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Faculty of Pharmaceutical Sciences in Sosnowiec, Department of Organic Chemistry,
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Abstract: Two new anticancer-active 1,2,3-triazole-dipyridothiazine hybrids were evaluated
for their lipophilicity using thin-layer chromatography (TLC) and computational methods.
The experimental lipophilicity was evaluated with mobile phases (mixtures of TRIS buffer and
acetone), exploiting a linear correlation between the retention parameter (RM) and the volume
of acetone. The relative lipophilicity parameter (RM0) was obtained by extrapolation to 0%
acetone concentration. This parameter was intercorrelated with a specific hydrophobic surface
area (b) revealing two congeneric subgroups: hybrids of 1,2,3-triazole-2,7-diazaphenothiazines
and 1,2,3-triazole-3,6-diazaphenothiazines. The parameter RM0 was converted into the absolute
lipophilicity parameter logPTLC using a calibration curve prepared on the basis of compounds of
known logP values. Triazole–dipyridothiazine hybrids turned out to be medium lipophilic with
logPTLC values of 1.232–2.979. The chromatographically established parameter logPTLC was compared
to the calculated lipophilic parameter logPcalcd obtained with various algorithms. The lipophilicity
was correlated with molecular descriptors and ADME properties. The new triazole–dipyridothiazine
hybrids followed Lipinski’s rule of five. The lipophilicity of these hybrids was dependent on the
substituents attached to the triazole ring and the location of the azine nitrogen atoms.

Keywords: TLC; lipophilicity parameter logPTLC; anticancer 1,2,3-triazole-dipyridothiazine hybrids;
structure–activity relationship; correlation analysis; congeneric classes; Lipinski’s rule of five

1. Introduction

Lipophilicity is one of the most crucial physicochemical properties. It plays a fundamental role
in determining absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties,
and, therefore, in determining the general appropriateness of drug candidates. There is increasing
evidence suggesting that controlling molecular properties, such as lipophilicity, in an optimal range,
can improve a drug’s quality and its therapeutic success [1]. Lipophilicity is an important parameter
because it constitutes the single most informative and successful physicochemical property in medicinal
chemistry [2–4]. Lipophilicity contributes to the ADMET characteristics of drugs by contributing to
their solubility, permeability through membranes, potency, selectivity, and promiscuity, impacting upon
their metabolism and pharmacokinetics, and also affecting their pharmacodynamic and toxicological
profile [5,6].

Furthermore, the quantitative structure–activity relationship (QSAR) demonstrated that
lipophilicity, evaluated with varied experimental methods, correlates well with other molecular
properties (for example, polarity and the dissociation constant) and topological indices, and performs
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an essential role in predicting a drug’s behavior in a biological system (for example, in tissues and
biological membranes) [7–11].

Lipophilicity also belongs to one of the five factors determining the bioavailability of a drug in
Lipinski’s rule of five criteria. According to this rule, an orally active drug should not violate more
than one of the following criterion: no more than 5 hydrogen bond donors, no more than 10 hydrogen
bond acceptors, no more than 10 rotatable bonds, a molecular mass less than 500 Da, a lipophilicity
parameter (logP) not greater than 5, and a polar molar surface area less than 140 Å [1,12,13] (Figure 1).
Therefore, the lipophilicity property is recognized to be one of the most significant elements in the
rationalization of drug design and discovery.
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Figure 1. The visual interpretation of Lipinski’s rule of five criteria. 
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derivatives of 2,7- and 3,6-diazaphenothiazines, possessing in vitro anticancer activity against 
cancer cell lines (breast cancer MDA-MB231, colorectal carcinoma Caco-2, glioblastoma SNB-19, 
and lung cancer A549) [28]. 
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Dipyridothiazines (modified phenothiazines where the central thiazine ring is fused with
two pyridine rings instead of two benzene rings) have turned out to be attractive scaffolds for
new drug candidates, possessing anticancer activity and an improved safety profile. Structurally,
dipyridothiazines differ in the tricyclic ring system (the pyridine nitrogen atoms in positions 1,6,
1,8, 1,9, 2,7, and 3,6) and the substituents at the central nitrogen atom (alkyl, dialkylaminoalkyl,
cycloalkylaminoalkynyl, amidoalkyl, sulfonamidoalkyl, aryl, heteroaryl, and “half-mustard”
groups). Some dipyridothiazines exhibited not only very promising anticancer activity, but also
anti-inflammatory, antioxidant, and immunosuppressant activities, with a low toxicity [14–23].
Our previous research showed the relationship between biological properties and the lipophilicity of
modified azaphenothiazines [24–27].

