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Abstract: Optimization of flow fields in redox flow batteries can increase performance and efficiency,
while reducing cost. Therefore, there is a need to establish a fundamental understanding on the
connection between flow fields, electrolyte flow management and electrode properties. In this
work, the flow distribution and pressure drop characteristics of interdigitated flow fields with
constant and tapered cross-sections are examined numerically and experimentally. Two simplified
2D along-the-channel models are used: (1) a CFD model, which includes the channels and the
porous electrode, with Darcy’s viscous resistance as a momentum sink term in the latter; and (2) a
semi-analytical model, which uses Darcy’s law to describe the 2D flow in the electrode and lubrication
theory to describe the 1D Poiseuille flow in the channels, with the 2D and 1D sub-models coupled at
the channel/electrode interfaces. The predictions of the models are compared between them and
with experimental data. The results show that the most influential parameter is γ, defined as the ratio
between the pressure drop along the channel due to viscous stresses and the pressure drop across
the electrode due to Darcy’s viscous resistance. The effect of Re in the channel depends on the order
of magnitude of γ, being negligible in conventional cells with slender channels that use electrodes
with permeabilities in the order of 10−12 m2 and that are operated with moderate flow rates. Under
these conditions, tapered channels can enhance mass transport and facilitate the removal of bubbles
(from secondary reactions) because of the higher velocities achieved in the channel, while being
pumping losses similar to those of constant cross-section flow fields. This agrees with experimental
data measured in a single cell operated with aqueous vanadium-based electrolytes.

Keywords: modeling; interdigitated flow field; channel tapering; pressure drop; flow distribution;
lubrication theory; redox flow battery

1. Introduction

The extensive use of fossil fuels in today’s lifestyle has led to climate change from greenhouse
gas emissions and has increased the need for use of renewable energy [1]. The major issue limiting
the wide-spread usage of intermittent renewable energy sources is the availability of efficient and
cost-effective energy storage systems [2]. Recently, redox flow batteries (RFBs) have attracted significant
attention due to their flexible design and ability to efficiently store large amounts of energy [3–5]. RFBs
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are composed of two differently charged electrolyte systems that convert electrical energy directly into
chemical energy by means of reversible electrochemical reactions [6–9]. The electrolytes are stored
in external tanks and pumped through an electrochemical redox cell, where the redox reactions take
place, storing or producing electricity [9–12]. In the redox cell, a membrane separates the electrode and
electrolyte of each half-cell. The role of the electrode is to allow for electrolyte transport and enable the
reactions in each half-cell, while the membrane serves to prevent the mixing of the electrolytes and
allow for the proton transfer between the two half-cells, to maintain electro-neutrality [13,14]. Once the
charged electrolytes have participated in the reaction, they are circulated back to the electrolyte tanks
for recharging. Unlike traditional batteries, the key advantage of RFBs is that power generation and
energy storage are decoupled, such that the energy storage capacity is determined by the volume of
electrolytes, whereas the power rating is dictated by the size of redox cells [3–9]. This makes them
ideally suited for a wide range of applications, especially grid-scale energy storage. RFBs are typically
categorized based on the redox active species that are used. Among various types of flow batteries,
all-vanadium flow batteries (VRFBs), which employ the V+

2 /V+
3 and V+

4 /V+
5 redox couples in an

aqueous solution as the negative and positive electrolytes, offer unique advantages [15,16]. The use of
the same but differently charged species in both half-cells of VRFBs eliminates cross-contamination of
electrolytes, which is considered to be one of the major problems that affect the life and durability of
other RFBs [17]. Therefore, significant emphasis has been placed on all-vanadium systems since the
invention of the flow battery technology [4,18].

The flow-assisted nature of RFBs presents many challenging issues, including but not limited
to significant transport losses due to poor electrode and cell design and the related low power
density [19–26]. It can be hypothesized that many of these challenges are primarily related to the
concept of electrolyte utilization [27–32]. Electrolyte utilization is described as the most effective use
of electrolyte circulation for the optimum charge and discharge of the RFB. The primary issues of
concern regarding electrolyte utilization are gathered around (i) electrode design and (ii) electrolyte
flow mechanisms in the cell. The primary role of the electrode is to enable transport of electrolytes,
facilitate charge transfer and provide reaction sites for electrochemical reactions [21,33]. Therefore, the
nature of the electrode is critically important as it directly governs the transport related losses [23,34,35],
cell resistance [36,37], performance degradation [20,38] and many other issues. For instance, proper
engineering of electrolyte circulation within the electrode can potentially increase the amount of
electrode surface area used for reactions and charge transfer [39–41]. Failure to do so will increase the
mass transport losses and the concentration overpotential, reducing overall battery performance.

Proper selection of electrolyte flow configuration is critical for the effective use of electrolyte.
Two different flow configurations have been widely used in the field, namely flow-through and flow-by
flow fields, which are defined based on how the electrolyte flows with respect to the electrode [19,29,42].
In a flow-through design, the electrolyte is forced to permeate through the porous electrodes, whereas
in a flow-by design, the electrolyte is directed along the surface of the electrode (i.e., flows parallel
to the electrode surface) in two ways: (i) through a flow frame placed between the electrode and the
membrane, or (ii) through the flow channels in the current collector (similar to a fuel cell) [27,28,43].
Understanding the unique aspects of each flow scheme is critical for selecting the flow cell architecture
that leads to minimum losses. While one flow configuration can minimize certain types of losses, it may
inadvertently increase others. For instance, the flow-through design maximizes the contact between
the electrolyte and the electrode; however, it increases the pressure drop and induces accelerated
electrode degradation due to the high viscous forces. While the flow-by configuration eliminates the
pressure drop losses, it suffers from poor electrolyte utilization.

Existing studies show the possibility of achieving higher performance ratings through the use of
different flow-field geometries [23,27,28,42,43]. Among these studies, one promising solution is to use
flow fields with non-uniform depth by adding channel obstructions and ramps. According to a recent
study [28], integration of ramps (i.e., with tapered channels) into flow fields results in improvements in
peak power densities for both open-ended (e.g., parallel flow field) and close-ended (e.g., interdigitated
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flow field) geometries. A reduction in the pressure drop has also been observed in interdigitated flow
fields with tapered flow fields [28]. In this work, the pressure drop and flow characteristics of constant
cross-section and tapered interdigitated flow fields used in RFBs (and related electrochemical devices)
are investigated theoretically, numerically and experimentally. The organization of the paper is as
follows. In Section 2, the formulation of the 2D CFD model used to analyze the problem is presented,
along with a simplified 2D+1D model based on lubrication theory (Appendix A). In Section 3, the
pressure drop experiments conducted in a single cell VRFB are described. The results are discussed in
Section 4, including a comparison between both numerical models and the experimental data. Finally,
the concluding remarks are given in Section 5.

