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Abstract: In the present investigation, two phase film boiling of ferrofluids under an external field
delivered around a two-dimensional square cross-section heater was investigated using the lattice
Boltzmann technique. The purpose of this work is to find the effect of magnetic field magnitude
and direction on the Nusselt number in single and double heater geometry. The improving thermal
efficiency in the horizontal and vertical placement of heaters is also presented. The governing
equations of mass conservation, momentum conservation, and energy conservation are solved by
using a central-moments-based Lattice Boltzmann scheme. The air pocket generated around heater
raised incorporating magnetic effects. The heat transfer through this advancement has been explored
quantitatively and abstractly. The results shows that with the development in the volumetric applied
force at the bubble-fluid interface, the bubble boundary layer thickness around the square heater
lessened which cause the Nusselt number augmented. Through the parameter study it found that
the Nusselt number can be essentially extended by altering the course of magnet shafts, and that
film rising outwardly of the bubble. The improvement and advancement of vapour phase in various
heater arrangement made two column of bubble rises at the same time, which rose above each heater
and in the end changed into one column of bubble. A correlation considering magnitude and angle
of the magnetic field on time-averaged Nusselt number is presented. Finally, the Nusselt number can
be controlled with the help of the incorporation of other heaters.

Keywords: numerical simulation; ferrofluids; boiling; Lattice Boltzmann method

1. Introduction

The film boiling heat convection exists in a couple of structuring endeavors and engineering
applications, for instance, the cooling of electronic contraptions, microchannel heat exchangers, inert
cooling, geothermal science, energy storage in phase change material, sun controlled heat exchangers,
and so forth [1–4]. Considering this wide extent of usage, the topic of two-phase flow is engaging for
researchers and various assessments have been finished. Since the ordinary heat transfer convection
has various applications in the cutting edge of technology, this marvel has been investigated in
the applications with different geometries, warm breaking point conditions, power plant working
fluid, cooling strategy, and so on [5–9]. Reference [10] performed over the joint effort between
the laminar/ordinary convection with surface radiation inside a to a limited extent warmed high
perspective extent pit stacked up with air. They declared that the surface radiation has a minor
effect on the temperature field and stream structure at the most bits of the pit. Furthermore, the
geometrical parameters, for instance, the width and height of the cavity, have a significant impact on the
enclosure heat transfer by radiative and convective mode at the lower and upper regions of the cavity.
References [11] performed a numerical three-dimensional propagation of natural and forced convection
and radiation in a cuboidal isolate zone which is fused by level plates of restricted thickness and with
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high and low conductivities. They found that the consistency of the temperature dispersal at the
interface redesigns under radiation when the plates with low conductivity are implanted. Additionally,
it was exhibited that the convective drop is more diminutive in regions where peak isolate than in
those spots where tufts fall on the interfaces. The stormy ordinary and mixed convection in an air-filled
alcove with heat source was numerically analyzed by other studies [11,12]. At present, the effects of
the geometrical parameters and breaking point conditions of the downturn were presented. Besides,
the results got by different k-ε aggravation models were presented, broadly. References [12,13] did a
couple of assessments using two exploratory courses of action on brutal Rayleigh-Benard trademark
convection inside cubical fenced-in territory included with adiabatic side dividers. They exhibited
that abstract and quantitative traits of the fluid stream are near disregarding particular differences
in the preliminary game plans. What’s more, the results demonstrated that quantitative changes of
characteristics of a huge extension stream have occurred as Rayleigh number and Prandtl number
improve. Reference [14] guided a couple of tests to explore the laminar normal convection in a
three-dimensional cuboidal fenced in the region. They finished the examinations for different liquid
and Rayleigh numbers. Also, they presented the exploratory results, and the obtained computational
data at a comparable plot of the separated region, perspective extents of various liquid, and Rayleigh
numbers. They conclude that there is adequate comprehension between the numerical and exploratory
results. Reference [15] separated the laminar free convection in an H-formed region with nanofluid.
The viscosity and thermal diffusivity of nanofluids have been evaluated by Brookfield viscometer
and KD2 properties analyzer, independently. They found that the Rayleigh number increases the
Nusselt number. Various examinations have demonstrated that the grid Boltzmann technique is
successful in contemplating the convection heat move under different field powers. References [16–29]
in constrained convection, results uncovered that temperature inclination decreases with the ascent of
Rayleigh number. In normal convection, the normal Nusselt number increments with the expansion
of Rayleigh number and the lessening of Hartmann number. Fakhari et al. [21] LBM method for
large density and viscosity ratios. LBM compared to MRT, has better accuracy, convergence, and
stability. Jamalabadi [22] examined the warmth dispersal impact of ferrofluid regular convection
in a slanted depression under the attractive field. Different Rayleigh numbers and slanted edges
were considered, and slanted edge at 0 degrees and Rayleigh number at 104 ended up being the best
circumstance for heat scattering. Jamalabadi [22] additionally examined the warmth dispersal impact
of the characteristic convection of a ferrofluid in a cavity with direct temperature conveyance under
an attractive field and found that the warm move diminishes by the augmentation of the nanoscale
ferromagnetic molecule volume part for different Rayleigh numbers. Jamalabadi [22] recreated the
warmth move and entropy age of MHD characteristic convection. Results showed that the expansion in
Hartmann’s number leads to the warmth move and the absolute entropy age drop. Saito, De Rosis, and
Fei [25] explored the fluid constrained convection and common convection heat move improvement
under an attractive field utilizing cross-section Boltzmann strategy. A diffuse interface modeling for a
three-dimensional problem has been already proposed by Fakhari & Bolster [16], where the multiphase
flows are calculated in a three-dimensional model coupled with LBM and diffuse-interface phase-field
approaches [26–29]. Krakov and Nikiforov performed studies on the Influence of the uniform outer
magnetic field [30] and shape of the inner boundary [31] on thermomagnetic natural convection in
a horizontal cylindrical enclosure filled with a magnetic nanofluid. They show that a magnetic field
change the convection structure and increase 4–5 times in Nusselt number. Those articles devoted to
modeling of thermophysical processes in magnetic fluids.