Recently, we synthesized a new group of 1,2,3-triazole-dipyridothiazine hybrids, which are
derivatives of 2,7- and 3,6-diazaphenothiazines, possessing in vitro anticancer activity against cancer
cell lines (breast cancer MDA-MB231, colorectal carcinoma Caco-2, glioblastoma SNB-19, and lung
cancer A549) [28].

The main goal of this work was the evaluation of the lipophilicity of two new series of
1,2,3-triazole-2,7-diazaphenothiazine (1–5) and 1,2,3-triazole-3,6-diazaphenothiazine (6–10) hybrids,
performed experimentally by reversed-phase thin-layer chromatography (RP TLC), and theoretically
using computer programs. Furthermore, it was interesting to find correlations between experimental
and theoretically predicted lipophilicity, and relationships between experimental lipophilicity and
physicochemical and ADME properties. This study was performed with the hope of providing a deeper
insight into the compounds’ properties and their biological activities. The structures of the investigated
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1,2,3-triazole-2,7-diazaphenothiazine (1–5) and 1,2,3-triazole-3,6-diazaphenothiazine (6–10) hybrids
are presented in Figure 2.Processes 2020, 7, x FOR PEER REVIEW 3 of 11 
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2. Materials and Methods

2.1. Materials

1,2,3-Triazole-dipyridothiazine hybrids (1–10) were synthesized as described recently [28].
Prothipendyl (11) (AWD Pharma, Dresden, Germany) was used (as a free base, 10-dimethylaminopropyl-
1-azaphenothiazine) as the reference phenothiazine [24].

2.2. Chromatographic Procedure

TLC was carried out on 10 cm × 10 cm RP 18F254S plates precoated with silica gel (Merck,
Warsaw, Poland) by the ascending technique at room temperature. The mobile phase was a mixture
of acetone (POCh, Gliwice, Poland) and aqueous TRIS buffer (Fluka, Loughborough, England,
pH 7.4, ionic strength 0.2 M) to satisfy physiological conditions with a concentration of acetone of
40–70% (v/v) in 5% increments. The investigated compounds (1–10), the reference compound (11),
and the standards (I–V) of known lipophilicity (acetanilide, acetophenone, 4-bromoacetophenone,
benzophenone, and anthracene [29,30]) were dissolved in ethanol (POCh, Gliwice, Poland, 2.0 mg/mL)
and 2 µL of these solutions were spotted on the plates. The chromatograms were observed under
UV light at µ = 254 nm. At least three experiments were carried out for each solution, and RF values
were averaged.

2.3. Computational Programs

Eleven computational programs were employed to calculate the parameter logPcalcd using the
internet databases VCCLAB [31] and SwissADME [32]. Molecular descriptors (topological polar surface
area, molar mass, and refractivity) were calculated using CS Chem 3D Ultra 7.0 [33]. PreAdmet was used
for the prediction of biological activities, such as human intestinal absorption (HIA), plasma protein
binding (PB), blood–brain barrier (BBB) penetration, cell permeability MDCK, skin permeability (SP),
and Caco-2 penetration [34].
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3. Results

The lipophilicity of the tested 1,2,3-triazole-dipyridothiazine hybrids (1–10) was first evaluated
using eleven of the most popular computer programs that are available on the online platforms
VCCLAB and SwissADME [31,32]. The computational programs use diverse theoretical approaches,
such as atomic, atomic–fragmental, fragmental, topological (relying on a linear relationship with
molecular descriptors), hybrid (relying on fragments and topological descriptors), and neural networks
(Alogps, AC_Logp, ALOGP, MLOGP, XLOGP2, XLOGP3, ILopP, XlogP, WlogP, MlogP, and SILICOS-IT).
These programs are based on advanced mathematical models that are the basis of computational
chemistry [31a,b; 32a,b]. The obtained logPcalcd values for hybrids 1–10 were totally distinct, depending
on the engaged program (logPcalcd = 1.26–4.88, Table 1).