2. Mathematical Model

Figure 1 shows schematically the repeating unit cell of an interdigitated flow field typically
used in electrochemical devices, such as RBFs or fuel cells. The liquid electrolyte enters the system
with uniform velocity, U, continues through the inlet channel, Ωi, permeates through the porous
electrode, Ωe, and is finally collected at the outlet channel, Ωo, before leaving the system. In typical cell
designs, the height and width of the channels, H ∼ wch ∼ 1 mm, are comparable to the characteristic,
effective channel-to-channel distance, weff

e , and also to the electrode thickness, δe, to provide a good
balance between charge and mass transport. Note that the effective channel-to-channel distance
includes the out-of-plane movement of the fluid as it travels around the rib, through the porous
electrode. The characteristic, effective channel-to-channel distance is of the same order as the rib
width and electrode thickness (weff

e ∼ wrib ∼ δe). By contrast, the channel length, L, is much larger
than the characteristic cross-sectional size, L � H ∼ wch ∼ weff

e ∼ δe, which results in slender
channel geometries. Hence, the flow in the channels is slender, or quasi-one-dimensional, with
v/u ∼ H/L� 1, as implied by mass conservation. Here, u and v are the axial and transverse velocity
components in the x and y directions, respectively.

Considering the above hierarchy of scales, a 2D CFD model is used here to facilitate the analysis
and reduce computational cost, while still retaining the main physics of the problem. A detailed study
would require the use of 3D geometries to account for the effective channel-to-channel distance, but this
is out of the scope of this work, which seeks to understand the role of the main parameters governing
the fluid-dynamic problem. The 2D geometry is shown in the bottom panel of Figure 1, where
x = (x, y), being x and y the Cartesian coordinates in theaxial and transverse direction, respectively.
The fluid enters the system through the inlet channel, Ωi, which runs in the x-direction parallel to the
porous electrode. In the domain of interest, 0 ≤ x ≤ L, hereafter referred to as the flow-through section,
the height of the inlet channel decreases gradually from its initial value, hi(0), to the dead-end height,
hi(L). Similarly, the height of the outlet channel, Ωo, located at the opposite side of the electrode,
grows gradually from the dead-end height, ho(0), to its final value, ho(L). To facilitate the analytical
treatment, the analysis is restricted to cases where the height of the inlet and outlet channels are
equal, hi(0) = ho(L) = H, so that the pressure gradients in the channels upstream and downstream
the flow-through section are equal. The inlet and outlet channels have a trapezoidal (i.e., tapered)
geometry given by the following expressions

hi(x) = H
[
1− (1− φ)

x
L

]
and ho(x) = H

[
φ + (1− φ)

x
L

]
for 0 ≤ x ≤ L, (1)

with constant cross-section channels corresponding to φ = 1, and tapered channels to 0 ≤ φ < 1.
The geometrical parameters and fluid properties used in the analysis are listed in Table 1. To remove
the singularity that emerges at the closed end of ramped channels with φ = 0, ramped profiles are
truncated to a trapezoidal shape assuming a fixed taper ratio φ = 0.1, which results in an end-wall
height of 10% of the initial height H. In Section 4.3, a nearly triangular along-the-channel shape
(φ = 10−2) is also considered for comparison with a semi-analytical lubrication model that will help
with the interpretation of the pressure drop results. The formulation of the lubrication model is
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presented in Appendix A. To ensure that the flow is fully developed in the electrode region, the inlet
and outlet channels are provided with upstream and downstream extensions of constant height H to
allow for the complete development of the flow and avoid any effect of the inlet and outlet boundary
conditions. The length of these extensions, 20H, is of the order of the flow development length for the
highest Reynolds numbers considered in this study.

• 10 lbf in torque applied to each boltUnit Cell

inlet channel (Ωi)

outlet channel (Ωo)

porous electrode

end walls

(Ωe)

δe

φH

φH

weff
e

ho(x)

L

hi(x)

y

inlet

outlet

electrode (e) Ωe

channel (ch)
H

HΩi

Ωo

x

Figure 1. (top) Cell fixture and constant cross-section interdigitated flow field used in the experiments,
indicating the repeating unit cell, (middle) schematic representation of the 3D geometry of a unit cell of
an interdigitated flow field with constant cross-section and tapered channels, and (down) the simplified
2D along-the-channel geometry used in the CFD model. The flow direction (blue arrows), the notation
used for the geometrical parameters and the coordinate system are indicated.

The density and viscosity of the fluid, ρ and µ, depend strongly on the type of electrolyte, state of
charge and temperature [7,44,45]. Whereas the feed flow rate, Q, used in a cell with, e.g., 10 inlet and
outlet channel segments and an active area of roughly 16 cm2 does not usually exceed 200 ml/min,
corresponding to 20 ml/min per channel segment [27,28,46,47]. This leads to a characteristic inlet
velocity below U ≈ 0.33 m/s and a Reynolds number in the channel lower than Re = ρUH/µ ≈ 300,
considering an inlet area of 1 × 1 mm2 and the properties of liquid water at room temperature.
However, aqueous and non-aqueous electrolytes often exhibit higher viscosities [48], so that Re < 100
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is expected in most practical applications. In this exploratory work, liquid water is taken as working
fluid, and the inlet velocity is conveniently varied (see Table 1) to investigate the role of inertia in an
extended range of Reynolds numbers, Re = 1− 800.

Table 1. Geometrical parameters, fluid properties and operating conditions used in the 2D CFD model.

Parameter Symbol Value

Characteristic channel length L 4 cm, 10 cm †

Reference inlet/outlet channel height H 1 mm
Effective channel-to-channel distance weff

e 1.5 mm
Electrode permeability Ke 10−13–10−10 m2 †

Density ρ 103 kg m−3

Dynamic viscosity µ 10−3 kg m−1 s−1

Inlet velocity (volume flow rate) U (Q′) 1–800 mm s−1 (1–800 mm2 s−1)

† An additional channel length of L = 10 cm and various electrode permeabilities Ke are explored in
Section 4.3.

The equations determining the flow and pressure drop are the steady-state Navier–Stokes
equations for an incompressible fluid of uniform density and viscosity, written here in their generalized
form for flow in porous media

∇ · u = 0 (2a)
ρ

ε2 (u · ∇) u = −∇p +
µ

ε
∇2u + Su (2b)

where u = (u, v) is the superficial velocity (equal to the fluid velocity in the channels), ε is the porosity
(equal to unity in the channels), and Su is the momentum sink term due to Darcy’s viscous resistance

Su =

−
µ

Ke
u, in Ωe

0, in Ωi and Ωo,
(3)

where Ke is the (isotropic) electrode permeability.
Inertial effects (i.e., Forchheimer drag [46,49,50]) can be neglected in the porous electrode because

the characteristic Reynolds number, Ree, based on the fiber diameter, d f , and the interstitial velocity,
ue/ε, is usually of order unity or smaller. From mass conservation, the superficial velocity in the
electrode can be estimated as ue ∼ [H2/(δeL)]U ∼ (H/L)U, given that δe ∼ H, which for the
representative geometry considered here, H/L = 0.025, with U ≈ 800 mm/s, results in ue ∼ 20 mm/s
for the highest flow rates under study. Using the properties of liquid water, a characteristic fiber
diameter d f ≈ 10 µm, and a porosity ε ≈ 0.7 typical of carbon papers and felts [33,51–54], leads to

