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Abstract: Lignocellulosic biomass is widely grown in many agricultural-based countries. These are
typically incinerated or discarded in open spaces, which further may cause severe health and
environmental problems. Hence, the proper utilization and conversion of different parts of lignocellulosic
biomasses (e.g., corn wastes derived leave, cob, stalk, and husk) into value-added materials could be a
promising way of protecting both health and environments. In addition, they have high-potential for
myriads applications (e.g., pharmaceuticals, cosmetics, textiles, and so on). In this context, herein,
we isolated holocellulose (a mixture of alpha α, beta β, and gamma γ cellulose) from corn waste,
and then it was converted into carboxymethyl cellulose (CMC). Subsequently, the prepared CMC was
evaluated successfully to be used as a pharmaceutical excipient. Different characterization tools were
employed for structural, morphological, and thermal properties of the extracted holocellulose and
synthesized CMC. Results showed that the highest yield of CMC was obtained 187.5% along with the
highest degree of substitution (DS i.e., 1.83) in a single stage (i.e., size reduction technique) with the
lowest particle size of holocellulose (100 µm). This happened due to the use of a single stage instead
of multiple stages. Finally, extracted CMC was successfully used as a pharmaceutical excipient with
promising results compared to commercially available pharmaceutical-grade CMC.

Keywords: lignocellulosic biomass; holocellulose; CMC; degree of substitution; excipient

1. Introduction

Lignocellulosic biomass is the most abundant resource in nature with immense potential for numerous
applications [1]. Among different lignocellulosic biomasses, agricultural waste-based biomass consists
of cellulose (35–50%), hemicellulose (20–35%), and lignin (10–25%) [2]. Corn (Zea mays) is one of
the abundant cereal crops that is cultivated extensively across the world, which produces huge
lignocellulosic biomass. The world’s total corn production was 985,889.6 (1000 MT) from 2012 to
2017. USA was the top country for producing corn in the period of 2012–2017 with the production
capacity of 343,167.8 (1000 MT), followed by the China, Brazil, Argentina, and Ukraine which produced
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216,787.0, 82,400.0, 30,550.0, 26,321.0 (1000 MT) of corn, respectively [3]. Therefore, the processing of
matured corn can produce large amount of waste. It is estimated that 1 kg of dry corn may yield up to
150 g of cobs, 220 g of leaves, and 50 g of stalks [4]. However, corn wastes namely leave, cob, stalk,
and husk are the major biomass matters that often remain unutilized in the harvested fields. Not only
are these corn wastes being used as a cooking fuel in some rural areas of many countries, but also often
they are causing environmental problems due to inapt waste control such as on-site burning as well
as landfilling. On the other hand, wastes from corn contain good quality cellulosic matters in their
cell walls. Generally, cellulose is a linear and high molecular weight polymer that neither melts nor
dissolves readily in water and many organic solvents. This characteristic makes cellulose ineffective in
most of the industrial uses. Notwithstanding, cellulose can be transformed into valuable chemical
feedstock (e.g., ethanol, lactic acid, furfural, and fermentable sugars including glucose and xylose) as it
is susceptible to chemical and enzymatic derivatization reactions [5,6]. Cellulose contains three -OH
groups in each of its anhydroglucose units. Among them, primary -OH at C-6 and two secondary ones
at C-2 and C-3 can take part in typical reactions such as esterification, etherification, and oxidation.
Cellulose derivatives have been obtained by reacting to some (or all) -OH groups of anhydroglucose
units [6,7]. Carboxymethylation of cellulose is a common conversion process which provides versatile
water-swellable or water-soluble polymers and intermediates with variable characteristics [8,9].