Table 1. The calculated logPcalcd values for 1,2,3-triazole-dipyridothiazine hybrids (1–10) using the
internet databases: VCCLAB [31] and SwissADME [32].

No Alogps AC_Logp ALOGP MLOGP XLOGP2 XLOGP3 ILogP XLogP WlogP MlogP SILICOS-IT

1 3.36 2.73 3.89 1.61 2.98 2.83 2.71 2.16 2.26 1.91 2.19
2 3.72 3.34 4.55 2.10 3.61 3.46 3.02 2.79 2.91 2.40 2.82
3 3.31 2.79 4.10 1.99 2.94 4.12 2.78 2.26 2.81 2.29 2.60
4 3.04 2.54 3.77 1.27 2.71 2.55 2.52 1.88 2.13 1.26 2.21
5 3.50 4.88 4.48 1.88 3.41 3.48 2.57 2.81 2.81 2.18 2.28
6 2.98 2.64 3.35 1.61 2.90 2.50 2.47 2.50 3.39 2.37 2.64
7 2.91 2.70 3.56 1.99 3.06 2.60 2.97 2.60 3.95 2.75 3.04
8 2.62 1.63 2.86 2.58 3.63 4.65 3.22 3.13 4.04 2.87 3.27
9 2.90 2.45 3.23 1.27 2.62 2.22 2.40 2.22 3.26 1.73 2.65

10 3.32 4.79 3.94 1.88 3.32 3.14 3.04 2.94 3.88 2.64 2.72

The experimental RP TLC method provided the retention parameter RM (calculated from the
RF values) using the following equation:

RM = log(1/RF − 1).

The RM values decreased linearly, with an increasing concentration of acetone in the mobile phase
(r = 0.9744–0.9950). These values extrapolated to 0% acetone gave the relative lipophilicity parameter
(RM0) values, which characterize the partitioning between the non-polar stationary and polar mobile
phases, using the equation:

RM = RM0 + bC,

where C is the concentration of acetone. The RM0 values are found within the range of 1.150–2.823
(Table 2).

Table 2. The RM0, b (slope), and r values of the equation RM = RM0 + bC for compounds 1–10.

No −b RM0 r

1 0.0227 1.229 0.9897
2 0.0198 1.150 0.9788
3 0.0215 1.155 0.9950
4 0.0253 1.274 0.9869
5 0.0426 2.407 0.9831
6 0.0416 2.217 0.9744
7 0.0341 1.867 0.9859
8 0.0492 2.823 0.9853
9 0.0261 1.332 0.9899
10 0.0417 2.388 0.9781

The linear relationship between the relative lipophilicity parameter (RM0) and the slope (b),
representing a specific hydrophobic surface area (RM0 = Bb + a), enabled us to find congeneric compound
subclasses in the set of investigated compounds [35]. In addition, 1,2,3-Triazole-dipyridothiazine
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hybrids (1–10) belong to two groups of isomeric dipyridothiazines, with the structure of 2,7- and
3,6-diazaphenothiazines. They do not differ significantly in molecular descriptors, but differ in ADME
activities (Tables 3 and 4). The range of molar mass (372–406) and molar refractivity (108–116) could
indicate the substituent diversity in the tested compounds. All tested derivatives meet the requirements
of Lipinski’s rule of five.

Table 3. The molecular descriptors and parameters of Lipinski’s rule for 1,2,3-triazole-dipyridothiazine
hybrids (1–10) and prothipendyl (11) [32,33].

No Molecular
Mass (M)

H-bond
Acceptors

H-bond
Donors

Rotatable
Bonds TPSA Mol Refractivity

(MR)

1 372 4 0 4 85.03 108
2 390 4 0 4 85.03 109
3 406 4 0 4 85.03 113
4 397 5 0 4 108.8 114
5 404 4 0 5 110.3 116
6 372 4 0 4 85.03 108
7 390 4 0 4 85.03 109
8 406 4 0 4 85.03 113
9 397 5 0 4 108.8 114

10 404 4 0 5 110.3 116
11 286 2 0 4 44.6 86

Table 4. The predicted ADME activities for 1,2,3-triazole-dipyridothiazine hybrids (1–10) and
prothipendyl (11) [34].