Ree =
ρued f

εµ
=

103 2× 10−2 10−5

0.7 10−3 ≈ 0.3 (4)

Ree would be even lower for electrolytes more viscous than water.
Equations (2a) and (2b) can alternatively be written in the form

∇̃ · ũ = 0 (5a)

1
ε2

Re β

Λ
(
ũ · ∇̃

)
ũ = −12

γ
∇̃ p̃ +

β

Λε
∇̃2ũ−


12Λ

γ
ũ in Ωe

0 in Ωi and Ωo,
(5b)
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where ∇̃(·) = H∇(·) is the dimensionless nabla operator, associated with the dimensionless
spatial variable

x̃ =
x
H

, (6)

while

ũ = (ũ, ṽ) =
u
U

and p̃ =
(p− pref)KeL

µHUweff
e

(7)

are the dimensionless velocity and pressure, the latter referred to a conveniently defined reference
pressure, pref. These are made non-dimensional using the average inlet velocity, U = Q′/H, based on
the volume flow rate Q′ per unit length in the spanwise direction (i.e., the out-of-plane direction), and
the characteristic pressure drop across the porous electrode, ∆pe = (µ/Ke)(H/L)Uweff

e .
The dimensionless parameters that emerge in the problem are

Re =
ρUH

µ
, Λ =

L
weff

e
, β =

H
weff

e
, γ =

12KeL2

weff
e H3

, (8)

which represent the characteristic Reynolds number of the flow in the channels, Re, the slenderness
parameter, Λ ∼ 10–102, the ratio between the channel height and the effective channel-to-channel
distance, β ∼ 1, and the ratio between the characteristic pressure drop along the channel due to viscous
stresses, ∆pv

ch = (12µ/H2)UL, and the pressure drop across the porous electrode due to Darcy’s
viscous resistance, ∆pe = (µ/Ke)(H/L)Uweff

e , γ ∼ 10−2–1. The former is estimated as the pressure
drop of a planar Poiseuille flow in a flat channel of length L and uniform cross-section H (i.e., with
an equivalent permeability Kch = H2/12), while the latter is determined from Darcy’s law using the
characteristic velocity in the porous electrode, ue ∼ (H/L)U.

No-slip boundary conditions are imposed at solid walls, while a prescribed uniform velocity is
imposed at the inlet and a zero dimensionless pressure at the outlet

ũ · n = −1 at the inlet (9)

p̃ = p̃ref = 0 at the outlet (10)

where n denotes the outward unit normal vector.
The above equations were integrated in ANSYS Fluent using the viscous solver with the

SIMPLE algorithm to handle the pressure-velocity coupling, least square cell-based discretization for
gradients, the standard pressure interpolation scheme, and second-order upwind discretization for the
momentum conservation equation. Structured quadrilateral meshes with 0.5–2 million cells were used
in the simulations, including a refinement near the channel-electrode interfaces to capture velocity
gradients adequately. The grid independency study performed in the simulation campaign can be
found in Appendix B. The convergence criterion of the residuals was set to 10−8.

3. Experimental

Pressure drop measurements were performed in a 5 cm2 flow cell with Nafion 212 membrane
and impervious graphite bipolar plates with constant cross-section and ramped (φ→ 0) interdigitated
flow fields. The inlet and outlet channels had an inlet area of 0.8× 0.8 mm2 and a length L = 1.7 cm,
and were separated by ribs with a width wrib = 0.8 mm. The feed flow rate was distributed among
Nch = 7 channel segments. Two layers of AvCarb F250C (200 and 250 µm) carbon paper were used as
electrodes. 25 mL of electrolyte (1.6 M vanadium dissolved in 2.5 M sulfuric acid) was placed in each
external tank, and pumped through the cell with a peristaltic pump (Masterflex L/S, Cole-Parmer,
Vernon Hills, IL , USA) at various flow rates ranging from 16 mL/min to 80 mL/min. Pressure drop
measurements were performed when the cell was switched off using Honeywell board mount pressure
sensors inserted into a T-junction tube between the peristaltic pump and the inlet of the flow cell.
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Pressure drop measurements were repeated 3 times and data recorded every 0.2 s for 10 min. Each
dataset was averaged over time for analysis, observing a deviation lower than 1% in averaged pressure.

4. Discussion of Results

As previously discussed, the geometrical parameters β = H/weff
e ∼ 1 and Λ = L/weff

e ∼ 10–102

take reasonably uniform values in electrochemical cells, so they will be kept fixed in the study
with the values presented in Table 1, β = 1/1.5 = 0.67 and Λ = 40/1.5 = 26.67. Additionally,
Λ = 100/1.5 = 66.67 is examined in Section 4.3. Larger variations are found in the Reynolds number
in the channels, Re = ρUH/µ, which changes with the feed flow rate and electrolyte properties, as
well as the pressure drop ratio, γ = 12KeL2/(weff

e H3), which increases linearly with the electrode
permeability. Here, the Reynolds number is varied in the range 1–800 to study the full range of
variation of Re expected in practice (Re ∼ 1–100), along with the effect of inertia at higher Reynolds
numbers (Re ∼ 100–800) that may appear in the operation of large cell designs, not accounted for in the
lubrication model (see Appendix A). In addition, two different electrode permeabilities are examined,
Ke = 10−10 m2 and Ke = 10−12 m2, corresponding to γ = 1.28 and γ = 1.28× 10−2. The former is
close to the upper limit of permeabilities found in uncompressed fibrous electrodes, while the latter is
of the order of the permeability of compressed samples during operation [51,52,55–58]. Some extra
permeabilities are analyzed in Section 4.3 to study the combined effect of γ and Λ on the pressure drop
predicted by the CFD and the lubrication models.

Before proceeding further, it is convenient to examine the relative importance of the different
terms in the along-the-channel momentum equation. Considering Equation (5b), we have that

ρ (u · ∇) u = −∇p + µ∇2u (11a)

∼ ρU2

L
∼ ∆pch

L
∼ µ

12U
H2 (11b)

where the numerical factor that appears in the estimate of the viscous term is due to the use of the
exact solution for a planar Poiseuille flow and is included here to increase the accuracy of the estimates.
When convective effects are negligible, the pressure drop along the channel can be estimated by
imposing that the longitudinal pressure gradient must be of the same order as the viscous term,
leading to ∆pv

ch = (12µ/H2)UL. Convective effects in the channel start to play a role when they
become of the order of the viscous term, ρU2/L ∼ 12µU/H2, or

Re ∼ 12
L
H

= 12
Λ
β

, (12)

which for H = 1 mm and L = 4 cm (β = 0.67, Λ = 26.67) yields Re ∼ 480.
In addition, the relative importance of the terms in the across-the-electrode momentum equation is

∇p = − µ

Ke
u (13a)

∼ ∆pe

weff
e

∼ µ

Ke

UH
L

(13b)

