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Abstract: A single polymer flooding is a widely employed enhanced oil recovery method, despite
polymer vulnerability to shear and thermal degradation. Nanohybrids, on the other hand, resist
degradation and maintain superior rheological properties at different shear rates. In this article, the
effect of coupling CuO nanoparticles (NPs) and nanoclay with partially hydrolyzed polyacrylamide
(HPAM) polymer solution on the rheological properties and the recovery factor of the nanohybrid
fluid was assessed. The results confirmed that the NP agents preserved the polymer chains from
degradation under mechanical, chemical (i.e., salinity), and thermal stresses and maintained good
extent of entanglement among the polymer chains, leading to a strong viscoelastic attribute, in addition
to the pseudoplastic behavior. The NP additives increased the viscosity of the HPAM polymer at shear
rates varying from 10–100 s−1. The rheological properties of the nanohybrid systems varied with the
NP additive content, which in turn provided a window for engineering a nanohybrid system with a
proper mobility ratio and scaling coefficient, while avoiding injectivity issues. Sandpack flooding
tests confirmed the superior performance of the optimized nanohybrid system and showed a 39%
improvement in the recovery ratio relative to the HPAM polymer injection.
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1. Introduction

The demand on energy is growing with the increased population and improved lifestyle. In the
meantime, the volume of oil produced under natural reservoir drives is declining [1]. Most oil reservoirs
currently apply one or more improved oil recovery (IOR) mechanisms to boost their production [2].
IOR stimulates reservoir production by means of micro- and macroscopic sweep mechanisms [3].
Water/brine flooding is amongst the first alternatives to sustain reservoir production, owing to its
relatively low cost [4]. Water flooding is generally used in light oil reservoirs owing to its high
recovery factor, favorable mobility ratio, good sweep efficiency, suitability for long-term injection, and
competitive cost [5]. Nevertheless, water flooding is ineffective for reservoirs of high oil viscosity [6].
The big disparity in the viscosities of the displacing phase (water) and the displaced phase (oil) induce
viscous fingering, which leads to an unfavorable mobility ratio and early breakthrough of the displacing
fluid [7]. Polymer flooding includes the addition of polymers to the brine as an attempt to bridge the
disparity in viscosity between the injected and the reservoir fluids [4]. More favorable mobility ratios
are therefore expected relative to brine injection [8]. Generally, polymer flooding enhances the sweep
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efficiency by three major mechanisms, including increasing the viscosity of the water/brine, minimizing
water/brine permeability through swept areas, and covering a larger volume of the reservoir [3].
Polymer flooding typically does not generally increase the microscopic displacement efficiency of
light oils, though recent studies strongly suggest that viscoelastic polymeric solution may be able to
improve the microscopic displacement efficiency relative to waterflood [9]. In practice, two commercial
polymers, partially hydrolyzed polyacrylamides (HPAM) and xanthan gums, are commonly used in
oil field enhanced oil recovery (CEOR) applications. HPAM is a water-soluble polyelectrolyte with
negative charges on the polymer chains. Xanthan gums, which are polysaccharides, show excellent
viscosifying ability and high tolerance to salinity but degrade with an increase in temperature and are
sensitive to biodegradation [10]. Additionally, clay (bentonite) of smectite groups is being utilized in
different oil field applications as well, especially in drilling fluids technology as a rheology enhancer.
Recently, Abdelhady [11] reported that the efficiency of HPAM-based polymer flooding was enhanced
with the addition of clay due to its superior rheological property. Still, the widely employed HPAM
and PAM polymers suffer hydrolysis and degradation under high temperature, mechanical stress, and
salinity conditions [12–16]. Polymer molecular chains undergo scission, leading to a great reduction in
the polymer viscosity [17,18]. Hence, a high concentration of polymer is utilized, which incurs huge
additional cost [19]. In addition, the reservoir heterogeneity leads to extraneous water channeling from
different layers to the oil swept zone and also polymer loss to the adjacent zone [2].