No BBB Caco2 HIA MDCK PPB SP

1 0.547 24.769 98.110 94.808 88.062 −3.742
2 0.283 26.146 98.558 3.203 73.476 −4.184
3 0.982 50.735 97.663 34.206 89.739 −3.795
4 0.196 22.382 99.752 30.308 87.208 −3.682
5 0.273 25.465 99.026 4.763 94.100 −3.491
6 0.836 27.476 98.110 74.714 91.502 −3.508
7 1.061 29.803 98.099 12.723 91.532 −3.881
8 1.439 51.402 97.663 33.067 93.582 −3.634
9 0.224 23.546 99.752 25.266 89.391 −3.517
10 0.406 27.037 99.026 4.277 98.907 −3.320
11 3.103 22.684 97.476 18.983 75.453 −3.100

The drugs selected to assess the intestinal absorption of drug candidates needed to use in vitro
methods. Among them, the Caco-2 cell [36,37] and the MDCK cell models [38] are approved as reliable
models in predicting oral drug absorption. The in silico HIA (human intestinal absorption) model
and the skin permeability (SP) model are able to predict and identify drug candidates for oral and
transdermal deliveries. Blood–brain barrier (BBB) penetration can provide information on a therapeutic
drug in the central nervous system (CNS) and the plasma protein binding (PPB) model on its disposition
and efficacy [34,36–38]. The compounds possess high indexes of HIA and PPB, although the indexes of
BBB and MDCK (of selected compounds) are low in comparison with prothipendyl. Skin permeability
(SP) and penetration of Caco-2 are comparable with the reference compound prothipendyl. The RM0

values were correlated with molecular descriptors and ADME activities (Table 5).
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Table 5. The correlation of the RM0 values with the molecular descriptors and predicted ADME
activities for compounds 1–10.

No Molecular Descriptor or
ADME Activities Equation r

1–5
6–10 M RM0 = 69.511M2

− 240.09M + 579.21
RM0 = 30.107M2

− 118.14M + 501.3
0.4987
0.6546

1–5
6–10 TPSA RM0 = 17.351TPSA + 69.8

RM0 = −9.699TPSA + 115.45
0.6989
0.4051

1–5
6–10 MR RM0 = 4.235MR + 105.89

RM0 = 6.099M2
− 24.708M + 135.43

0.6761
0.5020

1–10 BBB BBB = 8.8792RM0
3
− 22.208RM0

2 + 16.225RM0 − 0.9889 0.8769
1–10 Caco-2 Caco-2 = 0.002RM0

3
− 0.2097RM0

2 + 6.9362RM0 − 71.729 0.6545
1–10 HIA HIA = −1.1492RM0

3 + 340.02RM0
2
− 335.35RM0 + 0.01 0.5377

1–10 MDCK MDCK = 0.0005RM0
3 + 0.0018RM0

2
− 0.0583RM0 + 2.1802 0.4144

1–10 PPB PPB = −0.0012RM0
3 + 0.3263RM0

2
− 28.461RM0 + 820.96 0.9145

1–10 SP SP = −1.5107RM0
3 – 15.909RM0

2
− 53.876RM0 − 56.38 0.5870

In order to transform the relative lipophilicity (RM0) values of hybrids 1–10 into the logPTLC values,
the calibration curve was formed under the same chromatographic conditions using a set of standards
(I–V), and by having the known literature values of logPlit. within the range of 1.21–4.45 (Table 6).

Table 6. The RM0, logPlit., b (slope), and r values of the equation RM = RM0 + bC for standards I–V.

No −b RM0 r logPTLC

I 0.018 1.001 0.9979 1.21 (29)
II 0.019 1.501 0.9974 1.58 (29)
III 0.033 2.231 0.9960 2.43 (30)
IV 0.034 2.886 0.9944 3.18 (29)
V 0.044 3.488 0.9964 4.45 (29)

The logPTLC values for all 10 hybrids are presented in Table 7.

Table 7. The logPTLC values of investigated compounds 1–10.

