
processes

Article

Research on State Recognition and Failure Prediction
of Axial Piston Pump Based on Performance
Degradation Data

Rui Guo 1,2,* , Zhiqian Zhao 1,3, Saiyu Huo 1, Zhijie Jin 3, Jingyi Zhao 2,4 and Dianrong Gao 1,4

1 Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control,
Yanshan University, Qinhuangdao 066004, China; zzq623310996@163.com (Z.Z.);
hsy18034414817@163.com (S.H.); gaodr@ysu.edu.cn (D.G.)

2 The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University,
Hangzhou 310027, China; zjy@ysu.edu.cn

3 Key Laboratory of Advanced Forging and Stamping Technology and Science, Yanshan University,
Qinhuangdao 066004, China; jzj18830490269@126.com

4 Hebei Key Laboratory of Special Delivery Equipment, Yanshan University, Qinhuangdao 066004, China
* Correspondence: guorui@ysu.edu.cn

Received: 25 March 2020; Accepted: 15 May 2020; Published: 20 May 2020
����������
�������

Abstract: Degradation state recognition and failure prediction are the key steps of prognostic and
health management (PHM), which directly affect the reliability of the equipment and the selection of
preventive maintenance strategy. Given the problem that the distinction between feature vectors is not
obvious and the accuracy of fault prediction is low, a method based on multi-class Gaussian process
classification and Gaussian process regression (GPR) is studied by the vibration signal and flow signal
in six degraded states of the axial piston pump. For degradation state recognition, the variational
mode decomposition (VMD) was used to decompose the vibration signal, and obtaining intrinsic
mode function (IMF) components with rich information. Subsequently, multi-scale permutation
entropy (MPE) was employed to select feature vectors of IMF components in different states. In order
to reduce feature dimensions and improve recognition performance, ReliefF was used to select
feature vectors with high weight, then a method based on multi-class Gaussian process classification
was established by using these feature vectors to realize the research on the degradation state
recognition. The test results demonstrate that the method can effectively identify the degradation
state. Its recognition rate reaches 98.9%. Besides, for failure prediction, through the analysis of
the wear process and wear mechanism of the valve plate, the curve fitting between the flow and
the wear amount was performed by GPR to realize the failure prediction of the axial piston pump.
Depending on the evaluation index, the GPR obtained a better failure prediction effect. The results
will assist in the realization of predictive maintenance, and which also has significant practical value
in project items.

Keywords: axial piston pump; degraded state recognition; failure prediction; multi-scale permutation
entropy; multi-class Gaussian process classification; Gaussian process regression

1. Introduction

As the most commonly used hydraulic pump, the axial piston pump directly affects the stability
of the entire hydraulic system. Therefore, it is extremely important to study state identification and
failure prediction [1,2]. The essence of failure prediction and state identification for equipment is
to extract the feature vectors that can reflect the degradation state of the equipment. The failure
time of the equipment can be predicted according to the change of the feature vectors, and the state
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identification can be realized by distinguishing the characteristic variables in different states. Due to
the compressibility of the hydraulic fluid, the fluid-solid coupling vibration, the hydraulic circuit
and the inherent mechanical shock of the pump body during working, the characteristics about
strong non-stationary and non-linear are exhibited from signals [3], so the degradation feature vectors
extracted in these signals become the key to status recognition and failure prediction. By studying
the degradation state identification and fault prediction of axial piston pump, the occurrence of the
failure can be predicted as well as prevented, unnecessary and expensive preventive maintenance can
be eliminated, the maintenance plan can be optimized, the lead time of spare parts and resources can
be reduced, and the cost can be greatly saved [4].

For studies of the state recognition and failure prediction of equipment, the literature [5] proposed
a feature extraction method of the gear vibration signals by combining wavelet coefficients and local
Gaussian correlation. The multifractal detrended fluctuation analysis (MF-DFA) method was used
in literature [6] to select the characteristics for the process of gearbox degradation. The literature [7]
proposed a method based on S transform relative spectrum entropy to extract the degraded features
and the weighted gray correlation analysis method was used to realize the degraded state recognition
of the hydraulic pump, the effectiveness of the method has been verified by analyzing the wear faults
of the sliding shoes and the loose slipper. Talking about the literature [8], a fault diagnosis method
based on redundant second-generation wavelet packet transform (RSGWPT), neighborhood rough
set (NRS) and support vector machine (SVM) was proposed. In the literature [9], the Kernel Principal
component analysis (KPCA) method served to obtain the new characteristic variables based wavelet
correlation feature scale entropy (WCFSE) that are used as the input for training, to establish a hidden
Semi–Markov model (HSMM), which achieving degraded state recognition and failure prediction.