The application of nanotechnology in the petroleum industry has evolved significantly over the
past decade. Nevertheless, the use of NPs in CEOR field application is very limited. The advantages
of combining polymer flooding with NPs, i.e., nanohybrid, including rheology enhancement, salt
tolerance, thermal stability, shear tolerance, and other rock–fluid/fluid–fluid interactions [3]. Still, results
suggest that some nanohybrids, e.g., SiO2/HPAM, suffer from reduced viscosity with an increasing
temperature and salt concentration due to thermal degradation and the accumulation of the sodium
cations onto the amide group, which leads to shrinkage of the polymer chains and the minimization of
crosslinking [16,20]. Metallic NPs have been used extensively in the development of HPAM water-based
drilling fluids [21,22]. Nevertheless, limited studies have addressed metallic oxide NP’s performance
for CEOR applications [23]. Shah [24] performed laboratory CEOR experiments using CuO NPs for
oil with an API gravity of 15 in a Berea sandstone core. The rheological properties improved and
1 wt.% CuO NP achieved a 71% oil recovery by virtue of the enhanced hydrophilic characteristics of
the nanofluid [25]. It was suggested that if the electronegativity difference between the metal and the
oxygen atoms is in between 0.5 and 1.7, the metal oxide is considered polar or hydrophilic, and if
the electronegativity difference is < 0.5, the metal oxide is considered non-polar or hydrophobic [25].
For CuO, the electronegativity difference is 1.5 [26]; hence, cupric oxide is hydrophilic and effectively
disperses in water. The addition of CuO to a polymer solution should, in principle, enhance the
temperature and the salt tolerance, as confirmed by published studies [21,22,24].

Another issue relating to HPAM polymer flooding is the tendency of the polymer for adsorption
onto the formation. Although adsorption of the polymer may mitigate reservoir heterogeneity and act
as a conformance control agent, polymer retention leads to a reduction in fluid viscosity, irreversibly
reservoir damage [27], and loss of polymer. It is noted that, depending on the size of polymer molecules,
their aggregation state, and the rheology of the polymer solution, some polymer molecules are trapped,
rather than adsorbed, within reservoir pores. Adsorption of polymer molecules onto NPs, or vice
versa, may mitigate the risk of polymer molecules’ retention [3]. Nanoclay, on the other hand, aids in
proper plugging of undesired channels, i.e., profile modification, and helps to maintain proper polymer
rheology owing to its effective interaction with HPAM molecules [20,28]. Additionally, nanoclay
works as a filler in the polymer matrix to enhance its mechanical strength. Recently, Tiwari and
their group [29] reported that nanoclay can be used as a loss circulation agent for drilling fluids and
can enhance the rheology without increasing the weight of the fluid. Kumar et al. [23] developed a
novel grafted copolymer onto clay/CuO and explored its application in drilling shale wells under
harsh reservoir conditions. Thus, formulating a nanohybrid system consisting of nanoclay in addition
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to CuO and HPAM polymer can be a better alternative to overcome reservoir heterogeneity and a
harsh environment.

In the current study, nanohybrid systems comprising of a blend of nanoclay and CuO NPs together
with HPAM polymer were tested with the objective of improving the rheological properties of HPAM
as well as its thermal and salt tolerance. The preparation steps of the nanohybrid are convenient
and not too exhaustive, which promotes the field applicability of the system. Control samples
consisting of HPAM were tested in the same conditions in order to isolate the role of the nano-additives.
Furthermore, oil recovery tests were carried out in sandpacks at 85 ◦C and a salt concentration of
1 wt.% and a comparison between the nanohybrid performance and HPAM was made.

2. Experimental Methods

2.1. Materials

Laboratory-grade potassium chloride (KCl) and distilled water was procured from the Department
of Petroleum and Energy Studies, Dehradun Institute of Technology University (DIT University,
Dehradun, Uttarakhand, India). Partially hydrolyzed polyacrylamide (HPAM) was obtained
in a dry form from Oil and Natural Gas Corporation (ONGC, Dehradun, Uttarakhand, India).
Nanoclay (dp < 25 nm) and CuO NPs (dp < 50 nm) of synthesis grade were purchased from Sigma
Aldrich (Mumbai, Maharashtra, India). Silica sand of a mesh size 100–140 was procured from ONGC
(Dehradun, Uttarakhand, India). Synthetic oil of 226 cP (at 85 ◦C) was procured from Chevron Philips
Company (Texas, USA).

2.2. Properties of the Sandpack

The initial porosity of the sandpack was measured using the gravity saturation method [30].
The absolute permeability was estimated by injecting a brine into the sandpack from the top at 25 ◦C and
correlating the flow rate and pressure drop across the sandpack [30]. The brine solution was prepared
by mixing deionized (DI) water and 1.1 wt.% KCl. The synthetic oil was filtered upon receiving it and
its density and viscosity at 23 ◦C were 0.89 g/mL and 1190 cP, respectively. Table 1 summarizes the
properties of the sandpack and the packing material.