Compound

1 2 3 4 5 6 7 8 9 10

logPTLC 1.408 1.330 1.335 1.452 2.569 2.382 2.037 2.979 1.509 2.551

4. Discussion

This report deals with the lipophilicity evaluation of new anticancer-active
1,2,3-triazole-dipyridothiazine hybrids (1–10). Both series of dipyridothiazines (2,7- and
3,6-diazaphenothiazines) contain in their structure a ring of 1,2,3-triazole, with various benzyl
substituents and a phenylthiomethyl substituent (Figure 2). These compounds possess promising
anticancer activities in vitro against cancer cell lines (glioblastoma SNB-19, colorectal carcinoma
Caco-2, lung cancer A549, and breast cancer MDA-MB231) and low cytotoxicity towards normal
human fibroblasts (NHDF). The results of some additional experiments, such as analysis of the gene
expression (H3, TP53, CDKN1A, BCL-2, and BAX), indicated the induction of mitochondrial apoptosis
in cancer cell lines. The most active triazole–dipyridothiazine hybrids were found to be compound 1
against cancer lines Caco-2, A549, and MB231, 5 against A549 and MB231, and 7 against Caco-2 and
A549, with IC50 values less than 1 µM [28].

The used computer software provided different logPcalcd values depending on the compound’s
structure (the ring system and substituents) and the engaged program. The most lipophilic
compound was derivative 5 (logPcalcd = 4.88), but slightly less lipophilic was isomeric compound 10
(logPcalcd = 4.79), both with the phenylthiomethyl group attached to the triazole ring. The least lipophilic
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compound was hybrid 4 (logPcalcd = 1.26), whereas its isomer 9 was more lipophilic (logPcalcd = 1.73).
The graphical visualization of the calculated logP values are presented in Figures 3 and 4. For each
compound, large differences were observed, reaching close to 3 units. This makes it impossible to select
the adequate values to describe the lipophilic property of new 1,2,3-triazole-dipyridothiazine hybrids.Processes 2020, 7, x FOR PEER REVIEW 7 of 11 
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Figure 4. Graphical visualization of the calculated logP values (using SwissADME models) of the
tested compounds with a comparison to logPTLC.

The most relative lipophilicity RM0 value was shown for the compound 8 (with the p-chlorobenzyl
substituent in the 1,2,3-triazole ring in 3,6-diazaphenothiazine). In contrast, the 2,7-diazaphenothiazine
isomer 4 was among the least lipophilic. The least lipophilic character was exhibited by hybrid 2
(with the p-fluorobenzyl substituent) in the series of 2,7-diazaphenothiazines and hybrid 9 (with the
p-cyanobenzyl substituent) in the series of 3,6-diazaphenothiazines.

The intercorrelation between the relative lipophilicity parameter (RM0) and the specific
hydrophobic surface area (b) for all compounds (1–10) is given by the equation:

RM0 = −58.95b − 0.1293 (r = 0.9915).

This relationship indicated the existence of the anticipated congeneric subgroups:
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• the 2,7-diazaphenothiazine derivatives 1–5 RM0 = −57.811b − 0.0821 (r = 0.9936)
• the 3,6-diazaphenothiazine derivatives 6–10 RM0 = −63.632b − 0.327 (r = 0.9949)

and was dependent on the places of the azine nitrogen atoms in the diazaphenothiazine structures
(positions 2,7 and 3,6).

The values of RM0 for diazaphenothiazines (1–10) were correlated with molecular descriptors such
as molar mass (M), topological polar molar surface area (TPSA), and molar refractivity (MR), giving
moderate values of the correlation, which could be a consequence of the non-planar spatial arrangements
of the dipyridothiazine ring system, placement of the azine nitrogen atoms, and complex substituents.

Next, the RM0 values were correlated with predicted ADME properties, such as blood–brain
barrier (BBB) permeability, Caco-2 and MDCK cell base permeability, human intestinal absorption
(HIA), plasma protein binding (PPB), and skin permeability (SP). The best correlations were found for
the plasma protein binding (PPB) (r = 0.9145) and the blood–brain barrier (BBB) penetration (r = 0.8769).
The correlations of the RM0 values with the other ADME parameters were moderate (r = 0.4144–0.6545).
This fact suggests that the lipophilic property is one of the elements affecting biological activities and
behavior during transport through biological tissues.