Carboxymethyl cellulose (CMC) is produced through the reaction between alkali cellulose swollen
in aqueous NaOH and monochloroacetic acid in the surplus of alcohol (Figure 1) [10]. Hydroxyl
groups of the anhydrous glucose unit (AGU) are substituted by the sodium carboxymethyl groups
in C-2, C-3, and C-6, of which substitution slightly dominates at C-2 position [11]. CMC has been
synthesized by many researchers from different cellulosic sources such as paper sludge, hyacinth, wood
residue, cotton linters, and bagasse [12–14]. Due to the polyelectrolyte character of CMC, it has many
applications, such as being widely used in the food industry, detergents, cosmetics, pharmaceuticals,
textiles, paper, adhesives, and ceramic industries [15]. The degree of substitution (DS) is considered
a significant property of CMC particularly for its solubility in water, and the highest theoretical DS
of CMC is considered as 3. It is reported that commercially available CMC has a DS value of 0.4
to 1.5 [16]. However, to achieve higher DS of CMC, several parameters such as the solvent system,
the concentration of NaOH, monochloroacetic acid (MCA), temperature, reaction time, and the different
steps of carboxymethylation need to tune properly [17]. Generally, in every case, several steps have
been performed to gain the higher DS. Therefore, an alternative approach such as minimization of
steps to get higher DS is preferable.

CMC is an anionic derivative that is being largely used in oral, ophthalmic, injectable, and topical
pharmaceutical formulations as an excipient. For solid dosage forms, CMC is used primarily as a
binder or matrix former. When CMC is used as a binder, then it yields softer granules with good
compressibility which form tough tablets with moderate strength [18]. On the other hand, commercially
available microcrystalline cellulose-based excipients are extracted from hardwoods and also from
purified cotton. Therefore, it is considered an expensive process that can further trigger investigations
of finding cheaper resources for similar excipients preparation [19]. To the best of our knowledge,
no report has been found in literature where a pharmaceutical excipient was prepared from the corn
wastes based on lignocellulosic biomass. Henceforth, extracting CMC as well as excipient from the
lignocellulosic agriculture waste (i.e., corn waste) could be considered an effective way for the reduction
of production costs as well as process barriers as these biomasses are widely available and free of cost
or at a very negligible price. In addition, such kind of low-cost material i.e., CMC can be further used
to produce tablets at an industrial scale.

Hence, the main objective of this study is to extract CMC from low-cost corn wastes with
higher DS by the utilization of a single-stage size-reduction method for lowering the extraction cost.
The subsequent objective of this study is to use the synthesized CMC as a pharmaceutical excipient by
testing its feasibility by performing different characterizations.
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2. Material and Methods

2.1. Materials

Corn wastes (Zea mays) including leaves, cob, stalk, and husk were collected in the harvesting
season (i.e., June–July) from the Wheat Research Center Rajshahi, Rajshahi Division, Bangladesh.
All the chemicals such as pharmaceutical excipient grade CMC (commercial), sodium hydroxide,
monochloroacetic acid (MCA), acetic acid, ammonium oxalate, sulfuric acid, and hydrochloric acid
were purchased from Sigma Aldrich, Bangladesh, and they were in the highest purity.

2.2. Preparation of Sample

Defective parts and foreign materials from the corn wastes were removed, followed by cutting
into small pieces and dried in sunlight for several days to minimize the intrinsic moisture. The corn
leave, cob, stalk, and husk were dried in the oven (FC-610, Toyo Seisakusho Co., Ltd., Chiba, Japan)
at 105 ◦C for several hours and grounded into powder using a disk mill (FFC-15). Later, the powder
was screened into three different particle sizes (100, 400, and 700 µm) by using a GFL Orbital Shaker
(Model: 3017, Germany) and stored in a silica-containing desiccator for further use.

2.3. Estimation of Fatty and Waxy Matters, Pectic Substances, and Lignin

The dried powder sample was immersed in n-hexane- ethanol mixture in the solid to liquor
ratio of 2: 200 for 10 h. The suspension was then filtered and washed with the residue with the fresh
n-hexane-ethanol mixture. After drying the residue, fatty and waxy matters were calculated using the
following formula.

% of fatty and waxy matters =
y× 100

x
, (1)

where y is the loss in weight and x is the initial weight of the sample. The dewaxed and defatted
powder was then heated with an ammonium oxalate solution (0.5% w/v)) in a liquor ratio of 0.1:10 at
80 ◦C for 3 consecutive days in a heating mantle. The level of the solution kept constant by adding hot
DI water simultaneously. Finally, the suspension was filtered and the residue was washed with DI
water and dried at 105 ◦C for getting pectic matters percentages:

% of pectic matters =
y× 100

x
. (2)

The dewaxed and depectinized dried powder was then treated with 72% sulfuric acid with solid
to acid ratio of 1:15 at ambient condition. The mixture was kept for 1.0 h and diluted by DI water up to
3% acid solution. Subsequently, the mixture was refluxed for 4.0 h and kept overnight. The mixture
was filtered and washed thoroughly with hot DI water and the residue dried until reaching the constant
weight at 105 ◦C. The residue was considered as lignin, and the powdered sample from the filtrate was
the delignified sample [20].