Therefore, the pressure drop along the channel due to convective effects, ∆pc
ch, becomes comparable

to the pressure drop across the electrode due to Darcy’s viscous resistance, ∆pe, when ρU2 ∼
(µUH/Ke)(weff

e /L), or

Re ∼ H2

Ke

weff
e
L

= 12
Λ
β

γ−1 (14)

which for H = 1 mm, weff
e = 1.5 mm, L = 4 cm and Ke = 10−12 m2, 10−10 m2 (β = 0.67, Λ = 26.67)

yields Re = 375 and Re = 3.75× 104 for γ = 1.28 and γ = 1.28× 10−2, respectively.
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In the discussion below, the analysis is focused on along-the-channel x-variations, so distributions
are locally averaged in the transverse y-direction. The averaged axial velocity is only presented for
the inlet channel, since the local crossflow across the porous electrode is almost 1D (see Appendix B).
The 1D character of the flow in the electrode is explained by the higher local permeability of both
the constant and tapered cross-section channels (Kch(x) = h2

i/o(x)/12 = 10−9–10−7 m2), which is at
least one order of magnitude higher than the maximum electrode permeability considered in this
study (Ke = 10−10 m2). Therefore, the longitudinal velocity profile in the outlet channel is virtually
the complementary of that in the inlet channel. The expressions of the y-averaged variables used in
the analysis, i.e., dimensionless axial velocity in the channel, dimensionless transverse velocity in the
electrode, and dimensionless pressure in the inlet and outlet channels, are as follows

〈ũi〉(x) =
Q′i(x)/hi(x)

U
; 〈ṽe〉(x) =

1
weff

e

∫ weff
e /2

−weff
e /2

L
UH

ve(x, y)dy;

〈 p̃i〉(x) =
1

hi(x)

∫ −weff
e /2

−weff
e /2−hi(x)

KeL
µHUweff

e
pi(x, y)dy;

〈 p̃o〉(x) =
1

ho(x)

∫ weff
e /2+ho(x)

weff
e /2

KeL
µHUweff

e
po(x, y)dy

(15)

Additionally, three overall variables are considered, i.e., overall pressure drop, overall average velocity
in the inlet channel, and homogeneity factor of the flow across the electrode, which are defined as

〈∆̃p〉 =
∫ −weff

e /2

−weff
e /2−H

〈 p̃i〉(0)dy−
∫ weff

e /2+H

weff
e /2

〈 p̃o〉(L)dy;

〈ũi〉 =
1
L

∫ L

0
〈ũi〉(x)dx; HFe = 1− σ [〈ṽe〉(x)]

1
L
∫ L

0 〈ṽe〉(x)dx
(16)

where σ is the standard deviation of the transverse velocity distribution in the electrode 〈ṽe〉(x).

4.1. Case of High Electrode Permeability, Ke = 10−10 m2 (γ = 1.28 ∼ 1)

When γ ∼ 1, the pressure drop along the channel due to viscous stresses is comparable to the
pressure drop across the electrode (∆pv

ch ∼ ∆pe), while convection in the channels becomes important
for Re ∼ 100. Please note that Equations (12) and (14) lead to the same order of magnitude estimation
since γ ∼ 1. This result can be seen in Figure 2, which shows the along-the-channel variation of
the dimensionless axial velocity, 〈ũi〉(x), and the dimensionless transverse velocity in the electrode,
〈ṽe〉(x), of the constant cross-section (left panel) and the tapered (right panel) flow fields.

In constant cross-section channels, the axial velocity decreases monotonously with x due to the
gradual loss of mass caused by the crossflow towards the porous electrode [59,60]. For Re� 12H/L,
the role of inertia is negligible, resulting in roughly uniform crossflow distributions and nearly linear
longitudinal velocity profiles. However, for larger Reynolds numbers, Re ∼ 12H/L, inertia becomes
important and forces the fluid to continue straight towards the end of the channel. The axial velocity
exhibits now a clearly non-linear behavior, decreasing more slowly at the inlet but falling more rapidly
at the end. Therefore, higher pressure drops arise near the end of the channel, as required to sustain
the larger crossflow velocities present there, which result in a reduction of the streamline spacing in
this region (see Appendix B). Summarizing, inertia keeps the fluid moving in the streamwise direction,
increases the axial and crossflow velocities near the end of the channel, and results in less uniform
crossflow distributions and higher overall pressure drops.
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Constant Tapered

Figure 2. Variation of (top) the y-averaged axial velocity in the inlet channel, 〈ũi〉(x), and (down)
the y-averaged transverse velocity in the electrode, 〈ṽe〉(x), as a function of the along-the-channel
coordinate, x/L, for Re = 1–800, corresponding to (left) the constant cross-section and (right) the
tapered flow fields. Electrode permeability, Ke = 10−10 m2 (γ ∼ 1), and Λ = 26.67.

Tapered channels exhibit higher axial velocities as a result of the gradual reduction of the
cross-section, which tends to accelerate the flow and partially compensates for the deceleration caused
by the crossflow. Consequently, as shown in Figure 3, higher pressure drops are found in the tapered
flow field. For instance, Figure 2 shows that the axial velocity experiences significant overshoots
with respect to the inlet velocity in a significant fraction of the channel close to the inlet. This result
agrees with previous studies analyzing the effect of channel tapering on fuel cell performance [61–64].
The initial growth rate of the axial velocity can be estimated from the condition that the volume flow
rate in the inlet channel must remain approximately constant, u(x)hi(x) ≈ UH = Q′, at the beginning
of the channel, namely

ũ =
u(x)

U
≈ H

hi(x)
=

1
1− (1− φ)(x/L)

≈ 1 + (1− φ)(x/L) for
x
L
� 1 (17)

This condition stems from the fact that the equivalent permeability of a flat channel is Kch =

h2(x)/12, so that the ratio of the equivalent permeabilities of the inlet and outlet channels for x/L� 1
is of order Kch,i/Kch,o ≈ h2

i (0)/h2
o(0) ≈ 1/φ2 = 100 for φ = 0.1. As a result, a negligible volume flow

rate is expected to cross the porous electrode at the beginning of the inlet channel, which motivates the
assumption of roughly constant volume flow rate in this region leading to (17). Similar considerations



Processes 2020, 8, 775 10 of 26

apply for the dead-ended region of the inlet channel, where the small equivalent permeability strongly
reduces the volume flow rate until it eventually vanishes at the end, thus resulting in a parabolic-like
crossflow distribution along the channel. The location of the peak transverse velocity shifts towards
the dead-ended region when Re is increased due to inertia, although the additional inhomogeneity
introduced in the crossflow distribution is lower than that observed for the constant cross-section
flow field.

Constant Tapered

Figure 3. Variation of (top) the y-averaged pressure in the inlet and outlet channels, 〈 p̃i/o〉(x), and
(down) the pressure drop across the electrode, ∆̃pe, as a function of the along-the-channel coordinate,
x/L, for Re = 1–800, corresponding to (left) the constant cross-section and (right) the tapered flow
fields. Electrode permeability, Ke = 10−10 m2 (γ ∼ 1), and Λ = 26.67.