In this paper, numerical simulation of ferrofluids film boiling by Lattice Boltzmann method is
presented. In the next sections, mathematical and numerical modeling are presented. Finally, the
effect of magnetic field magnitude and direction on the Nusselt number in single and double heater
geometry is presented and discussed.
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2. Mathematical Modeling

Figure 1 shows the schematic of the problem. As shown a magnet inside a ferrofluid is confined
by free surface of fluid at top and three walls in other direction. The initial vapour is located at the top
of the liquid. The mathematical modelling of the problem is specified in following paragraphs which
are obtained from Reference [1]. The governing equation of continuity is

∇.u =
q̇ f

h f g
(6 Vf

(
1−Vf

) |∇φ|
2

)

(
1
ρv
− 1

ρl

)
. (1)

As there are many variables in the above equation for explanation of the symbols used in the
formula, see the list of parameters in nomenclature. The governing equations of Navier-Stokes are

ρ ∂u
∂t + ρ(u.∇)u = ∇.

[
−PI + η

(
∇u +∇uT)]

+ ρg + (λ

[
−∇2φ +

φ(φ2−1)
ε2

]
)∇φ− 1

2 H2∇µ.
(2)

Here, the dependence of the properties of the magnetic fluid and permanent magnets on
temperature is ignored, which makes the applicability of this model limited. The form of the magnetic
force term in Equation (2) is not general. The governing equation of energy equations is

ρCp
∂T
∂t

+ ρCp(u.∇)T = ∇.k∇T −
q̇ f

h f g
(6 Vf

(
1−Vf

) |∇φ|
2

)h f g. (3)

In typical film boiling system considered the fluid temperature is initially near saturation
temperature and after phase change it leaves the heater boundary. Because of nature of phase change
the system remains near the saturation temperature. Dimensionless temperature ratio, T−Tsat

Tw−Tsat
is near

zero. But for finding precise effect of temperature on the system properties further investigations
are recommended. The dimensionless number that is important in film boiling is the Jackop number
which defined as

Ja = cp,l(Tw − Tsat)/hfg. (4)

The governing equations of Cahn-Hilliard are

∂φ

∂t
+ u.∇φ−

q̇ f

h f g
(6 Vf

(
1−Vf

) |∇φ|
2

)

(Vf ,v

ρv
+

Vf ,l

ρl

)
= ∇.

γλ

ε2 ∇ψ, (5)

and
ψ = −∇.ε2∇φ +

(
φ2 − 1

)
φ. (6)

The physical properties of the system are given in Table 1. The physical properties shown in
Table 1 are designed to reach stability in numerical solution. As the nature of film boiling is unsteady

process it could be easily transit to the turbulence regime (for δ

√
τw/ρv
νv

> 10) which is out of scope of
current research. The aim of the current study is developing a laminar solution for film boiling process.