2.4. Isolation of Holocellulose

Holocellulose was isolated with a slight modification of the previously reported method [20].
Briefly, a suitable amount of dewaxed and depectinized powder corn wastes were treated with a 0.7%
NaClO2 solution at pH 4, and at 90–95 ◦C for 90 min with a liquor ratio of 1:80 (w/v). After being
washed with DI water, chlorite holocellulose was treated with a 0.2% Na2S2O5 solution for 15 min.
Subsequently, the holocellulose containing solution was again filtered and washed thoroughly with
distilled water, and finally dried at 60 ◦C to get the holocellulose.

2.5. Estimation of α-Cellulose and Hemicellulose (β and γ-Celluloses)

The α-cellulose and hemicellulose amount were determined to measure the total quantity in corn
wastes [20]. Briefly, 1.0 g of the dried chlorite holocellulose was treated with an 18% NaOH (w/v)
solution for 2 h in the ratio of 1:100 (w/v). The mixture was then filtered and washed thoroughly with
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2% acetic acid solution, followed by hot water. The residue was dried at 105 ◦C until reaching constant
weight. The dried residue (i.e., α-cellulose) was deducted from the weight of the holocellulose to
estimate the amount of hemicellulose.

An equal volume of filtrate and 3N H2SO4 was mixed and placed in a water bath for several minutes
at 90 ◦C to coagulate the β-cellulose. The mixture was kept for 12 h to settle the precipitate. Afterward,
the precipitate was separated and dried at 105 ◦C to obtain β-cellulose. Finally, the γ–cellulose
was estimated by deducting the amount of α-cellulose and β-cellulose from the initial weight of
the holocellulose. Here, diluted acids were used to extract as well as estimate the components of
holocellulose from the lignocellulosic wastes due to its economic and environmental feasibility [21].

2.6. Conversion of Holocellulose into Carboxymethyl Cellulose

The general schematic diagram and synthesis route of CMC from the holocellulose of corn wastes
is depicted in Figure 1. The synthesis of CMC includes two consecutive steps namely, alkalization
and etherification. During alkalization, holocellulose was suspended in ethanol, and 30% (w/v) NaOH
was added slowly for half an hour with vigorous stirring at room temperature, and the stirring was
continued for an hour. In the etherification step, MCA (120%) was added gently to the slurry before
placing into the water bath at 50 ◦C and heated for 3.6 h with intermittent stirring. The synthesized CMC
was filtered and washed with 70% (v/v) alcohol to minimize the unwanted leftover and dried at 65 ◦C.

The outline of the mechanism for preparing CMC from holocellulose of corn wastes followed by
two consecutive steps including basification as well as etherification are documented in Figure 1.
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2.7. Estimation of Yield (%) of CMC

The yield of CMC was calculated based on a dry weight basis, where the weight of dried CMC
was divided by the weight of holocellulose:

CMC yield, % =
y
x
×100, (3)

where y and x is the weight of moisture-free CMC (g) and holocellulose (g), respectively.

2.8. Determination of Degree of Substitution (DS)

Before the determination of DS, the prepared CMC was acidified by using the modified protocols
as described elsewhere [22,23]. Briefly, 2 g of CMC powder was placed in 100 mL of a beaker, and 40 mL
of 95% ethanol was added, followed by 10 min agitation. Then, 2.5 mL of nitric acid was added and
the solution was boiled in a hotplate. Subsequently, after removing the solution from the hotplate, it
was stirred for 15 min. The liquid solution was decanted by using a vacuum pump and washed with
80% ethanol for several times. Then, the residue was washed with a small quantity of methanol and
filtered. To analyze the DS, 1.0 g of dried CMC was added to 100 mL of distilled water, and 12.50 mL of
1 N NaOH was added with agitation. After completely dissolving the mixture, it was then titrated by
1 N HCl in the presence indicator phenolphthalein. The DS of CMC was calculated by the utilization
of the following equations [23]:

O =
PQ−RS

T
, (4)

DS =
0.162×O

1− 0.058×O
, (5)

where

O = milli-equivalents of used HCl per gram of specimen;
P = volume of NaOH;
Q = concentration in the normality of NaOH;
R = volume of consumed HCl;
S = concentration in normality of HCl;
T = specimen grams;
162 is the molecular weight of the anhydrous glucose unit and 58 is the net increment in the anhydrous
glucose unit for every substituted carboxymethyl group.