Table 1. Properties of the cylindrical sandpack and the packing material at ambient conditions.

Properties Values

Length (cm) 30.48
Cross sectional area (cm2) 16.79

Density of sand (g/mL) 2.45
Porosity (%) 33.4 ± 3

Absolute permeability (Darcy) 5.0 ± 1.4

2.3. Preparation of the Different Fluid Systems

Different masses of CuO NPs (0.1–0.5 g) and nanoclay (0.3–0.6 g) were mixed in 50 mL of DI
water followed by sonication for 8 h at 60 ◦C to produce a stable dispersion. The higher temperature
during sonication enables easier dispersion of the NPs. The brine solution was prepared by mixing
5.0 g KCl in 500 mL of distilled water using a magnetic stirrer. A mass of 2.5 g of HPAM was added
to the 500 mL of brine solution and stirred for 16 h to obtained a 0.5 wt.% stable polymer solution,
which was used as a control sample. Nanohybrid systems 1 to 8 were prepared by adding the 50-mL
water dispersion containing different masses of CuO NPs and nanoclays to 450 mL of the HPAM brine
solution. Table 2 lists the composition of the different fluid systems employed in this study.
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Table 2. Composition of the polymer solution (control) and the nanohybrid systems used in this work.

Constituents Control Nanohybrid 1 Nanohybrid 2 Nanohybrid 3 Nanohybrid 4 Nanohybrid 5 Nanohybrid 6 Nanohybrid 7 Nanohybrid 8

DI water (mL) 500 500 500 500 500 500 500 500 500
HPAM (g) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

KCl (g) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
Nanoclay (g) – 0.5 0.5 0.5 0.5 0.5 0.3 0.4 0.6
CuO NPs (g) – 0.2 0.1 0.3 0.4 0.5 0.2 0.2 0.2
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2.4. Analysis

The surface morphology of the CuO NPs, nanoclay, HPAM control, and nanohybrid 1 was
analyzed using scanning electron microscopy (SEM, Jeol JSM 5910 LV, Jeol India pvt. Ltd., New Delhi,
India) operated at 220 V, 110 AC, 30 A, and 3kV total load. Initially, all reagents were conditioned in a
vacuum oven at 65 ◦C for 16 h to reduce their moisture content [29]. Then, the reagents were coated
with platinum prior to SEM analysis to mitigate the potential charge effect due to moisture and increase
the reliability of the measurements [3]. Platinum coating was used since it reduces the required coating
thickness by half relative to the commonly used gold coating. The thinner coating better reveals the
fine microstructure and is less affected by the temperature and substrate composition [23].

The rheological properties of the HPAM polymer control solution and the nanohybrid systems
were evaluated by measuring the apparent viscosity using an Anton Paar rheometer (Anton Paar
Analytical Instrument Company, Ashland, Virginia, USA) at 85 ◦C. This temperature is a frequently
encountered reservoir temperature during polymer flooding [31]. The flow models of the HPAM
polymer solution and the nanohybrid systems were extracted from the relationship between the shear
stress and the shear rate as well as the viscosity vs. shear rate in a cartesian coordinate system at shear
rates ranging from 10 s−1–100 s−1 [32]. Both, the polymer solution and the nanohybrid systems, were
initially hot rolled in an oven at 70 ◦C for 10 h prior to the rheometer measurements. The thermal
degradation behavior of the nanohybrid system was assessed using thermogravimetry analysis (TGA,
Netzsch-STA 449, Jupiter bench model, Fukuoka, Japan) of a dried droplet of nanohybrid 1. The dried
sample of the HPAM polymer solution was used as the control sample. The TGA test was conducted
for a temperature ranging between 150 and 500 ◦C with a heating rate of 23.7 ◦C/min under an N2

atmosphere. In addition, the thermal stability of the polymer solution and nanohybrid 1 system was
analyzed using an electrically driven hot roller oven (Fann Instrument Company, Texas, USA) equipped
with an aging cell. The dynamic aging test was used following a detailed procedure published earlier
by our group [33]. In brief, the samples were introduced to the hot roller cell. The temperature of the
oven was varied from 23 to 130 ◦C and the thermal stability was analyzed by measuring the apparent
viscosity of the aged HPAM polymer solution and the nanohybrid 1 system and comparing it with
their freshly prepared samples. All the above-mentioned tests were replicated twice to ensure the
reproducibility of the results.