Comparison of the ADME properties of the tested derivatives (1–10) with the reference compound
prothipendyl (11) (neuroleptic phenothiazine with the pyridobenzothiazine structure) provided
valuable information. The tested compounds had substantially lower BBB penetration parameters,
which may indicate that they were not be active in the central nervous system. All hybrids showed
similar cell permeability (Caco-2) to prothipendyl (with the exception of compounds 3 and 8), but lower
values of skin permeability (SP). The derivatives showed a slightly higher HIA compared with
prothipendyl. In contrast, the parameters of PPB and MDCK were very diverse, depending largely on
the type of substituent in the 1,2,3-triazole system and the type of dipyridothiazine.

The experimental RM0 values, showing relative lipophilic properties, of compounds 1–10 were
transformed into absolute lipophilic properties as logPTLC values. For this purpose, the calibration
equation was prepared with the same chromatographic procedure using standards I–V (Table 6) of
known logPlit. values:

logPTLC = 0.9862RM0 + 0.1957 (r = 0.9949, s = 0.2246, F = 359.97, p = 0.0002).

The logPTLC values for all 10 hybrids were within the range of 1.232–2.979 (Table 7). The most
lipophililic compound was hybrid 8 (logPTLC = 2.979), but the least lipophilic character was found
for hybrid 9 (logPTLC = 1.509) in the series of 3,6-diazaphenothiazines. In the series of isomeric
2,7-diazaphenothiazines, the most lipophilic nature was showed by hybrid 5 (logPTLC = 2.569), but the
least lipophilic compound was hybrid 2 (logPTLC = 1.330). The experimental logPTLC values were
lower than the calculated logPcalcd values. In some cases, the differences between the logPTLC and
logPcalcd values reached over 2 units. Figures 3 and 4 show a visual comparison of the logPTLC and
logPcalcd values.

The investigated 1,2,3-triazole-dipyridothiazine hybrids (1–10) turned out to be medium lipophilic.
An effort to correlate the lipophilicity of these compounds with their anticancer activity (represented
by the IC50 values) failed. In the most active compound (1) (against three cancer cell lines), there was
found the same lipophilicity as compounds 2–4, which were 5–100 times less active.

The lipophilicity of the new 1,2,3-triazole-dipyridothiazine hybrids (1–10) was compared
to the lipophilicity of the reference neuroleptic phenothiazine (11) of the pyridobenzothiazine
structure. Prothipendyl (11) (logPTLC = 2.1767 (24)) turned out to be significantly more lipophilic
than the 1,2,3-triazole-dipyridothiazine hybrids (1–4) and 9, but hybrids 5,6,8, and 10 possessed
higher lipophilicity.

Analyzing the five factors determining the bioavailability of the drugs in Lipinski’s rule of five
(hydrogen bond donors and acceptors, rotatable bonds, molecular mass, lipophilicity, and polar molar
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surface area), it can be stated that the tested hybrids (1–10) meet the rule of five and may become
anticancer drug candidates in the future.

5. Conclusions

In summary, the lipophilicity of 10 new anticancer 1,2,3-triazole-dipyridothiazine hybrids was
evaluated theoretically and experimentally using 11 computing programs and reversed-phase thin-layer
chromatography. The experimental RP TLC method found these compounds to be medium lipophilic.
None of the computing programs provided logPcalcd values that were all similar to the logPTLC
values, which can be ascribed to their specific non-planar dipyridothiazine ring system and complex
substituents with the triazole and benzene rings. These triazole–dipyridothiazine hybrids followed
Lipinski’s rule. The lipophilicity of these hybrids was dependent on the substituents attached to the
triazole ring and the location of the pyridine nitrogen atoms.

Finally, to search for relationships between physicochemical and pharmacological properties of
the tested hybrids, preliminary QSAR examinations were undertaken. Some correlations between
molecular descriptors (M, TPSA, and MR) and ADME activities (BBB, Caco-2, HIA, MDCK, PPB,
and SP) and lipophilicity were noted. Further in vitro, in vivo, and in silico investigations are necessary
to evaluate the potential pharmacological use of the new 1,2,3-triazole-dipyridothiazine hybrids in
anticancer therapy.
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