2.9. Determination of Molecular Weight

CMC powder was dissolved in 0.8 M NaOH aqueous solution to measure the molecular weight by
using an Ostwald viscometer. From the value of intrinsic viscosity, the molecular weight of the CMC
was calculated by using the Mark–Houwink–Sakurada equation i.e., [η] = K ×M × a [19]. Where K, a,
[η], and M are the constant for solvent, polymer shape factor, intrinsic viscosity, and molecular weight
of CMC, respectively.

2.10. Structural Morphological and Thermal Study

FTIR spectrum analysis of the extracted holocellulose and synthesized CMC were performed by
Fourier transform infrared (FTIR) spectroscopy (Perkin-Elmer 240C, Waltham, MA 02451, USA) in
between 400 and 4000 cm−1. For surface morphology of the dried samples, they were sputter-coated
with gold for 10 min and then analyzed by using a scanning electron microscope (SEM) (Model-S
3400 N, VP SEM, Hitachi, Japan) using 20 kV accelerating voltage. The thermogravimetric analyses
(TGA) of the samples were carried out using a Shimadzu TGA-50 system (Kyoto 604-8511, Japan) under a
nitrogen atmosphere. The heating rate was 20 ◦C/min, and the temperature range was 25 to 600 ◦C.
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2.11. Physicochemical Characteristics of Prepared CMC (Excipient) (with DS 1.83)

2.11.1. Moisture Content

The prepared CMC was dried in an oven at 105◦ for 120 min. Following this, the dried CMC was
cooled in a desiccator until the ambient temperature was reached, and the final weight was taken.
The moisture content was determined by this following equation [23]:

Moisture content (%) =
y

w0
×100, (6)

where y and x is the final and initial weight of CMC (g), respectively.

2.11.2. Flow Properties of CMC

Flow properties of CMC were measured by performing several tests such as bulk and tap densities,
true density, porosity, angle of repose, Carr’s index, and Hausner’s ratio. Detailed descriptions of these
tests are given below.

2.11.3. Bulk and Tap Densities

A suitable amount of CMC powder (g) was poured in a 100 mL calibrated graduate cylinder and
placed in a bulk density apparatus (LOGAN TAP-2S, New Jersey 08873 USA). After lightly tapping the
cylinder, the occupied volume V0 was estimated. After, that the cylinder was tapped 500 times for
measuring the tap density and calculated by using the following relationship, respectively [24–26]:

Bulk density (BD) =
w
V0

, (7)

Tap density (TD) =
w

V500
, (8)

where w is the weight of CMC powder, V0 is volume before tapping, and V500 is the volume of CMC
powder after 500 times tapping.

2.11.4. True Density

The true density of the CMC powder was calculated by using a calibrated Quantachrome
pycnometer (Quantachrome Corporation, FL, USA). CMC powder was dried at ambient temperature
overnight under reduced pressure before analysis. True density was estimated by using the following
formula [25,26]:

True density (TD) =
w
v

, (9)

where w is the weight of the CMC powder and v is true volume of the CMC powder.

2.11.5. Porosity

The porosity of the CMC powder was determined according to the following equation [25,26]:

True density (TD) = 1−
tap density
true density

× 100. (10)

2.11.6. Angle of Repose

The angle of repose of the CMC powder was measured by using a funnel and a Petri dish. At first,
the funnel was fixed with a funnel holder. For making a cone, the CMC powder was allowed to
emanate freely through the funnel. The height and diameter of the cone were recorded by a measuring
scale and determined by using the following formula [25,26]:
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tan θ =
2h
D

, (11)

where D is diameter of the cone and h is the height of the cone.