The salt tolerance of the polymer solution and nanohybrid 1 system was determined by varying
the KCl concentration in the brine solution used to prepare the polymer and the nanohybrid from
2.5 to 12.5 g. All samples were aged in the hot roller oven at 70 ◦C for 10 h prior to measuring their
apparent viscosity and consistency following procedures recommended by the American Petroleum
Institute [9,33]. A comparison between the values of consistency and apparent viscosity for the samples
at different salt concentrations was used to draw conclusions on salt tolerance.

The core flooding analysis in the sandpack was carried out to assess the oil recovery potential of
the polymer solution and nanohybrid 1 and compare it with the brine injection as a representative
of water flooding. The flooding experiments were conducted at 2413.2 kPa injection pressure and
5481.3 kPa overburden pressure at 85 ◦C. The overburden pressure was imposed hydraulically using
stainless-steel-made confining sleeve sets inside the center of the sandpack, and the hydraulic pressure
inside the confining sleeve was maintained using a nitrogen cylinder connected to it. First, 2.5 pore
volume (PV) of the 1.1 wt.% KCl brine solution was pumped into the sandpack to mimic connate
water. Then, the synthetic oil injection commenced into the sandpack and continued for 2 PV to
achieve the irreducible water saturation (Swir). The mass balance was used to estimate water saturation.
Nanohybrid 1, HPAM polymer (control) solution, or brine was injected for 1 PV at a rate of 1 mL/min
to displace the oil. The experiments were replicated at least two times to ensure reproducibility. The
recovery factor (RF) was calculated using Equation (1) [4]:
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RF =
Soi − Sor

Soi
× 100% (1)

where Soi is the initial oil saturation and Sor is the residual oil saturation following flooding. A schematic
of the sand pack flooding setup is given in Figure 1.
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Figure 1. Schematic of the sandpack flooding setup.

3. Results and Discussions

3.1. SEM Analysis

The surface morphology of the CuO NPs, nanoclay, HPAM solution, and nanohybrid 1 were
examined by SEM, as shown in Figure 2. It is noted that nanohybrid 1 and the HPAM polymer solution
were left to dry before SEM images could be taken. Figure 2a shows that CuO NPs are agglomerated
and display irregular clusters with some crystalline structure, whereas a smooth regular and spongy
surface is displayed by the nanoclay, as evident from Figure 2b. The surface morphology of HPAM
polymer (Figure 2c) was altered by the addition of CuO NPs and nanoclay and well-distributed pockets
of agglomerates appeared (Figure 2d). Figure 2d suggests that nanoclay was dispersed in the HPAM
matrix [28], likely together with the CuO NPs. At this level of dispersion, the interaction among
CuO NPs, nanoclays, and the polymer gives rise to a network structure, which favorably affects the
rheological properties of the nanohybrid flooding fluid [3,21].

3.2. Thermogravimetric Analysis

TGA profiles of the dried nanohybrid 1 system and HPAM solution are included in Figure 3.
Both the HPAM and nanohybrid 1 show one major mass loss step. The small initial loss observed
between 150 and 200 ◦C, 0.12 g for nanohybrid 1 and 0.60 g for HPAM solution, is attributed to the
evaporation of remaining moisture associated with the samples [34,35]. Considering the dried HPAM
solution, two major mass loss zones appear for T > 200 ◦C. The first zone, 200–320 ◦C, corresponds to
the loss of 5.43 g of thermally degraded polymer chains, which evaporated at the high temperatures.
In the meantime, the remaining longer chains undergo polymerization, which was partly degraded
under the higher temperatures of the second zone, 320–500 ◦C. The remaining 2.3 g at T = 500 ◦C
correspond to a highly polymerized/coked product. Two zones also appear for T > 200 ◦C for the
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dried nanohybrid 1 TGA profile. The first zone, 200–310 ◦C, which corresponds to the loss of 4.55 g for
nanohybrid 1, was attributed to the evaporation of short-chain scission products. The second zone,
310–500 ◦C, corresponds to 0.9 g of thermally degraded longer polymer chains. The 4.5 g remaining
at T = 500 ◦C correspond to 0.5 g of nanoclay, 0.2 g of CuO NPs, and 3.8 g of highly polymerized
polymer/coke product. Given the mass percent of the HPAM in nanohybrid 1, i.e., 78 wt.%, one
may conclude that a similar amount of the polymer was lost in the first zone for both HPAM and
nanohybrid 1, whereas a much lower loss of the HPAM was experienced at higher T in the presence of
the NP additives. This suggests that the CuO NPs and the nanoclay provided thermal stability to the
polymer chains, likely through adsorption of the polymer radicals onto the NPs.Processes 2020, 8, x FOR PEER REVIEW 7 of 21 
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3.3. Rheological Behavior of the HPAM Solution and the Nanohybrid Systems