Most of the research methods for state identification and failure prediction of piston pump
are based on the methods applicable to rotating machinery. Gao et al. [10] studied the state
monitoring method for piston pump based on wavelet packet analysis. Sun et al. [11] combined
Local characteristic-scale decomposition (LCD) and composite spectral entropy, then applied it to
the degenerative feature extraction of the axial piston pump. Wang et al. [12] evaluated the fusion of
vibration signal and pressure signal to extract feature vectors, then used principal component analysis
(PCA) and back propagation (BP) neural network to realize the fault diagnosis of loose slipper with
pumps. Wu et al. [13] used a Bayesian network to provide a piston pump fault diagnosis method based
on multi-feature fusion of evidence theory. Zhang et al. [14] decomposed the vibration signals into
a set of intrinsic mode functions (IMFs) through the ensemble empirical mode decomposition (EEMD),
selected the first several IMFs to calculate permutation entropy (PE) values as the feature vectors,
and then used SVM to classify the fault type as well as fault severity. In the same way, Lu et al. [15] used
the EEMD method to decompose pressure signal, selected useful IMFs through correlation coefficient.
Principal component analysis (PCA) was then employed to reduce the dimensionality of the original
feature vectors. Finally, support vector regression (SVR) is constructed to identify different fault sizes
of the aviation pump.

Aiming at the nonlinear dynamic characteristics of degraded signals, there are many methods in
the field of failure prediction and state recognition, such as correlation dimension [16], approximate
entropy [17,18], sample entropy [19], fuzzy entropy [20], PE [21], all of them have achieved some
results. However, each of these methods has its shortcomings. When calculating the correlation
dimension of detail component, there are problems of large amount of calculation and long calculation
time [22]. Approximate entropy and sample entropy are both quantitative statistical indexes of signal
complexity [23]. If there is a small change near the threshold parameter, different results will be caused
by the hard threshold criterion, which affecting the statistical stability. The definition of fuzzy entropy
is built on the concept of membership function, which is usually difficult and inaccurate [24]. PE only
detects the randomness and dynamic mutation of time series on a single scale [25]. Compared with
PE, multiscale permutation entropy (MPE) is more robust. MPE is used to measure the complexity
and randomness of time series at different scales [26]. During the operation of the axial piston pump,
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the randomness of vibration signal and dynamic behavior will change due to the different wear degrees
of valve plates. Therefore, MPE, as feature vector, is used to measure the random change and the
dynamic mutation of vibration signals.

After extracting the degraded features, it is necessary to reduce the dimension of the features,
because these features can not be guaranteed to be equally useful in reflecting the degraded
state. In addition, the calculation burden will be increased because of too much input variables.
Common methods of dimensionality reduction include PCA [27], lasso [28] and KPCA [29].
ReleifF [30,31] finds the features with strong classification ability without losing the original physical
meaning, which is beneficial to distinguish the nearest neighbor of the same kind and different kinds.
Therefore, ReleifF is introduced to obtain sensitive degraded features in MPE.

For state recognition, the popular classification methods are decision tree [32], k-nearest neighbor
(KNN) [33], artificial neural network (ANN) [34], SVM [35], these algorithms have their advantages
and disadvantages in sample classification, among which SVM based on kernel function is the most
popular because kernel method has incomparable advantages in dealing with high-dimensional
and nonlinear problems [36]. In recent years, the Gaussian process classification algorithm based
on kernel function has also caught the attention of many researchers. Compared with other kernel
function classifiers, the advantage of the Gaussian process classifier is to use a probability model [37],
which outputs a probability instead of certain value. The Gaussian classifier is a parameter-free
model, because the parameters are automatically obtained in the algorithm solution process [38].
Gaussian process classifier that can only be used to solve the two classification problems directly
is similar to the SVM classifier. So how to build multi-class Gaussian process classification based
on binary Gaussian process classification is of great significance. For failure prediction, compared
with other regression models, the advantage of Gaussian process regression (GPR) [39] is that the
model is based on Bayesian framework, and the predicted value is also probabilistic, so the confidence
interval can be calculated, and then the prediction can be refitted in a useful region according to
this information.

In this paper, experimental research on different wear state of the valve plate for axial piston pump
was carried out. Aiming at the state recognition of axial piston pump, this paper used in variational
mode decomposition (VMD) method to select the best IMF to remove the influence of noise by kurtosis
index, then the suitable feature vectors were obtained by MPE and ReliefF. Finally, the multi-class
Gaussian process classification was used to realize state identification. Aiming at the failure prediction
for axial piston pump, the VMD was utilized to process the experimental data of the flow signal,
and the average flow of selected best IMF was obtained. Finally, the GPR method was utilized to
fit the prediction curve of the relationship between the wear of the valve plate and the flow rate.
By comparing with the actual curve, a method of GPR for predicting failure was obtained under the
wear conditions of the valve plates. The technical route of this paper is given in Figure 1.
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2. Theoretical Background

2.1. Selection of Degenerative Characteristics of Piston Pump

The signals can be adaptively decomposed into several IMFs with different center frequencies
by the VMD. The analysis and processing of the original signal are essentially the calculation of the
extreme value problem [40]. The calculation process is divided into two parts [41].

• Establishment of variational problems.