The governing equation of Amper law are

∇× H = 0 , (7)

∇.B = 0 , (8)

where
B = µ0(1 + χ)H = µ0µrH = µH. (9)
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Table 1. Physical properties [1].

Unit Liquid Vapour Magnetic Nanoparticle

Density kg/m3 200 5 5600
Thermal conductivity W

mK 40 1 6
Heat capacity J

kgK 400 200 670
Dynamic viscosity Pa s 0.1 0.005 –
Surface tension N/m 0.1 – –
Magnetic susceptibility 1 0.2 0 –
Latent heat J/kg 10,000 – –
Volume concentration 1 0.004 – –

The fundamental boundary condition of vapour gurgling is delineated in Figure 1. As showed up
this moment, thin-film is believed to have complied with the warmed heater. The top bit of the region is
allocated as the vapour stage to which vapour rises over the long haul. The breaking point applied for
disentangling the Maxwell, Navier-Stokes, and imperativeness conditions are delineated underneath.

Figure 1. Schematic of the problem.

The boundary condition of velocity at sides

u = 0,
∂v
∂x

= 0, (10)

∂T
∂x

= 0, (11)

and
∂H
∂x

=
∂H
∂y

= 0. (12)

The top boundary condition is
∂u
∂y

=
∂v
∂y

=
∂T
∂y

= 0. (13)



Processes 2020, 8, 881 5 of 17

The boundary condition at the bottom

u = v = 0, (14)

and
∂T
∂y

= 0. (15)

The boundary condition at the heater

u = v = 0, (16)

− k
∂T
∂n

= qwall . (17)

As well on the heater, the Nusselt Number is defined as

Nu(θ, t) =
qwall D

k
1

Tw − Tsat
, (18)

and Nusselt Number in average on angle

Nu(t) =
1

2π

∫ 2π

0
Nu(θ, t)dθ, (19)

and Nusselt Number in average on time

Nu =
1

∆t

∫ te

ti

Nu(t)dt. (20)

3. Numerical Modeling

The method of central moments by the use of local fluid velocity moves the lattice directions.
The cross-section Boltzmann technique is a liquid numerical reenactment strategy created throughout
the previous thirty years. Applied in numerous zones, which might be hard for customary strategies,
for example, small scope stream and warmth move, permeable media, attractive liquid, and so forth.
The cross-section Boltzmann technique has the benefits of natural parallelism, just as straightforward
limit condition preparing and simple usage of the program.

By the definition of directions (see Figure 2)

ex = [0, 1, −1, 0, 0, 1, −1, 1, −1]>, (21)

ey = [0, 0, 0, 1, −1, 1, −1, −1, 1]>. (22)

The fluid density is
ρ = ∑

i
fi, (23)

and velocity vector is

ρu = ∑
i

fiei +
F
2

δt. (24)

The lattice Boltzmann equation is

D fα

Dt
= − 1

λ

(
fα − f eq

α

)
+

1
c2

s
(eα − u) · FΓα, (25)

where the equilibrium population is
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f eq
α = wαρ

[
1 +

eα · u
c2

s
+

(eα · u)2

2c4
s
− (u · u)

2c2
s

]
, (26)

and
gα = fαc2

s +
(

p1 − ρc2
s

)
Γα (0) , (27)

which

geq
α = wa

[
p + ρc2

s

(
eα.u
c2

s
+

(eα.u)2

2c4
s
− (u.u)

2c2
s

)]
, (28)

and the energy equation

∂gα

∂t + eα · ∇gα = − 1
λ

(
gα − geq

α

)
+ (eα − u) ·

[
∇ρc2

s (Γα − Γα (0))− C∇µΓα

]
+

ρcs
2ṁ′′′

(
1
ρv
− 1

ρl

)
Γα (0) ,

(29)

while
∂ha
∂t + ea · ∇ha = − 1

λ

(
hα − heq

a

)
+ (eα − u)

×[∇C− C
ρc2

s
(∇p + C∇µ)]Γα + (M∇2µ− ṁ′′′ρl

)
Γα.