The apparent viscosity of the HPAM solution and nanohybrid systems 1–8, with different
compositions of CuO NP and nanoclay, are reported in Figure 4. The CuO NP content was varied in the
nanohybrid systems 1 to 5 from 0.1–0.5 g at a constant content of nanoclay of 0.5 g, while the nanoclay
content was varied in the nanohybrid systems 6 to 8 from 0.3–0.6 g at a constant CuO NPs of 0.2 g.

Figure 4 shows that increasing the content of CuO NPs and the nanoclay increased the viscosity
of the HPAM solution significantly. This increase in viscosity is attributed to the effective dispersion
of the nanoclay in the HPAM polymer matrix owing to hydrogen bonding between HPAM and the
nanoclay [28,36,37], the network structure of the nanohybrid [3], and the adsorption of CuO NPs onto
the HPAM (and vice versa) [21], as evident from Figure 2d. Gou et al. [28] reported that hydrogen bonds
are established between charged oxygen and hydroxyl groups of the nanoclay with the carbonyl group
of HPAM. It is worth mentioning that nanohybrid 2 and 6 have a lesser concentration of CuO NPs
(0.1 g) and nanoclay (0.3 g), which results in a lower viscosity than the other nanohybrid systems, but
still higher than that of the HPAM control sample. It is noted that nanohybrid 1 displayed acceptable
viscosity, i.e., < 200 cP [38], which ensures a proper mobility ratio while decreasing the pumping
cost and avoiding injectivity issues [39]. Thereby, nanohybrid 1 appears to be the best candidate for
potential CCEOR applications [38].
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Figure 4. Apparent viscosity of HPAM solution and nanohybrid systems as per Table 1.
Shear rate = 10 s−1, T = 85 ◦C.

The HPAM polymer solution and the nanohybrid systems were aged for 10 h at 85 ◦C and their
apparent viscosity at a varying shear rate (10–100 s−1) was reported. For a given shear rate, these
viscosities were recorded after 15 min. Figure 5 shows that the viscosity decreases with an increasing
shear rate for all the fluid systems, which suggests a pseudoplastic (or shear thinning) behavior [29].
The decrease in viscosity with an increasing shear rate may result from the shear degradation of the
HPAM molecules [18,33] and/or from disentanglement and alignment of the polymer chains along the
direction of shear. Except for nanohybrid systems 2 and 6, which had a lower content of CuO NPs
and nanoclay, as explained earlier, all nanohybrid systems displayed higher viscosities than HPAM
solution for all the different shear rates. Accordingly, nanohybrid systems portray superior shear
resistance properties compared with HPAM polymer solution [33,40]. It appears that the strong initial
dispersion of the nanoclay in the HPAM solution, by virtue of hydrogen bonding, reduced the extent of
polymer chain degradation [12] and maintained a higher extent of entanglement among the polymer
chains at the higher shear rate. Moreover, the adsorption of CuO NPs onto the polymer strengthens the
entanglement among the polymer chains, which reduces the shear sensitivity of the polymer [23]. It is
noted that during polymer flooding, the polymer molecules are subjected to high levels of shearing,
especially at the exit of the injector well [3,12]. Hence, a shear thinning behavior is desirable, since it
reduces the extent of momentum loss due to friction.