2.11.7. Carr’s Index and Hausner’s Ratio

The Carr’s index (CI) [25] and the Hausner ratio (HR) [26] were estimated by using the value tap
and bulk density:

CI =
tap density− bulk density

tap density
× 100, (12)

HR =
tap density

bulk density
. (13)

3. Results and Discussion

3.1. Chemical Composition, DS, Yield, and Molecular Weight of CMC

The chemical composition of corn waste residue including holocellulose (i.e., α, β, and γ- cellulose),
lignin, pectic matter, fatty and waxy matter were estimated, and their results are shown in Table 1.
From Table, it can be observed that the α-cellulose contents (i.e., 41.2%) were dominant among all other
constituents, followed by β-cellulose and γ-cellulose contents. The amount of lignin, fatty and waxy
matter, and pectic matters were 19.4%, 2.6%, and 3.6%, respectively. However, all types of holocellulose
(i.e., α, β, and γ-cellulose) were converted into CMC through carboxymethylation. The synthetic route
and reaction mechanism of synthesizing CMC from holocellulose is depicted in Figure 1.

Table 1. Composition of corn waste residue (Each test was performed at least three times and average
and standard deviation were considered).

Holocellulose
Lignin,

wt%
Fatty and Waxy
Matters, wt%

Pectic Matters,
wt%

Others,
wt%α-Cellulose,

wt%
β-Cellulose,

wt%
γ-Cellulose,

wt%

41.2 ± 1.1 15.2 ± 0.9 14.7 ± 1.0 19.4 ± 1.4 2.6 ± 0.2 3.6 ± 0.3 3.3 ± 0.5

Corn wastes were converted into CMC depending on different particle sizes. The values of DS,
yield (wt%), and molecular weight of the obtained CMC are illustrated in Figures 2–4 respectively.
From Figure 2, it can be seen that the DS of the prepared CMC was greatly dependent on the particle
size of the starting material (holocellulose). Therefore, it shows a trade-off relationship with the particle
size of the holocellulose i.e., the values of DS gradually increased with the decreasing size of the
holocellulose. The highest DS value of 1.83 was obtained from the lowest particle size of 100 µm.

The highest yield (i.e., 182.55%) of CMC was found with the lowest particle size of holocellulose
i.e., 100 µm, whereas the yield declined with increasing particle size of holocellulose (Figure 3).
One might postulate that we have reported a higher yield of CMC in this study. This was highly
desirable as the anhydrous glucose unit (molecular weight 162 g/moL) substituted into the sodium
carboxymethyl groups (molecular weight 80 g/moL) based on the DS value. Therefore, the higher
yield was highly desirable. However, we did a theoretical calculation and compared the data with
the experimental findings. We found that theoretical yield was slightly higher (i.e., 7.0–8.6%) for
theoretical mass yield, which indicated that successful substitution of the hydroxyl groups occurred
by the sodium carboxymethyl groups. This result shows the resemblance with the principle that the
reduced particle generates a larger surface area, which increases the chance of collisions between
reactants and holocellulose. Therefore, the yield of CMC was increased by decreasing the holocellulose
particle sizes [27].
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From Figure 4, it can be noticed that the molecular weight of the prepared CMCs was significantly
increased with the increasing DS value. From Figure 2, it was mentioned that the DS value was
increased with the decreasing of holocellulose particle size. Since the smaller holocellulose particle
size has a greater surface area, the excessive amount of reactants can infiltrate into the holocellulose at
a time. In addition, Wang et al. mentioned that the etherification process significantly relies on the
availability of the activated hydroxyl groups of AGU as well as the approachability of reactants [28].
Thus, higher DS, as well as molecular weight, were obtained due to the increasing number of -OH
groups substituted by the sodium carboxymethyl group. The highest molecular weight of 457,910 Da
was obtained with DS value of 1.83, whereas the lowest molecular weight of 100,388 Da was yielded
with DS value of 0.34, as depicted in Figure 4. The molecular weight of the AGU was 162 g/mol, and the
net gain in the AGU for every substituted sodium carboxymethyl group was 80 g/mol. Likewise,
the carboxymethyl group is weightier than the -OH group, hence, the molecular weight of the CMC
increased [23].
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Figure 2. Degree of substitution of the synthesized CMC depending on varying particle size
of holocellulose.
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3.2. Structural Characterization