] (30)

The matrix form of evaluation is

f ∗α (x, t) = fα(x, t)− (M−1ΛM)αβ( fβ − f eq
β ) + ∆tF

′
α . (31)

By a suitable basis of moments [29] and pre-collision central moments [27], the collision operator
in terms of central moments is obtained. The matrix M transforms the distribution functions into
the raw moments and lower-triangular matrix N shift transform matrix the raw moments into the
central moments.

The transformation matrix M is calculated from

M =



1 1 1 1 1 1 1 1 1
0 1 −1 0 0 1 −1 1 −1
0 0 0 1 −1 1 −1 −1 1
0 1 1 1 1 2 2 2 2
0 1 1 −1 −1 0 0 0 0
0 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 1 1 1


. (32)

The T matrix (T = NM) is rewritten N = TM−1:

N =



1 0 0 0 0 0 0 0 0
−ux 1 0 0 0 0 0 0 0
−uy 0 1 0 0 0 0 0 0

u2
x + u2

y −2ux −2uy 1 0 0 0 0 0
u2

x − u2
y −2ux 2uy 0 1 0 0 0 0

uxuy −uy −ux 0 0 1 0 0 0
−u2

xuy 2uxuy u2
x −uy/2 −uy/2 −2ux 1 0 0

−uxu2
y u2

y 2uxuy −ux/2 ux/2 −2uy 0 1 0
u2

xu2
y −2uxu2

y −2u2
xuy (u2

x + u2
y)/2 −(u2

x − u2
y)/2 4uxuy −2uy −2ux 1


, (33)

where Λ = M−1N−1KNM. Top boundary of lattice Boltzmann equation is:
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f4 = f2, f7 = f5 +
1
2
( f1 − f3) +

1
4
(Fx + Fy), (34)

f8 = f6 −
1
2
( f1 − f3)−

1
4
(Fx − Fy). (35)

Bottom boundary of lattice Boltzmann equation is:

f2 = f4, f5 = f7 −
1
2
( f1 − f3)−

1
4
(Fx + Fy), (36)

f6 = f8 +
1
2
( f1 − f3) +

1
4
(Fx − Fy). (37)

Left boundary of lattice Boltzmann equation is:

f1 = f3, f5 = f7 −
1
2
( f2 − f4)−

1
4
(Fx + Fy), (38)

f8 = f6 +
1
2
( f2 − f4) +

1
4
(−Fx + Fy). (39)

Right boundary of lattice Boltzmann equation is:

f3 = f1, f7 = f5 +
1
2
( f2 − f4) +

1
4
(Fx + Fy), (40)

f6 = f8 −
1
2
( f2 − f4)−

1
4
(−Fx + Fy). (41)

Thermal boundary condition is
g2(i,j) = Tw · (ω(4) + ω(2))− g4(i,j + 1)
g5(i,j) = Tw · (ω(7) + ω(5))− g7(i,j + 1)
g6(i,j) = Tw · (ω(8) + ω(6))− g8(i,j + 1)

(42)

Figure 2. LBM 2D lattice.

4. Results

In this section, the results of numerical investigations are presented. The maximum velocity for
different interfacial thickness ξ in Equation (2), or the velocity errors as a function of the number of
lattices could be used as validation. For the case of verifications, the Nusselt number was studied in
Table 2. The cross-section Boltzmann technique is a liquid numerical reenactment strategy produced
throughout the previous thirty years. Applied in numerous zones, which might be hard for customary
strategies, for example, miniaturized scale stream and warmth move, permeable media, attractive
liquid, and so forth. The cross-section Boltzmann technique has the benefits of intrinsic parallelism,
just as basic limit condition handling and simple usage of the program. Magnetic field Norm normal
to magnet direction is shown in Figure 3.
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Table 2. Grid study.

Grid Number 60× 60 80× 80 100× 100 120× 120

Nu 2.113 2.0511 2.032 2.01

Figure 3. Magnetic field Norm normal to magnet direction.

Figure 4 shows the Magnetization Vector. To check the accuracy and count of characteristic
convection, and the outcomes were contrasted and information provided by other researchers.
As appeared in Figure 4, the count methodology is adequately precise.

Figure 4. Magnetization Vector.
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To check the impact of matrix numbers on the recreated arrangement, the mimicked heat
move execution under various network numbers has appeared in Table 1, for the Ra = 4 × 104.
A Nusselt number value from 80× 80 grid changes nearly nothing. Thinking about the exactness and
computational intricacy, the number of frameworks is considered by 100× 100.