The relationship between the apparent viscosity and shear rate was reproduced after keeping
the nanohybrid systems and the polymer solution standing (aging) for 15 h at 85 ◦C and remeasuring
the viscosity in the dynamic condition (shear rate = 10–100 s−1). Figure 5 confirms that almost all
the nanohybrid systems retained their original viscosity, as opposed to the HPAM polymer solution.
Retaining the same viscosity suggests that the nanohybrid systems exhibit a viscoelastic property,
in addition to their pseudoplastic behavior. For example, nanohybrid 1 retained its viscosity at every
shear rate, which suggests strong viscoelastic behavior. The HPAM polymer solution did not retain its
initial viscosity, even at a low shear rate, likely due to mechanical degradation of the polymer chains at
a high shear rate [41–43]. The remarkable performance of the nanohybrid systems could be attributed
to the hydrogen bonding of HPAM with the nanoclays as well as the strong adsorption of the CuO
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onto HPAM, or vice versa [29,41], which strengthens the HPAM polymer network. Such an interaction
among the polymer and the NPs preserved the polymer chains from degradation and maintained a
high extent of entanglement among the polymer chains attached to the NPs even under shearing.
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To demonstrate the effectiveness of the nanohybrid 1 system formulated in this work, a comparison
was made with the work of Cheraghian and Nezhad [44], who formulated HPAM/nanoclay nanohybrid
for CEOR application. A plot of the apparent viscosity vs. shear rate is given in Figure 6 (at room
condition for Cheraghian and Nezhad [44]) and nanohybrid 1 (current study). Despite the higher T
used in our study (85 ◦C), further enhancement in the viscosity of the HPAM solution was achieved
with the combined addition of nanoclay and CuO NPs. It is worth noting that higher viscosities during
polymer flooding operations better suit heavier oil reservoirs.

The pseudoplastic behavior of the polymer solution and the nanohybrid systems can be represented
by Equation (2) [21]:

τ = τo + Kγn, (2)

where τ is the shear stress (Pa), τo is the yield stress (Pa), γ is the shear rate (s−1), K is the consistency
(Pa·sn), and n is the flow behavior index (dimensionless). Figure 7 is a log-log plot of τ vs. γ for the
HPAM solution and the nanohybrid systems. The coefficient of determination, R2, is > 0.96 for all the
curves, as shown in Table 3, which also lists the values of K and n as obtained from the fit. Gou et al. [28]
stated that only polymer fluid systems having n between 0.5 and 0.7 can retain their original viscosity
at different shear conditions, i.e., possess strong viscoelastic characteristics. Accordingly, nanohybrid 1
shows strong viscoelastic behavior, i.e., entirely retained its original viscosity, and displayed a flow
behavior index, n, of 0.582. HPAM polymer solution, on the other hand, did not retain its original
viscosity and displayed a flow behavior index, n, of 0.38. Moreover, the flow behavior index, n, for
nanohybrid systems 2–8 was close to the range given by Gou et al.; hence, these systems portrayed
good viscoelastic behavior.
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Table 3. Hershel–Bulkley law coefficients and coefficient of determination, R2, values for the HPAM
polymer solution and the nanohybrid systems.

Fluid Systems K n R2

HPAM control 0.392 0.38 0.9625
Nanohybrid 1 0.492 0.582 0.9998
Nanohybrid 2 0.425 0.424 0.9899
Nanohybrid 3 0.558 0.702 0.9789
Nanohybrid 4 0.662 0.711 0.9822
Nanohybrid 5 0.892 0.726 0.9625
Nanohybrid 6 0.405 0.412 0.9825
Nanohybrid 7 0.512 0.735 0.9648
Nanohybrid 8 0.932 0.766 0.9648

3.4. Thermal Stability of the Polymer Solution and Nanohybrid 1

The effect of temperature on the apparent viscosity of HPAM polymer solution and nanohybrid 1
is reported in Figure 8. The temperature effect is negligible on nanohybrid 1, whereas appreciable on
HPAM polymer solution, especially for T > 80 ◦C. The apparent viscosity of the HPAM polymer solution
dropped from ~100 to ~10 cP upon changing the temperature from 80 to 100 ◦C. For nanohybrid 1,
viscosity only decreased from 190 to 160 cP with T increasing from 23 to 130 ◦C. Temperature degrades
both the intermolecular and the intramolecular interactions among and within the HPAM polymer
molecules [9]. On the other hand, the increased adsorption/interaction of HPAM onto/with CuO NPs
in nanohybrid 1 at the higher temperature protected the polymer from degradation and increased the
stability of the colloidal system [45], likely through steric hindrance. At T > 100 ◦C, a slight decrease in
the nanohybrid 1 viscosity was observed, likely following the general rule of temperature effect on
the viscosity of liquids [29,41]. Overall, nanohybrid 1 is well suited for high-temperature oil reservoir
CCEOR applications.
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3.5. Effect Salinity