The main global differences between both flow fields are shown in Figure 4. The left panel
shows the variation of the average channel velocity and the homogeneity factor of the flow across the
electrode as a function of Re, while the right panel shows the variation of the overall pressure drop as
a function of Re. As can be seen, the dimensionless channel velocity and pressure drop in both flow
fields remain approximately constant for Re ∼ 1–100, and increase quadratically for Re ∼ 100–800.
The channel velocity and pressure drop are about 1.5 and 2 times higher in the tapered flow field
in the full Re range. Two regimes are also differentiated for the homogeneity factor depending on
Re. For Re ∼ 1–100, the homogeneity factor remains almost constant, being significantly higher in
the constant cross-section flow field ((constant) HFe = 0.9 vs. (tapered) HFe = 0.6). As discussed
before, this is caused by the preferential crossflow accumulation towards the middle of the channel in
the tapered flow field. However, for Re & 100, the homogeneity factor in the constant cross-section
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flow field drops strongly due to the effect of inertia, while it only varies slightly in the tapered flow
field(HFe ≈ 0.55 at Re = 800). As a result, the homogeneity factor of the constant cross-section
flow field becomes lower than that of the tapered flow field for Re > 300, reaching values as low as
HFe ≈ 0.15 at Re ≈ 800.

Figure 4. Variation of (left) the average axial velocity in the inlet channel, 〈ũi〉, and the homogeneity
factor of the transverse velocity in the electrode, HFe, and (right) the overall pressure drop, ∆̃p, as a
function of the Reynolds number, Re, corresponding to the constant cross-section and tapered flow
fields. Electrode permeability, Ke = 10−10 m2 (γ ∼ 1), and Λ = 26.67.

4.2. Case of Low Electrode Permeability, Ke = 10−12 m2 (γ = 1.28× 10−2 ∼ 10−2)

When γ ∼ 102, the pressure drop along the channel due to viscous stresses is negligible compared
to the pressure drop across the electrode (∆pv

ch � ∆pe). In addition, according to Equation (14),
convection in the channels introduce variations in the order of the pressure drop across the electrode
(∆pc

ch ∼ ∆pe) when Re ∼ 104, which exceeds the critical Reynolds number of the laminar regime.
Hence, the high pressure drop across the electrode dominates the solution. This can be clearly seen in
Figures 5 and 6, where the pressure in the channels is virtually constant, so the overall pressure drop is
concentrated in the electrode. The constant pressure difference across the electrode in turn leads to
an even crossflow distribution, which is accompanied by a strong 1D local flow across the electrode
(see streamlines in Appendix B).

The corresponding along-the-channel variations of the axial velocity can be obtained from
Equations (A2) and (A3a)–(A3b) considering a constant transverse velocity across the electrode,
ve(x) = v = cte. The analytical results for the constant cross-section and tapered flow fields are
included in Figure 5.

Mass conservation for the inlet and outlet channels gives, respectively

dQ′i(x)
dx

= −v ⇒ Q′i(x) = Ci − vx (18)

dQ′o(x)
dx

= v ⇒ Q′o(x) = Co + vx (19)

where the unknown constants Ci, Co, and v must be determined so as to satisfy the boundary conditions
Q′i(0) = Q′o(L) = UH and Q′i(L) = Q′o(0) = 0. This leads to Ci = UH, Co = 0, and v = UH/L, which
results in the average axial velocity profiles

〈ũi〉(x) =
Q′i(x)/hi(x)

U
=

1− (x/L)
hi(x)/H

and 〈ũo〉(x) =
Q′o(x)/ho(x)

U
=

x/L
ho(x)/H

(20)
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Constant Tapered

Figure 5. Variation of (top) the y-averaged axial velocity in the inlet channel, 〈ũi〉(x), and (down)
the y-averaged transverse velocity in the electrode, 〈ṽe〉(x), as a function of the along-the-channel
coordinate, x/L, for Re = 1–800, corresponding to (left) the constant cross-section and (right) the
tapered flow fields. Electrode permeability, Ke = 10−12 m2 (γ ∼ 10−2), and Λ = 26.67.

For constant cross-section channels, hi(x) = ho(x) = H, this leads trivially to

〈ũi〉(x) = 1− x
L

and 〈ũo〉(x) =
x
L

(21)

showing a linear decrease of the average axial velocity along the inlet channel, and a linear increase
along the outlet channel. For tapered channels, use of the expressions for hi(x) and ho(x) given in
Equation (1) leads to the nontrivial results

〈ũi〉(x) =
1− (x/L)

1− (1− φ)(x/L)
and 〈ũo〉(x) =

x/L
φ + (1− φ)x/L

(22)

The analytical solution shows that, as φ→ 0, the inlet channel velocity tends to 〈ũi〉 = 1 almost
everywhere along the channel length, except at distances of order φ from the dead-end wall, where
the velocity drops suddenly to zero. The limit of uniform axial velocity thus corresponds to ramped
channels with sharp corners, in which the linear acceleration created by the ramped geometry fully
compensates for the deceleration caused by the uniform crossflow distribution along the channel.
However, for φ = 0.1, as considered here, the linear acceleration introduced by the tapered geometry is
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lower, leading to a parabolic-like variation of theaxial velocity along the channel. The channel velocity
varies smoothly in most of the channel, and drops strongly in a region of size ∆x ∼ φL close to the
dead-ended wall. Similar considerations apply for the outlet channel, but in that case the crossflow
coming from the electrode accelerates the flow in the channel and the tapered geometry tends to
decelerate it.

Constant Tapered

Figure 6. Variation of (top) the y-averaged pressure in the inlet and outlet channels, 〈 p̃i/o〉(x), and
(down) the pressure drop across the electrode, ∆̃pe, as a function of the along-the-channel coordinate,
x/L, for Re = 1− 800, corresponding to (left) the constant cross-section and (right) the tapered flow
fields. Electrode permeability, Ke = 10−12 m2 (γ ∼ 10−2), and Λ = 26.67.

Figure 7 shows a comparison between both flow fields, using a similar representation to that in
Figure 4. As discussed earlier, all the variables of interest are independent of Re, except the channel
velocity. The pressure drop and the crossflow distribution are dominated by the viscous resistance of
the electrode, and the impact of the channel geometry is negligible [46,65,66]. As shown in Figure 8,
the results for γ ∼ 10−2 are in agreement with the experimental data measured in a single cell VRFB
with commercial AvCarb carbon-paper electrodes, whose permeability is in the order of 10−12 m2 for
mid-compressed samples (similar to Toray carbon paper) [52,67]. Minor variations are observed in the
pressure drop of both channel types, which increases almost linearly with the feed flow rate because
of the higher velocities reached in the electrode (i.e., ∆̃pch ≈ 1). Indeed, the pressure drop across the
electrode can be estimated as

∆p =
µweff

e
Ke

(Q/2Nch)

δeL
(23)
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where L = 1.7 cm, δe ≈ 0.45 mm, weff
e ≈ 2 mm (approximated as the rib width plus two times the

channel half-width and the electrode half-thickness, weff
e ≈ wrib + wch + δe), and µ = 3× 10−3 Pa s

(a typical viscosity found invanadium electrolytes [45]). The factor of 2 takes into account that the
flow rate in each inlet channel is collected by two neighboring outlet channels. A good fit to the
experimental data can be obtained with Ke ≈ 6.5× 10−12 m2, corresponding to γ ≈ 10−2, which
confirms the dominant role of the porous electrode on the overall pressure drop.