Different characterization techniques were used to characterize the synthesized CMC and
holocellulose extracted from corn waste. For example, FTIR spectroscopy was used to analyze
the surface functional groups present in the extracted holocellulose and synthesized CMC (Figure 5).
From the FTIR spectra of the corn wastes powder and holocellulose, a distinct difference was noticed.
Significant differences were observed in the wavenumber in between 1800 and 1000 cm−1. Several
peaks such as at wavenumber 1741 cm−1 (due to C=O stretching), 1637 cm−1 (due to carbonyl stretching
conjugate with aromatic rings), and 1513 cm−1 (due aromatic C=C stretch) were not found in the
extracted holocellulose [29]. Most specifically, peak at wavenumber 1250 cm−1 (due to C-O stretching
vibration) was significantly reduced, and peak at wavenumber 1513 cm−1 (due to aromatic C=C stretch)
was absent in the holocellulose. This phenomenon indicated that the lignin was removed during the
extract process [30]. On the other hand, the wavenumbers at around 1423 and 1640 cm−1 were due to
-CH2 bending and O-H bending vibration of the absorbed water, respectively [31].

From the spectra of CMC, a broad absorption band at 3436 cm−1 was found, which indicated the
presence of -OH group, and a band at 2928 cm−1 was attributed to the C-H stretching vibration [10,32].
In addition, a new and strong wavenumber at 1620 cm−1 was found, which confirmed the stretching
vibration of carboxyl groups (COO−), and a peak at 1424 cm−1 assigned to the salts of carboxyl groups [22].
The peaks at around 1327 and 1116 cm−1 can be assigned to -OH bending vibration and -C-O-C stretching,
respectively. A wavelength of 898 cm−1 was found, which was due to 1 and 4-β glycosides of cellulose [11].

For the characterization of cellulose-based materials, SEM is one of the general techniques for
imaging the microstructure and morphology of the materials. The morphologies of isolated holocellulose
and synthesized CMC were also observed using an optical microscope, depicted in Figure 6. Ribbon
shaped or rod-like morphology was found for the synthesized CMC, which is similar with the reported
literature [33]. Furthermore, from Figure 6, it can also be observed that the surface morphology of
extracted holocellulose is smoother with very low damage. In contrast, the morphology of the prepared
CMC was more extended, rough, and collapsed [34]. In addition, the isolated holocellulose was
further treated with sodium hydroxide during carboxymethylation, thus the ruptured surface was
obtained from the synthesized CMC [35]. From Figure 6, it can be found that the size of the particles of
holocellulose and CMC were in the range of 1.0–3.5 and 1.5–3.5 µm (approximately), respectively.
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XRD analysis is one of the prime methods of physical research. This technique was employed
to investigate the degree of crystallinity before and after the carboxymethylation of cellulose [36].
XRD analysis of the samples is presented in the Figure 7. The obtained peaks of the samples were
analogous to both crystalline and amorphous phases [37]. From the figure, it can be inferred that that
holocellulose is more crystalline than CMC. More clearly, holocellulose gave five peaks at 2θ = 14.2◦,
22.1◦, 27.4◦, 31.6◦, and 45.4◦ and the peaks were sharp, which indicated the presence of more crystalline
phases on its core structure. On the other hand, in the CMC diffractogram, less number of peaks were
found after carboxymethylation in comparison with the diffractogram of holocellulose in Figure 7.
Therefore, the presence of more amorphous structures in the CMC compared to holocellulose can be
seen since the characteristic peaks at 2θ = 14.2◦, 22.1◦, and 27.4◦ became broader and intensity was
reduced significantly. In addition, it can be observed that the typical peak at 2θ = 31.6◦ for extracted
holocellulose disappeared in CMC [9]. On the contrary, the peak at 2θ = 45.4◦ reduced dramatically for
CMC. This was due to the decrease in crystallinity in CMC as holocellulose was transformed from
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the crystalline to highly amorphous phase after carboxymethylation [38]. Furthermore, the peak at
2θ = 14.2◦ still appeared in CMC, which indicated the presence of some sort of crystallinity, although
the peak intensity was not sharp enough as holocellulose. Even though the percentage of crystallinity
of synthesized CMC was not quantitatively determined, it can be supposed that the CMC adopted a
disordered arrangement as compared to isolated holocellulose. This characteristic can be attributed to
the presence of the carboxymethyl moieties which substituted the hydrogen atoms of the hydroxyl
groups of cellulose [39]. Finally, holocellulose was treated with the alkaline solution during the
carboxymethylation process, and as a result they swelled and showed tension with neighboring
crystallites of cellulose molecules [40].
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TGA is a technique by which the thermal stability of a material can be analyzed, where the material
is decomposed by the heat, and bonds are broken within the molecule [41]. During the test, when the
maximum degradation occurs at a certain temperate, it is considered as an indicator of the stability
of the material. The TGA graph of holocellulose and CMC is shown in Figure 8. From the figure,
the weight loss of moisture, volatile compounds, and carbohydrate polymers during the carbonization
phase can be observed.