The concentration of KCl was varied from 5 to 12.5 g in the HPAM polymer solution and
nanohybrid 1. The viscosities of these systems were measured at 85 ◦C and 10 s−1, and the results
are plotted in Figure 9. The viscosity of the HPAM polymer solution significantly decreased with the
increasing salt concentration, dropping from 94 to 18 cP. It is noted that HPAM polymer molecules’
interaction with the rest of the solution decreases at high ionic strength as the thickness of the hydration
layer surrounding the ionic groups is compressed and the polymer molecules fold onto themselves,
i.e., less entanglement of the polymer chains. The shrinkage of the electrical double layer also
compromises the colloidal stability of the polymer solution. Conversely, the viscosity of nanohybrid 1
was constant, independent of the salt concentration. It is highly likely that at higher ionic strength,
adsorption of the HPAM polymer onto the CuO NPs increases, which contributes to the stability of the
colloidal dispersion via steric hindrance.
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3.6. Displacement Tests

Displacement tests involved injecting brine solution, HPAM polymer solution, and nanohybrid 1
into the sandpack. Effective core flooding relies on the capillary end effect and potential viscous
fingering, which is generally encountered due to a difference in the viscosity of the displaced and
displacing phases. The capillary end effect generally arises due to the accumulation of the wetting
phase at the outlet of the porous medium, which interrupts the breakthrough time. Rappaport and
Leas [46] proposed a scaling coefficient to determine the effect of the capillary end inside porous media
during a linear displacement process, as given below:

I = L ∗ µd ∗ v, (3)
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where I is the scaling coefficient (cm2
·cP/min), L is the length of the sandpack (cm), µd is the viscosity

of the displacing phase (cP), and v is the velocity of the displacing phase, which was calculated as the
ratio of the flow rate (cm3/min) of the pump divided by the cross-section area (cm2) of the sandpack.
Rappaport and Leas [46] suggested that the fluid flow in the sandpack remains insensitive to the
capillary end effect if the scaling coefficient, I, is < 3.5 cm2

·cP/min. The scaling coefficient for each
test is listed in Table 4. The values of the scaling coefficient suggest no capillary end effect during
both HPAM polymer flooding and nanohybrid 1 flooding. For brine injection, on the other hand, the
capillary end effect is pronounced, I = 0.64 cm2

·cP/min.

Table 4. Stability criterion results for brine, HPAM polymer solution, and nanohybrid 1 flooding.

Fluid Systems Scaling Coefficient (I) (cm2
·cP/min) Mobility Ratio

HPAM polymer solution 170.67 1.37
Nanohybrid 1 339.53 0.133
Brine solution 0.64 55.032

The viscous fingering, on the other hand, was assessed by the mobility ratio, which was calculated
as follows [47]:

M =
µo ∗ krde

µd ∗ kroe
, (4)

where M is the mobility ratio, µo and µd are the viscosities of the oil phase and the displacing phase,
respectively (cP), and kroe and krde are the end point relative permeabilities of the oil phase and the
displacing phase, respectively (dimensionless). The end point relative permeability to oil (kroe and the
displacing phase (krde) were determined after saturating the sandpack, and at the end of the polymer
or nanohybrid 1 flooding using the Darcy law. Generally, end point relative permeability to oil is
calculated at irreducible water saturation (minimum saturation of water below and at which water
cannot flow inside the porous media) [48]. In other words, no water production should be observed at
the end of the oil flooding stage, i.e., pressure drop stabilizes in the sandpack at this stage.

The primary oil flooding of the fully brine-saturated sandpack was performed and a piston-like
displacement was attained in the sandpack, as evident from Figure 10. The pressure drop inside the
sandpacks during oil flooding to attain Swir while preparing the sandpack is shown in Figure 10 for
the three sandpacks. The pressure drops reached the steady values, thereby an accurate end point
relative permeability to oil was calculated. The results of the mobility ratio calculations for the three
flooding experiments are listed in Table 4. It is highly desirable to maintain the mobility ratio, M < 1,
in order to reduce viscous fingering issues [4]. Based on both, the scaling coefficient and mobility
ratio, nanohybrid 1 appears the most suited of the flooding agents. Thereby, a higher recovery of oil is
expected upon injecting nanohybrid 1.