The properties of the electrode are further examined in Figure 9, which shows the variation of the
electrode permeability and overall pressure drop (see Equation (23)) with porosity and fiber diameter
as predicated by the Carman–Kozeny equation. This correlation has previously been successfully used
to describe the permeability of fibrous porous layers by Gostick et al. [52]

Ke =
d2

f ε3

16kck(1− ε)2 (24)

In the calculations, the Carman–Kozeny constant was taken equal to kck = 5, while the variables
in Equation (23) were kept the same as those used before, together with a flow rate Q = 30 mL/min.

Figure 7. Variation of (left) the average axial velocity in the inlet channel, < ũi >, and the homogeneity
factor of the transverse velocity in the electrode, HFe, and (right) the overall pressure drop, ∆̃p, as a
function of the Reynolds number, Re, corresponding to the constant cross-section and tapered flow
fields. Electrode permeability, Ke = 10−12 m2 (γ ∼ 10−2), and Λ = 26.67.

As can be seen, the permeability and the pressure drop change around two orders of magnitude
when the porosity and the fiber diameter are varied between ε = 0.5–0.9 and d f ≈ 1–20µm, respectively.
This result emphasizes the strong importance of porous media microstructure on the pressure drop
and internal flow distribution across the electrode. As a matter of fact, strong channeling effects has
been previously reported in RFB operation that can lead to significant distributed ohmic and mass
transport losses, as well as reduced durability [50,68–70].



Processes 2020, 8, 775 15 of 26

Figure 8. Pressure drop, ∆p, as a function of the feed flow rate, Q, measured in a VRFB with constant
cross-section and ramped interdigitated flow fields, including different AvCarb carbon-paper electrodes.
The black dashed line shows the predicted pressure drop across the electrode for Ke = 6.5× 10−12 m2

(γ ∼ 10−2).

Figure 9. Variation of (left) the permeability of the electrode, Ke, and (right) the overall pressure drop,
∆p, as a function of the porosity of the electrode, ε, for various fiber diameters, d f . The permeability is
estimated according to the Carman–Kozeny equation (Equation (24)).

4.3. Comparison with the Lubrication Model

In this section, the results of the 2D CFD model and the semi-analytical lubrication model
are compared. Non-linear channel shapes were considered in the lubrication model according to
the expressions

hi = H [1− (x/L)α] ; ho = H [1− [1− (x/L)]α] , (25)

so that α = 1 corresponds to a ramped geometry; α = 0.99 was used in practice to avoid the singularity
introduced by a sharp corner. The constant cross-section geometry was reproduced by setting α = 100,
which led to virtually the same results as higher values of this parameter. N = 50 terms were used in
Equation (A10), which resulted in negligible variations compared to N = 100.

In the CFD model, φ = 10−2 was considered instead of φ = 10−1 to introduce a sharp dead-ended
region. In addition, three values of γ were simulated, γ = 1.28× 10−2, γ = 1.28× 10−1 and γ = 1.28,
for two different values of Λ, Λ = 26.67 and Λ = 66.67. This corresponds to Ke = 10−12 m2,
Ke = 10−11 m2 and Ke = 10−10 m2 for L = 4 cm, and Ke = 1.6× 10−13 m2, Ke = 1.6× 10−12 m2 and
Ke = 1.6× 10−11 m2 for L = 10 cm, which are in the expected range of variation of Ke and L. The results
computed with the CFD model as a function of Re/(12Λβ−1γ−1) are shown in Figure 10. In addition, a
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quantitative comparison between the CFD model and the lubrication model for Re/(12Λβ−1γ−1)� 1
(i.e., Re = 1) is listed in Table 2.

As can be seen in Figure 10, the pressure drop of both flow fields depends on γ and
Re/(12Λβ−1γ−1), with an exceedingly small contribution of Λ (and β, which is fixed to β ∼ 1).
The predictions of both models are in good agreement when convective effects in the channel are
unimportant compared to Darcy’s viscous resistance (i.e., Re/(12Λβ−1γ−1)� 1), being the relative
error below 5%. Convective effects in the CFD model become significant when 12Λβ−1γ−1 ∼ 1,
introducing variations of order unity in the overall pressure drop ∆̃p. These results show that the
lubrication model can be used as a preliminary tool to examine the flow in interdigitated flow fields
for small values of Re/(12Λβ−1γ−1), as usually found in RFBs and other electrochemical devices.

Table 2. Overall pressure drop, ∆̃p, predicted by the CFD model and the lubrication model for the
constant cross-section and the tapered flow fields corresponding to different values of γ and Λ. Nearly
ramped channels were considered for the tapered geometry in the CFD model (φ = 10−2) and the
lubrication model (α = 0.99).

γ Λ CFD Model
Constant/Tapered

Lubrication Model
Constant/Tapered

Relative Variation/%

1.28 26.67 1.80/4.64 1.84/4.69 2.22/1.08
66.67 1.78/4.62 1.84/4.69 3.37/1.51

1.28× 10−1 26.67 1.05/1.51 1.08/1.55 2.86/2.65
66.67 1.03/1.49 1.08/1.55 4.85/4.00

1.28× 10−2 26.67 1.01/1.03 1.01/1.05 0/1.94
66.67 1.00/1.00 1.01/1.05 1.00/5.00

Constant Tapered

Figure 10. Variation of the overall pressure drop, ∆̃p, as a function of Re/(12Λβ−1γ−1) computed with
the CFD model for different values of γ and Λ, corresponding to the constant cross-section and tapered
flow fields. Tapered channels with φ = 10−2 were considered to introduce a sharp corner similar to
that used in the lubrication model.

5. Conclusions

In this work, the effect of channel tapering on the flow distribution and pressure drop
characteristics of interdigitated flow fields used in vanadium redox flow batteries (VRFBs) and related
electrochemical devices was examined. The description was simplified using two 2D along-the-channel
models: (1) a laminar CFD model, which considers the flow in the channels and the porous electrode,
including Darcy’s viscous resistance in the latter; and (2) a semi-analytical model, which considers
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lubrication theory to describe the 1D Poiseuille flow in the channels and Darcy’s law to describe the
2D flow in the electrode. The 2D and 1D sub-models are coupled at the channel/electrode interfaces.

