPA2 for grid-density based clustering algorithm is described as the following construct

Π = (O, σS1, σS2, σS3, syn, R, astS1, astS3, σin1, . . . , σinN , σout1, . . . , σoutt)

where, O = {a, ā}. At beginning, the input neuron contains xpi numbers of spike a; σS1 stands for
neurons in feature selection subsystems,σS1 = {DMiz, Fiz′, FSiz′′}, 1 ≤ i ≤ N, 1 ≤ z = z′ ≤ [

√
M], 1 ≤

z′′ ≤ 2[
√

M]/3; σS2 represents neurons in effectiveness comparison subsystems, σs2 =
⋃

1≤i≤N(Ei ∪
ECi) ∪ {ECS}; σS3 describes neurons in clustering subsystems, σS3 = {{Ci′ j, i

′ ∈ {1, 2}, 1 ≤ j ≤
N}, {Ggg′ , 1 ≤ g, g

′ ≤ L}, CS}; The number of astrocytes astS1 in the feature selection system is N ∗ N
between each two DMiz. The number of astrocytes astS3 in the clustering system is L× L× 2 + 1;
Input neurons σin1, . . . , σinN are in the feature selection system. Output neurons σout1, . . . , σoutt are in
the clustering system.

Figure 3. Structure of WSNPA2 for grid-density based clustering algorithm.

There are several different clustering subsystems working in parallel for different grid number
H = L ∗ L, which means the whole system can output variant clustering results simultaneously.
Then, the clustering results obtained by different clustering subsystems are connected according to the
neighboring relationship of grid positions, so as to obtain the final clustering result. Multi-WSNPA2
makes the calculation proceed in parallel in feature selection subsystem, effectiveness comparison
subsystem and clustering subsystem, respectively. The complexity is reduced from O(n) to O(kn),
where k is a constant less than 1. The detail how the complexity of grid-density based algorithm is
calculated is as follows:

1. The complexity of traversing N data to form feature histograms is N.
2. The complexity of calculating the amount of data falling into each interval in the histogram is N.
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3. The complexity of determining whether the amount of data in each rectangle in the histogram is
greater than the left and right sides is K, where K is the number of rectangles.

4. The complexity of finding the two features with the most peaks is A, where A is the number of
features in the data set.

5. The complexity of projecting data patterns into H = L× L grids is N.
6. The complexity of calculating the amount of data in each grid is N.
7. The complexity of selecting dense grid is L2.
8. The complexity of combing neighbor dense grids is L2 − D, where D is the number of

grids removed.

The complexity of grid-density based algorithm is O(N + N + K + A + N + N + L2 + L2 − D),
where K, A, L and D are constants. The simplification is O(n). When we use multi-WSNPA2 to
calculate the above algorithm, the data traversal in 1, 5, interval traversal in 2 and grid traversal in
6, 7 are parallel operations. So its complexity is O(1 + maxdataK + K + K + 1 + maxdataL + 1 + 1),
where maxdataK and maxdataL are the max value in interval K and max value in grid L, respectively.
And the simplification is O(kn), where k is a constant less than 1.

syn represents synapse among neurons:

syn(DMiz, astS1), 1 ≤ i ≤ N, 1 ≤ z ≤ [
√

M]

syn(Fiz′ , astS1), 1 ≤ i ≤ N, 1 ≤ z
′ ≤ [
√

M]

syn(Fiz′ , F Siz′′ ), 1 ≤ i ≤ D, 1 ≤ z
′ ≤ 1 ≤ z′′ ≤ 2[

√
M]/3

syn(F Siz′′ , Ei), 1 ≤ i ≤ N, 1 ≤ z′′ ≤ 2[
√

M]/3

syn(Ei, ECi), 1 ≤ i ≤ N

syn(ECi, ECS), 1 ≤ i ≤ N

syn(DMi1, Ci1), 1 ≤ i ≤ N

syn(Ci′ j, astS3), i
′ ∈ {1, 2}, 1 ≤ j ≤ N

syn(Ci′ j, Ggg′ ), i
′ ∈ {1, 2}, 1 ≤ j ≤ N, 1 ≤ g, g

′ ≤ L

syn(Ggg′ , astS3), i
′ ∈ {1, 2}, 1 ≤ g, g

′ ≤ L

syn(astS3, CS)