According to the figure, 2.3% weight loss was observed in the case of holocellulose. This was
due to evaporation of absorbed water. Lin et al. [42] reported that the decomposition temperatures
of hemicellulose and cellulose were in the ranges of 200–315 ◦C and 360–400 ◦C, respectively. In our
case, we observed the degradation stage of hemicellulose and cellulose in the ranges of ~300 ◦C and
~380–400 ◦C, respectively. The weight loss of holocellulose was around 79% in the temperature range
of 340 to 387 ◦C, but holocellulose started to degrade at around 300 ◦C, which was due to the thermal
decomposition of glycoside linkages of cellulose (i.e., hemicellulose). In addition, the final change was
observed after 380 ◦C, which was due to the decomposition of α-cellulose [43,44].
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On the other hand, CMC contained about 11.0% moisture. This primarily indicates that the CMC
was more hygroscopic, and this is basically due to the presence of the carboxyl groups. The main
decomposition of synthesized CMC was initiated at above 100 ◦C. This was due to the release of
moisture from the CMC by the breaking of the hydrogen bond. Subsequently, the second and third
stages decomposition was held between 283 and 318 ◦C. Finally, the weight loss was about 40%,
which was probably due to the depolymerization of CMC by forming H2O, CO, CO2, and CH4 [45].
In the temperature of 283 and 318 ◦C, CMC was decarboxylated as it contained COO− groups in
their structure. In addition, as shown in Figure 8, the thermal decomposition temperature further
occurred from about 318 to 377 ◦C, which indicated a further loss of the mass up to 42.2%. The rate of
weight loss gradually enhanced with the increase in temperature. This indicated the presence of more
non-volatile fraction in CMC. More clearly, from the previous discussion, we confirmed that CMC had
more irregular fractions of the amorphous structure, together with the sodium carboxymethyl unit.
This unit was quite tough to break down at the referred temperature. Therefore, we assume that CMC
should have higher stability than holocellulose (mass basis). This was mainly due to the presence
of sodium ions in the residual mass, the degradation is quite tough. Henceforth, the mass residual
mass (in the form of char) was expected to increase significantly, together with higher degradation
temperature [46,47]. Therefore, in our case, we found that around 42.2% residual mass was even at a
higher temperature compared to the holocellulose residual mass (i.e., ~21%).

3.3. Feasibility as Pharmaceuticals Excipient

Generally, microcrystalline cellulose is being used as excipient, which is extracted from hardwood
and also from purified cotton. This process is considered an expensive process. Therefore, investigations
are going on to find out the cheaper resources like CMC [19]. In general, the excipient has no medicinal
functions. Excipients are being utilized in many ways in the pharmaceutical industries. They can be
used as a binder, disintegrator, coating material, diluent, lubricant, and so on [19]. Especially, during
the manufacturing of tablets, physical parameters of the excipient plays a crucial role. Herein, we
compared the physicochemical characteristics of synthesized CMC with commercial CMC (as excipient).
The physicochemical characteristics of synthesized CMC powder and commercial CMC are shown in
Table 2. Moisture content plays a crucial role in the case of flow properties of the powder. The effect
of moisture on powder flowability depends on the amount of water and its distribution. It is quite
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common that the flowability of the powder often decreases with the increase of moisture content.
Because a higher amount of water will increase the thickness of the adsorbed liquid layer, it increases
the strength of liquid bridges. As a result, the powder becomes more cohesive and tends to form
agglomerates [48]. It is clear from the table that the physicochemical properties of synthesized CMC
power remained within acceptable limits with not more than 10% variations [49]. However, the bulk
density rendered an estimate of the ability of a material to flow, which is related to compressibility.