Figure 5 presents the Magnetic field Norm. To examine the impact of the straight move in the
depression, a thermal field examination of the pit by a direct cathode appear in the next Table 2 and
figure, individually. As seen in Table 2, contrasted with the no boundary condition, the warmth move
execution with liner cathode is marginally debilitated, not over 3 percent. The temperature profile in
Figure 5 additionally shows that the impact of the straight cathode on the general temperature field
dispersion is moderately small and might be immaterial.

Figure 5. Magnetic field Norm.

Figure 6 reveals the Magnetic Flux Density Norm. Right off the magnetic element, the impact
of the applied magnetic field move qualities of the liquid is mimicked under the states of the top
warming and the base at a steady-state gravity field. Figure 6 presents the correlation of the test and
reproduction of the Magnetic Flux Density Norm of the proportion of warmth move by a Magnetic
field. Without gravity, relates to unadulterated warm conduction. It very well may be concluded from
Figure 6 that an arrangement of warmth move with a decent concurrence with the trial esteems at
various warmth transitions, which affirms great exactness of the magnetic power. As shown in Figure 6,
heat move upgrade proportion increases as voltage and warmth motion increase. Plus, as the voltage
builds, the heat move improvement proportion expands increasingly quickly. In the test run, the heat
move coefficient can be improved on multiple occasions, contrasted with unadulterated conduction.

Figure 7 shows Magnetic Flux Density Vector. Figure 7 is a correlation speed at various magnetic
and flatways on the middle vertical segment within the domain. As the liquid is static it has not
affected the magnetic field. At the point when the magnetic field concentrates near the heater corner,
the impact of the electric field on the magnetic field is as yet immaterial. Be that as it may, when
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the magnetic value increases, the conspicuous impact happens and the oil starts to stream. Near the
middle, the more noteworthy the fluid motion.

Flux Density Norm (mf).png

Figure 6. Magnetic Flux Density Norm.

Flux Density Vector (B).png

Figure 7. Magnetic Flux Density Vector.
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Figure 8 shows that the Magnetization Norm Charge—also named attractive polarization—is a
vector amount that gives the proportion of the thickness of perpetual or prompted dipole second in a
given attractive material.

Figure 8. Magnetization Norm.

Figure 9 presents the Bubble growth profiles. Air pocket development inside a superheated fluid
drop will be viewed first. That cooling continues gradually as the warm profile in the polymer fluid
alters. At the point when the magnet’s leftover motion thickness (magnetic flux ) is 0.1 T or 0.2 T,
the attractive power has no huge impact on the air pocket shape; when this thickness is 0.3 T, the
fume layer is somewhat more slender, and when it is 0.4 T, the principal bubble flight happens as of
now. Expanding the magnetic flux to 0.5 T further quickens the air pocket age process, which for this
situation, has brought about the takeoff of a subsequent air pocket.

Figure 10 presents the magnitude of the effect of the magnetic field on the average Nusselt number.
It seems that by augmentation of the magnetic field strength, the fluid forces around the square increase.
It also causes separation of bubble from the surface sooner. This behavior lessens the boundary layer
thickness and increases the heat flux from the surface.

Figure 11 presents the magnetic field angle effects on the average Nusselt number. It seems that by
augmentation of the magnetic field strength the fluid forces around the square change its direction. It
also causes complex separation of bubbles from the surface. This behavior changes the boundary layer
thickness in all directions and increases the heat flux from the surface but it depends on the angle.



Processes 2020, 8, 881 12 of 17

Figure 9. Bubble growth profiles.

Figure 10. Effect of magnetic field magnitude on average Nusselt number.

Figure 11. Effect of magnetic field angle on average Nusselt numbe.
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Finally, the effect of magnetic field magnitude and angle on the value of the Nusselt number is
estimated by:

Nu(θ, t) = 2 + 49B2 + 10sin(
4θ

π
)2. (43)

Velocity vectors in bubble growth in a vertical arrangement are presented in Figure 12 . This is on
the grounds that, as the lightness power pushes the fume bubble upward, the attractive power pulls
the MNF down, which forestalls the arrangement of a fume segment as when the magnetic flux is 0.1 T.
One can watch very thin fume layers on numerous pieces of the chamber surface, which implies an
improvement in the warmth move in light of the diminished superheating temperature distinction.
As the attractive power applied to the interface builds, it begins to sabotage the film bubbling insecurity
and crack the fume layers on certain pieces of the chamber. More grounded attractive powers can
balance out the circumstance and block the film bubbling procedure.