R is the following set of firing and forgetting rules:([ ]x means the rule works in neuron x,
otherwise, the rule executes through all neurons)

[axpi → axpi , xpi < tih]DMiz , axpi → a, xpi > tih

[a f → a f ]F
iz′

, [a f2− f1 → a]FS
iz′′

, f2 − f1 > 0

[a2m → a2m+2]Ei , [a
2m+2/am → am]Ei , [a

m → am]ECi

[a → a]Ei , [a → a]ECi , [a
m → ā2]ECS, [ā2 am → λ]E′i

[am → ā2]ECS, [ā2 am → λ]E′i
, [ā2 axij → axij ]DMiz

[a
x

i′ j → a
x

i′ j ]CS
i′ j

, a
x

i′ j → a, xi′ j > θi′

[a → a]G
gg′

, [a4/a3 → ā2]G
gg′

, [an → λ ; n < θ]G
gg′

[an → a ; n ≥ θ]G
gg′

, [a → a]G
gg′
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2.3.2. Overview of Computations

Data set of M observations are codified by spikes axpi , 1 ≤ i ≤ N, 1 ≤ p ≤ M. The computation
of the P system is split in three subsystems. When axpi arrive in neuron DMi1, the computation begins
in parallel.

In feature selection subsystem, threshold tih in each astrocytes astS1ih is tih = [h ∗ (Xi max −
Xi min)/[

√
M]], 1 ≤ i ≤ N, 1 ≤ h ≤ [

√
M]. If xpi > tih, it is said that xpi belongs to the current neuron

DMiz. Rule 2 add a spike in DMiz. Otherwise, axpi pass through DMiz to find its neuron (bin) by rule 1.
After all axpi execute with rule 1 and rule 2, the peak of each dimension is chosen by rule 3 and rule 4.

All peaks of dimension i gain by spike a in neuron Ei. Then, effectiveness comparison subsystem
starts. The maximum number of peaks of each dimension is selected by rule 5–9. Rule 5 and 6 copy
peaks am into a2m+2 and sends am into neuron ECi for preparation. Then, different number of am

is descended one by one by rule 8. Rule 9 helps ECS collect all dimensions without the one with
maximum number of peaks. The serial number of the neuron who sends out ā2 by rule 10 is chosen as
the first dimension for clustering. Other effectiveness comparison subsystem will work in the same
way except that the chosen dimension is deleted by rule 11.

Rule 12 activates the input neurons of the two selected features. The clustering subsystem begins.
Rule 13–14 put observations into suitable bins in their own dimensions. (θi′ = [i1Xi max − Xi min)/L]).
Then, rule 15 select the grid who has two spikes. It is chosen as initial grid for cluster . Rule 16 activates
the input neurons of the two selected features again. Rule 17–19 finds dense grids. Rule 12–16 will
continue to work until there are no spike input. The clustering result is obtained by the serial number
of neurons with a output by rule 19.

3. Results and Discussion

The experiments set out to investigate the performance of the proposed approach compared to
classical clustering algorithms. We conduct experiments using ten real-world datasets and all datasets
are from UCI (https://archive.ics.uci.edu/ml/datasets.php). Table 1 summarizes these data sets,
ordered in their number of attributes.

The amount of necessary resources to define multi-WSNPA2 of grid-density based clustering for
the ten datasets are shown in Table 2.

To compare the algorithm with k-means, AHC (agglomerative hierarchical clustering) and two
other new algorithms in more precise notion, their clustering performance in terms of accuracy is
depicted in Table 3. This AHC uses the ward linkage27 which is appropriate for Euclidean distance.
The accuracy of clusters evaluates the right objects of clusters in each class.