The physical parameters that govern the problem are: (1) the slenderness parameter, Λ = L/weff
e ,

(2) the ratio between the characteristic channel height (or width) and the characteristic, effective
channel-to-channel distance, β = H/weff

e , (3) the ratio between the pressure drop along the channel
due to viscous stresses and the pressure drop across the electrode, γ = ∆pv

ch/∆pe, and (4) the Reynolds
number in the channel, Re = ρUH/µ. In conventional cells, β ∼ 1 and Λ ∼ 10–102, so in the study β

was fixed to 0.67, while two values of Λ were considered, 26.67 and 66.67. Re was varied in the range
1–800 to examine the effect of inertia in the laminar regime. The analysis has shown that the most
influential parameters are γ and Re/(12Λβ−1γ−1), where the latter measures the relative importance
of the pressure drop along the channel due to convection compared to the pressure drop across the
electrode due to Darcy’s viscous resistance. Therefore, convective effects in the channel are negligible
when Re/(12Λβ−1γ−1) � 1 and introduce variations in the order of the pressure drop across the
electrode when Re/(12Λβ−1γ−1) ∼ 1. For high permeability electrodes (γ ∼ 1), tapered flow fields
lead to higher pressure drops compared to constant cross-section flow fields owing to the higher
channel velocities reached in the channel. Hence, the beneficial effect of channel tapering on the overall
cell efficiency would depend on the relative importance of the enhancement of species transport versus
the increase of pumping losses. In contrast, for low permeability electrodes (γ ∼ 10−2), the influence
of Re is negligible (i.e., Re/(12Λβ−1γ−1)� 1), so that the overall pressure drop is dominated by the
electrode permeability. Consequently, the tapered and the constant cross-section flow fields show
similar pressure drops. This result agrees with experiments performed in a single cell VRFB with
commercial carbon-paper electrodes. Hence, tapered channels can lead to a higher overall cell efficiency
due to the larger velocities achieved in the channel and the similar pumping losses. The improvement
of species mass transport and removal of bubbles from side reactions or surrounding air should explain
the better performance previously reported in VRFBs with ramped channels.

The results of the semi-analytical lubrication model were similar to those of the CFD model for
Re/(12Λβ−1γ−1)� 1, so this model provides a computationally efficient tool to perform preliminary
estimations of the flow characteristics in interdigitated flow fields. Future work should consider the
effects of assembly compression and electrode anisotropy using a 3D multiphysics CFD model to
analyze cell performance and efficiency, and conduct a one-to-one comparison with experimental data.
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Nomenclature

C dimensionless coefficient in Equation (A10)
D dimensionless coefficient in Equation (A10)
h local channel height/m
H initial height/m
HF homogeneity factor defined in Equation (16)
Ii/o integral defined in Equation (A13)
Ji/o integral defined in Equation (A13)
K absolute permeability/m2

Ki/o integral defined in Equation (A13)
L length/m
Nch number of channel segments
p pressure/kg m−1 s−2

Q feed flow rate/m3 s−1

Q′ flow rate per unit length in the spanwise direction/m2 s−1

Re Reynolds number of the flow in the channels
Su momentum source term/kg m−2 s−2

u axial velocity in x-direction/m s−1

u superficial velocity vector/m s−1

U inlet velocity/m s−1

v transverse velocity in y-direction/m s−1

w width/m
x x-coordinate/m
y y-coordinate/m
Greek letters
α exponent in Equation (25)
β dimensionless governing parameter in Equation (8)
γ dimensionless governing parameter in Equation (8)
δ thickness/m
∆ variation
∆e dimensionless parameter in Equation (A9)
ε porosity
Λ dimensionless governing parameter in Equation (8)
µ dynamic viscosity/kg m−1 s−1

π̃0 dimensionless parameter defined in Equation (A14)
ρ density/kg m−3

φ tapering parameter in Equation (1)
Ω spatial region
Subscripts
ch channel
e electrode
f fiber
i inlet
n index
o outlet
ref reference
rib flow-field rib
Superscripts
c convective
eff effective
v viscous
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Appendix A. Lubrication Model

As discussed in Section 2, conventional cell designs involve slender channels, H/L = βΛ−1 � 1,
with effective channel-to-channel distances that are also small compared to the channel length,
weff

e /L ∼ Λ−1 � 1. As a result, the flow in the channels is slender and quasi-one-dimensional,
i.e., the transverse velocities are much smaller than the axial velocities, u ∼ (weff

e /L)U = Λ−1U � U.
If in addition the reduced Reynolds number that pre-multiplies the convective term in Equation (5b) is
sufficiently small, ReH/L = ReβΛ−1 � 1, then all the hypotheses of Reynolds’ lubrication theory are
fulfilled, which enables an approximated semi-analytical treatment of the problem.

The momentum equation in the porous electrode reduces to Darcy’s law, u = −(Ke/µ)∇p, which
introduced in the continuity equation, ∇ · u = 0, yields Laplace’s equation for pressure

∂2 p
∂x2 +

∂2 p
∂y2 = 0 in Ωe (A1)

The flow in the electrode is coupled with the flow in the channels through the continuity of
pressures p and transverse velocities v at the channel-electrode interfaces. According to lubrication
theory, the local velocity profile in the channels is given by a planar Poiseuille flow with volume flow
rates per unit length in the spanwise direction

Q′i/o(x) =
h3

i/o
12µ

(
−dpi/o

dx

)
, (A2)

circulating through the inlet and outlet channels.
Integrating the continuity equation across the inlet and outlet channels leads to Reynolds’

lubrication equations

d
dx

[
h3

i
12µ

(
−dpi

dx

)]
= −v(x,−weff

e /2) in Ωi (A3a)

d
dx

[
h3

o
12µ

(
−dpo

dx

)]
= v(x, weff

e /2) in Ωo (A3b)

which upon substitution of the transverse velocities appearing on the right-hand-side in terms of the
transverse pressure gradients in the porous electrode, yields the boundary conditions to Equation (A1)
at the channel-electrode interfaces

−Ke

µ

∂p
∂y

=
d

dx

[
h3

i
12µ

(
dp
dx

)]
at 0 < x < L, y = −weff

e /2 (A4a)

Ke

µ

∂p
∂y

=
d

dx

[
h3

o
12µ

(
dp
dx

)]
at 0 < x < L, y = weff

e /2 (A4b)

The longitudinal pressure gradient at the inlet and outlet sections of the flow-through region,
x = 0 and x = L, must be compatible with the linear pressure drop imposed by the planar Poiseuille
flows that emerge upstream and downstream the inlet and outlet channels (see, e.g., Equation (A2))

− ∂p
∂x

=
12µQ′

H3 at x = 0 and x = L, −weff
e /2 < y < weff

e /2 (A5)

This pressure gradient induces an axial velocity in the porous electrode that results in an additional
volume flow rate

Q′e =
Ke

µ

(
12µQ′

H3

)
weff

e =
12Keweff

e
H3 Q′ (A6)
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flowing through the system. However, this volume flow rate is small compared to the one flowing
through the channels and crossing the electrode

Q′e
Q′

=
12KeL2

weff
e H3

(
weff

e
L

)2

=
γ

Λ2 � 1 (A7)

Hence, the flow in the inlet and outlet regions of the porous electrode, along with the additional
flow rate Q′e, are anticipated to have a negligible influence on the results.