Figure 12. Velocity vectors in bubble growth in vertical arrangement.

Figure 13 shows the vapour motion in a vertical arrangement. This is in light of the fact that as
the delicacy power growth of bubble in a vertical direction, the appealing force fluid dropping, which
hinders the course of action of a vapour section as when the magnetic flux is 0.1 T. Slim vapour layers
on various bits of the chamber suggest an improvement in the glow move considering the reduced
superheat temperature differentiation. As the alluring bubble fabricates, it starts to disrupt the film
foaming uncertainty and break the bubble on specific bits of the chamber. More grounded alluring
forces can adjust the condition and square the film gurgling methodology.

Figure 14 shows the Bubble growth in a horizontal arrangement. As this plot outlines, there is not
a lot of contrast for the heat transfer rate for low magnetic flux values, which implies the attractive
field does not influence the pace of warmth move at the chamber surface. Be that as it may, the heat
transfer by convection is where particular pinnacles and valleys mirror the occasional flight of fume
bubbles. At higher magnetic flux values, the Nusselt numbers are drastically higher in light of the fact
that the attractive field is solid to the point that the fume vapour chamber turns out to be very slender.
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Figure 15 shows the magnetic field angle effect on Bubble growth. Figure 15 shows the air pocket
development beginning time in the recreations with various θ values. When the force is horizontal,
the fume film around the heater is significantly thick. In any case, when θ = 20, the fume film at
the highest point of the chamber is extremely slight, because of the thicker boundary layer a higher
warmth move rate happens. At the point when the post direction is at θ = 20, the fume layer is
scattered all around the chamber. At θ = 20, the movement of the air pockets is arbitrary and scattered
and bubble takeoff is not, at this point occasional. At θ = 20, for example, at the point when the shafts
are flawlessly vertical, the fume layer is altogether higher on the base of the chamber.

Figure 13. Bubble growth in vertical arrangement.

Figure 14. Bubble growth in horizontal arrangement.
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Figure 15. Effect of magnetic field angle on Bubble growth.

5. Conclusions

In this paper, two-phase film boiling of ferrofluids under an external magnetic field was performed
around a square cross-section heater. The central-moments-based lattice Boltzmann method was used
to solve the governing mass, momentum, and energy equations. The following results are obtained:

(1) By the increase of magnitude magnetic flux, the heat transfer increased.
(2) By the increase of angle of application of magnetic flux, the heat transfer increased. The increase

is a function of the magnet angle.
(3) A correlation to obtain the Nusselt number was presented.

The study presented a novel method to analyze film boiling in two-dimensional geometries.
The geometry of the square heater was studied where not enough attention has been paid to this
in previous literature. It is proposed to extend this study for other geometries such as triangle and
rectangular heaters. Other ferrofluids and optimized magnetic fields can also be used to obtain the best
heat transfer rates. In the typical film boiling system considered, the fluid temperature is initially near
saturation temperature and after phase change it leaves the heater boundary. Because of the nature of
phase change, the system remains near the saturation temperature. The dimensionless temperature
ratio, T−Tsat

Tw−Tsat
, is near zero. For finding the precise effect of temperature on the system properties,

further investigations are recommended.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Cp specific heat capacity (J/kg K)
g acceleration due to gravity (m/s2)
h heat transfer coefficient (W/(m2 K))
h f g latent heat (J/kg)
k thermal conductivity (W/m K)
L characteristic length (m)
Nu local Nusselt number
Num mean Nusselt number for whole heater surface
P Pressure (N/m2)
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Pr Prandtl number
q
′′

Heat flux (W/m2)
Ra Rayleigh number
t Time (s)
T temperature (K)
u vapour velocity in x-direction (m/s)
v velocity normal to the direction of flow (m/s)
x horizontal coordinate (m)
y coordinate measured distance normal to heater surface (m)
Greek symbols
α Void fraction
δ vapour film thickness (m)
µ absolute viscosity (kg/ms)
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
θ angle measured from horizontal of heater; Azimuthal angle (rad or degrees)

angle of inclination with respect to the horizontal plane
Subscripts
eq Equilibrium
f Saturated liquid
FB Film boiling
l liquid
m Mixture, mixture average
NB Nucleate boiling
ref Reference
s vapour at saturation temperature
sat Saturation
v vapour
w heater wall
∞ Ambient associated with a large surface
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