Table 2. Physicochemical characteristics of synthesized CMC as an excipient.

Characteristics CMC Powder (with DS 1.83) CMC Powder (Excipient Grade with DS 0.9)

Moisture content 1.36 ± 0.00 0.94 ± 0.01
Bulk density (g/mL) 0.50 ± 0.004 0.52 ± 0.003
Tap density (g/mL) 0.51 ± 0.003 0.55 ± 0.001
True density (g/mL) 1.75 ± 0.007 1.84 ± 0.005

Porosity 70.82 80.03
Angle of repose 38.55 ± 1.70 41.27±1.20

Carr’s index 8.14 ± 1.20 7.24 ± 1.10
Hausner’s ratio 1.37 ± 0.010 1.18 ± 0.004

Each test was performed at least three times and average and standard deviation were considered.
On the other hand, the tap density is a measure of the property of any sample of how well a powder

can be packed in a confined space on recurring tapping. Bulk and tap density values of synthesized
CMC showed almost similar behavior with the commercial CMC, as depicted in Table 2. It is generally
considered that the better the potential for a material to flow and to re-arrange under compression,
the higher the bulk and tapped densities [50]. In general, the higher true density of a powder reflects
the better compressibility. The true density of synthesized CMC powder was approximately the same
compared with commercial CMC. The total porosity or void fraction of a powder is the measurement
of the void or empty space between the particles as well as pores within the particles of a material.
In addition, it is a fraction of the volume of the void over the total volume, between 0–1 or as a
percentage between 0–100%. The porosity value of the synthesized CMC was similar to the commercial
CMC, which reveals the presence of poly-sized particles. Hence, synthesized CMC can easily be
compressed during tablet making. The angle of repose of powder is another important criterion
that gives a qualitative assessment of its internal and cohesive frictions. Angles of up to 40◦ show
reasonable flow potential of the solid powders. On the other hand, samples with angles greater than
50◦ exhibit poor or absent flow [51]. In this study, the angle of repose of the synthesized CMC was
found to be 38.5, which indicates there was no significant difference when compared with commercial
CMC. To evaluate the flow properties of the powder, the Carr index and Hausner ratio have been
commonly used. Carr’s compressibility index exerts a clue of how much powder can be compressed,
whereas Hausner index measures the cohesion between particles and the particle flows inversely with
the values of the Carr index and Hausner ratio [50,52]. In the case of Carr’s index, values ranged
between 5 to 10, 12 to 16, 18 to 21, and 23 to 28, indicating excellent, good, fair and poor flow properties
of the material, respectively [50]. The Carr’s index of the synthesized CMC powder lies in the range
of 5 to 10, which indicates its excellent flow properties. By contrast, the Hausner ratio (<1.20) often
indicates good flowability of material, whereas a value of 1.5 or higher suggests a poor flow display by
the material [52]. The Hausner ratio of the synthesized CMC showed a good flow property with value
at around 1.3 in comparison with commercial CMC. Finally, it can be inferred from the discussion that
the newly synthesized CMC from the agro waste can be a great source of commercial excipient.

4. Conclusions

CMC was successfully synthesized from extracted holocellulose. The highest yield of 182.55%
was obtained with lower particle size (100 µm) of the holocellulose. The higher yield was reported
due to the smaller particle sizes with DS of 1.83, which significantly contributed to incorporate
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more carboxylic groups in the CMC. Hence, it was used as a starting material for CMC synthesis.
Different characterization analyses showed that CMC was successfully synthesized with ideal structural,
morphological, as well as thermal properties. It was also found that the synthesized CMC had a good
pharmaceutical excipient compatibility with a commercial excipient. The synthesized CMC with DS
value of 1.83 can be a promising pharmaceutical excipient than other CMC bases excipients. Hence, this
study has shown an efficient way of converting corn waste (lignocellulosic biomass) into value-added
material, which can be a great aspect to be used as a pharmaceutical excipient, together with further
applicability in real industrial application such as tablet making and other fields.
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