To write the problem in dimensionless form, it is convenient to introduce the modified
dimensionless coordinates x̂ = x/L = βx̄/Λ and ŷ = y/weff

e = βȳ, measured with the characteristic
scales of the porous electrode, while keeping the same definition for the dimensionless pressure given
in Equation (7). With these definitions, the problem reduces to

1
Λ2

∂2 p̃
∂x̂2 +

∂2 p̃
∂ŷ2 = 0 in 0 < x̂ < 1, 0 < ŷ < 1 (A8)

subject to the boundary conditions

−∂ p̃
∂x̂

= γ at x̂ = 0, x̂ = 1, 0 < ŷ < 1 (A9a)

−∂ p̃
∂ŷ

= ∆e
d

dx̂

[
ĥ3

i
12

(
dp̃
dx̂

)]
at 0 < x̂ < 1, ŷ = −1/2 (A9b)

∂ p̃
∂ŷ

= ∆e
d

dx̂

[
ĥ3

o
12

(
dp̃
dx̂

)]
at 0 < x̂ < 1, ŷ = 1/2 (A9c)

where ĥi = hi/weff
e , ĥo = ho/weff

e , ∆e = 12/(γβ3), and the dimensionless pressure gradient γ is given
by the pressure drop ratio defined in Equation (8).

The solution of the problem stated above involves the integration of Laplace’s equation (A8) in a
square domain with linear boundary conditions. It is then possible to use separation of variables and
express the solution as an infinite series of eigenfunctions of the form

p̃(x̂, ŷ) = π̃0 − ŷ− γx̂ +
∞

∑
n=1

(
Cnenπŷ/Λ + Dne−nπŷ/Λ

)
cos(nπx̂), (A10)

with the associated dimensionless pressure gradient

∂ p̃
∂x̂

(x̂, ŷ) = −γ−
∞

∑
n=1

nπ
(

Cnenπŷ/Λ + Dne−nπŷ/Λ
)

sin(nπx̂),

∂ p̃
∂ŷ

(x̂, ŷ) = −1 +
∞

∑
n=1

nπ

Λ

(
Cnenπŷ/Λ − Dne−nπŷ/Λ

)
cos(nπx̂),

(A11)

where the coefficients Cn and Dn must be chosen to satisfy the boundary conditions (A9b) and (A9c).
The boundary condition (A9a) is automatically enforced by the choice of longitudinal eigenfunctions
and the inclusion of the linear term −γx̂ in Equation (A10).

An approximated solution can be obtained by truncating the summation in (A10) to N terms and
taking the inner product of Equations (A9b) and (A9c) with respect to the longitudinal eigenfunction
cos(mπx̂). To this end, one must substitute the truncated series from (A10) into (A9b) and (A9c),
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multiply the resulting expressions by cos(mπx̂), and integrate from x̂ = 0 to x̂ = 1. Repeating the
operation for m = 1, 2, . . . N yields 2N equations for the 2N coefficients Cn and Dn with the form

− 1
∆e

(mπ

2Λ

) (
Cme−

mπ
2Λ − Dme

mπ
2Λ

)
+

N

∑
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in terms of the integrals

Ii/o(m, n) =
∫ 1

0

ĥ3
i/o
12

cos(mπx̂) cos(nπx̂)dx̂

Ji/o(m, n) =
∫ 1

0

ĥ2
i/o
4

dĥi/o
dx̂

cos(mπx̂) sin(nπx̂)dx̂

Ki/o(m) =
∫ 1

0

ĥ2
i/o
4

dĥi/o
dx̂

cos(mπx̂)dx̂

(A13)

These integrals can be evaluated a priori with any robust quadrature integration method, such as
the adaptive Cash–Karp Runge–Kutta method with variable step size used here based on embedded
Runge–Kutta formulas of fourth and fifth order. The use of an accurate integrator is particularly
convenient if the functions ĥi(x̂) and ĥo(x̂) present discontinuities in their first derivatives, as may
be the case in piecewise linear tapering geometries. The above linear system (A12) can be solved
using any standard linear algebra package to yield the values of Cn and Dn. Finally, the value of π̃0 is
determined by the condition that the dimensionless pressure is zero at the outlet section

p̃(1, 1/2) = 0 → π̃0 =
1
2
+ γ−

∞

∑
n=1

[
Cnenπ/(2Λ) + Dne−nπ/(2Λ)

]
cos(nπ) (A14)

The overall pressure drop between the inlet and outlet sections of the flow-through region is
given by the dimensionless pressure at the inlet

p̃(0,−1/2) = π̃0 +
1
2
−

∞

∑
n=1

[
Cne−nπ/(2Λ) + Dnenπ/(2Λ)

]
. (A15)

Appendix B. Mesh Independency Study and Streamlines

The results of the mesh independency study are shown in Figure A1. Structured meshes were
used for the simulations with a spacing in x and y directions equal to ∆x = 50µm and ∆y = 5µm.
For the tapered flow field, ∆y indicates the y spacing at the inlet section, so that the y spacing at
the dead-ended wall is ten times smaller for a taper ratio φ = 0.1 (∆y = 0.5µm). The study was
performed at the highest Reynolds number (Re = 800) and γ ∼ 1, since this case requires capturing
larger gradients; the same mesh resolution was used for other cases. The channel length was set to
L = 4 cm (Λ = 26.67), so that the number of cells increased proportionally in the simulations with
L = 10 cm (66.67). The meshes used in the study led to a relative variation in the overall pressure drop
lower than 1% compared to meshes with 4 times more cells (∆x = 25µm and ∆y = 2.5µm), so this
degree of precision was considered high enough.
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Constant Tapered

Figure A1. Variation of the overall pressure drop, ∆̃p, as a function of the spacing in the x and y
directions, ∆x and ∆y, of the structured meshes used in the simulations of the constant cross-section
and tapered flow fields. The selected meshes (∆x = 50µm and ∆y = 5µm) are shown at the bottom,
together with a close-up view of the dead-ended region. Electrode permeability, Ke = 10−10 m2 (γ ∼ 1),
Λ = 26.67 and Re = 800.

Figures A2 and A3 show the streamlines for the cases γ ∼ 1 and γ ∼ 10−2 (Λ = 26.67),
corresponding to the constant cross-section (left panel) and tapered (right panel) flow fields at different
Reynolds numbers, Re.

Constant
Re = 1

Re = 200

Re = 800

Tapered

Figure A2. Streamlines in (left) the constant cross-section and (right) the tapered flow fields at different
Reynolds numbers, Re, corresponding to an electrode permeability, Ke = 10−10 m2 (γ ∼ 1), and
Λ = 26.67.
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Constant
Re = 1

Re = 200

Re = 800

Tapered

Figure A3. Streamlines in (left) the constant cross-section and (right) the tapered flow fields at different
Reynolds numbers, Re, corresponding to an electrode permeability, Ke = 10−12 m2 (γ ∼ 10−2),
and Λ = 26.67.
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