Oil recovery from the sandpack was compared among the brine solution, the HPAM polymer
solution, and nanohybrid 1 at ~2413.2 kPa injection pressure and 85 ◦C. The oil recovery expressed
as the recovery factor (RF) per E1, as a function of the displacing phase pore volume (PV) injected,
is reported in Figure 11. The residual oil saturation at the end of the flooding experiments was
calculated using the material balance, and is reported in Table 5. As evident from Figure 11, oil
recovery is the highest for nanohybrid 1 at every PV of injected fluid. At the end of the flooding
experiment, i.e., PV = 1, RF of 88%, 61%, and 47% were attained for nanohybrid 1, HPAM polymer, and
brine solution, respectively. As detailed earlier, nanohybrid 1 displayed excellent shear and thermal
stabilities, hence a remarkable rheological performance, as well as an acceptable mobility ratio and
scaling index. All these properties contributed to a piston-like displacement, which is effective toward
oil recovery. HPAM polymer solution, on the other hand, appears to have suffered shear and thermal
degradation at 2413.2 KPa and 85 ◦C.
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Table 5. Properties of the sandpack and oil recovery parameters for different flooding experiments.

Fluid Systems Permeability
(mD)

Porosity
(%) RF (%) Irreducible Water

Saturation (Swir) (%)
Residual Oil

Saturation (Sor) (%)

Brine solution 6318 36.8 46.75 9.58 48.15
HPAM

polymer 5935 35.7 60.80 8.76 35.76

Nanohybrid 1 5014 33.4 87.74 8.12 11.26

The pressure drop in the sandpack during nanohybrid 1 flooding is plotted in Figure 12.
The pressure drop for nanohybrid 1 injection suggests conformance control [3], entailing plugging
high-permeability channels, and forcing the injected fluid into low-permeability zones.
Table 5 summarizes the recovery factor, the irreducible water saturation, and irreducible oil saturation
at the end of the different flooding experiments. The lower residual oil saturation confirms the efficacy
of the nanohybrid 1 system in optimizing the oil recovery from the reservoir, including the conformance
control attribute, under the experimental conditions.
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4. Conclusions

The rheological properties of a newly formulated nanohybrid composed of CuO NPs, nanoclay,
and HPAM polymer were investigated under various conditions, including the additive content,
salinity, temperature, and shear rate. Sandpack experiments were used to determine the recovery ratio
among the nanohybrid system, HPAM polymer solution, and brine injection. The flooding tests were
conducted in a linear sandpack at simulated reservoir conditions, i.e., ~2413.2 kPa of injection pressure
and 85◦C. Based on the analysis of the results, the following conclusions can be drawn:

SEM images of the nanohybrid suggests that the morphology of the HPAM surface was
changed due to the adsorption of CuO NPs and dispersion of nanoclay in the HPAM matrix, which
promoted the entanglement of the polymer chains even at high temperatures and salt concentrations.
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Subsequently, the nanohybrid system maintained proper rheological properties, which in turn resulted
in piston-like displacement of the oil and increased the recovery ratio/factor.

The rheological properties of the nanohybrid system depended on the content of the NPs (both CuO
and nanoclay). Nanohybrid 1, consisting of 2.5 g of HPAM, 5 g of KCl, 0.5 g of nanoclay, and 0.2 g of
CuO NPs in 500 mL of DI water, provided the most appropriate viscosity, which provides a suitable
mobility ratio and scaling coefficient, while avoiding injectivity issues.

Combining CuO NPs and nanoclay helped to maintain higher viscosity at different shear rates,
relative to the sole nanoclay additive or HPAM solution.

The combined effect of CuO NPs and nanoclay preserved the HPAM polymer from thermal and
mechanical degradation and contributed to the superior viscoelastic property, in addition to the much
desired pseudoplastic behavior.

The TGA results suggested that the nanohybrid system displayed remarkable temperature
stability relative to HPAM polymer and potential applicability to a high-temperature reservoir without
compromising the rheological properties of the flooding agent.
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List of Abbreviations

API American petroleum institute
CCEOR Chemical enhanced oil recovery
cm Centimeter
cP Centipoise
CuO Cupric oxide
CEOR Enhanced oil recovery
g Grams
HPAM Partially hydrolyzed polyacrylamide
HPHT High pressure—high temperature
mL Milliliter
nm Nanometer
NPs Nanoparticles
ONGC Oil and natural gas corporation

List of Symbols
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