Clearly, the accuracy is comparable to k-means, AHC and two other new algorithms and even
better as its averages (in bold-face) show. This means that the clustering effect of our method is better
than other algorithms.

Table 1. Ten real-world datasets of UCI.

Data Set Number of Attributes Number of Classes Number of Objects

Haberman 3 2 306
Iris 4 3 150

Thyroid 5 4 215
Ecoli 7 8 336

Diabetes 8 3 768
Breast 9 3 699
Glass 9 6 214
Wine 13 3 178

Vehicle 18 4 846
Ionosphere 34 2 351

https://archive.ics.uci.edu/ml/datasets.php
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Table 2. The amount of necessary resources to define multi-WSNPA2 of the ten datasets.

Data Set Parallel Steps Initial Cells Initial Objects Number of Rules

Haberman 314 52 36,517 929
Iris 155 49 2.08× 103 617

Thyroid 223 73 2.76× 104 1097
Ecoli 344 128 1.18× 103 2389

Diabetes 778 222 2.76× 105 6170
Breast 694 235 19,331 6183
Glass 222 132 2.17× 104 1958
Wine 190 173 1.60× 105 2340

Vehicle 866 524 1,581,507 15,268
Ionosphere 359 618 2.64× 103 11,628

Table 3. The accuracy of clusters evaluates the right objects of clusters in each class.

Data Set The Algorithm K-Means AHC MAFC [27] Rashno E. et al. [28]

Haberman 47.82% 48.64% 50.06% - -
Iris 93.33% 89.79% 91.54% 90.7% 94.66%

Breast 93.99% 96.06% 95.83% - 91.41%
Wine 97.75% 95.20% 97.73% - 83.14%

Ionosphere 72.93% 70.20% 70.54% 72.4% -
Average 81.16 % 79.97% 81.14% - -

The intrinsic maximal parallelism of P systems can be exploited to produce a speed-up for
solutions. In order to achieve this, the model needs several ingredients, among them the ability to
generate an exponential workspace in polynomial time. The computational cost is more than k-means
as the last stage of its algorithm is repetitive. Table 4 compares the time consuming against k-means
and AHC where the fastest (in average) is shown in boldface. The results show that our algorithm can
cluster faster on most data sets.

Table 4. Comparison of time consuming among the three algorithms.

Data Set The Algorithm K-Means AHC

Haberman 0.07 s 0.08 s 0.07 s
Iris 0.03 s 0.05 s 0.08 s

Thyroid 0.05 s 0.04 s 0.06 s
Ecoli 0.07 s 0.04 s 0.09 s

Breast 0.15 s 0.05 s 2.48 s
Glass 0.05 s 0.07 s 0.07 s
Wine 0.04 s 0.07 s 0.05 s

Vehicle 0.19 s 0.14 s 0.46 s
Ionosphere 0.08 s 0.06 s 0.14 s

Average 0.08 s 0.07 s 0.38 s

4. Conclusions

This paper discusses the use of weighted spiking neural P system with anti-spike and astrocyte to
appropriately develop a novel hybrid method with grid-density based algorithm for solving clustering
problems which first projects the data patterns on a two-dimensional space to overcome the curse of
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dimensionality problem. To choose these two well-informed features, a simple and fast feature selection
algorithm is proposed. Then, through meshing the plane with grid lines and deleting sparse grids,
clusters are found out. In particular, we present weighted spiking neural P systems with anti-spikes
and astrocyte (WSNPA2 in short) to implement grid-density based approach in parallel. Each neuron
in weighted SN P system contains a spike, which can be expressed by a computable real number.
Spikes and anti-spikes are inspired by neurons communicating through excitatory and inhibitory
impulses. Astrocytes have excitatory and inhibitory influence on synapses. Characteristic of each
dimension is calculated and compared by rules independently in different membranes synchronously.
Communications among membranes is utilized to explore clusters. Experimental results on multiple
real-world datasets demonstrate the effectiveness and efficiency of our approach to classical k-means,
AHC and two other new algorithms.
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