The analytical signals of each component function µk(t) are obtained by Hilbert transform and the
corresponding unilateral spectrum is calculated:

ϕ(t) = [δ(t) +
j

πt
]∗µk(t) (1)

where, the meaning of * is convolution operation. By parsing the signals in each component,
center frequencyis e−jωkt is mixed and estimated. Adjust the spectrum of each component to its
respective baseband:

σ(t) = ϕ(t) ∗ e−jωkt (2)

Estimating the frequency range of each component signal, the variational problem when
constrained is as follows:

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ (t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2
}

s.t. ∑
k

uk = f

 (3)

where, {uk} = {u1, u2, ..., un}, {ωk} = {ω1, ω2, ..., ωn}.
• Analytical processing.

Introducing the Lagrange multipliers λ(t) and the penalty factor α to transform the constrained
variational problem into an unconstrained variational problem. Where λ(t) can keep the
constraints rigorous, α can ensure the reconstruction accuracy of the signals when the signals
contained Gaussian noise. The extended Lagrangian expression is as follows:

L ({uk} , {ωk} , λ) = α ∑
k

∥∥∥∂t

[(
δ (t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥2

2
+∥∥∥∥ f (t)−∑

k
uk(t)

∥∥∥∥2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (4)

Solving it by the alternating directions method of multipliers, alternately update µn+1
k , ωn+1

k and
λn+1

t to find the critical point in the extended Lagrangian expression that is neither a maximum
nor a minimum. The task consists of the following steps:

a. Initialize {µ1
k}, {ω

1
k}, λ1, and n = 1.

b. Update µk, ωk, according to Equations (5) and (6).

un+1
k (ω) =

f (ω)− ∑
i 6=k

ui(ω) + λ(ω)
2

1 + 2α(ω−ωk)
2 (5)

ωn+1
k =

∫ ∞
0 ω|uk(ω)|2dω∫ ∞

0 |uk(ω)|2dω
(6)

c. Update λ, according to λn+1 = λn + τ( f )−∑ µn+1
k .
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d. Repeat steps b and c, for the given discrimination precision e > 0, If stop iteration and
get IMFs.

∑
k

∥∥∥un+1
k − un

k

∥∥∥2

2

∑
k

∥∥un
k

∥∥2
2

< e (7)

In this paper, a MPE method was proposed based on PE, which can select multiple time series of
different lengths and solve the entropy value [21,25]. The principle is as follows:

The time series x(i) are processed in multi-scale to obtain multi-scale sequence y(l)j .

y(l)j =
1
l

jl

∑
i=(j−1)l+1

xi (8)

where l represented the scale factor, l = 1,2,...,[N/l], [N/l] represented the rounding of N/l. The l
determines the multi-scale degree of the time series. When l = 1, the multi-scaled time series obtained
is the original time series.

After dividing the time series into different data lengths, the MPE can be obtained by calculating
the PE of all time series of different lengths [42]. The length of the divided time series does not affect
its entropy calculation, so the value of the scale factor l is generally greater than or equal to 10.

2.2. Binary Gaussian Process Classification

Let the training sample be D = (X, y), where X are the sample set of input features and
y = {y1, y2..., yi} are the category Labels. The general process of Gaussian process classification [43] is
as follows:

Suppose the prior distribution of the implicit function f (X) = { f1, f2,..., fi} is normal distribution, so:

p( f |X) : N( f |m, K) (9)

where K is an m-order covariance matrix that is symmetric and positive definite, Hyper parameters
of K (∗), estimated by maximum likelihood method, m = E[ f (X)] is expressed as its mean function,
Potential function value is fi = f (Xi), The class label y is independently identically distribution.
The probability that the sample Xi belongs to the class label in the Binary Classification of Gauss
Process can be expressed as:

p(yi| fi) = Sig(yi fi) (10)

The function of the Sig(∗) is to convert the output value into a probability to find the probability
that the input data belongs to a certain class. Sig(∗) is a response function whose value is between
intervals [0, 1], thereby obtaining a likelihood function:

p(y| f ) =
n

∏
i=1

p(yi| fi) =
n

∏
i=1

Sig(yi fi) (11)

The posterior probability of f can be obtained by Bayesian formula:

p( f |X, y) =
p(y| f )p( f |X)

P(y|X) (12)

In summary, for the specified data X#, its posterior probability of f # is expressed as:

p( f #|X, y, X#) =
∫

p( f #| f , X, X#)p( f |X, y)d f (13)
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Furthermore, the classification prediction probability corresponding to f # is deduced as:

p(y#|X, X#, y) =
∫

Sig(y# f #)p( f |X, y)d f # (14)

In the GPC model, p(y#|X, X#, y) = 0.5 is often used as the classification boundary. When y > 0.5,
y# = +1, on the contrary, y# = −1.

2.3. Gaussian Process Regression

Let D = {(xi, yi)|i = 1, 2, ...n} = (X, y) be a known data, where X = (x1, x2, ..., xi) is a matrix of
d×n dimensions, yi is the output data corresponding to it, and y is a vector set of yi. The purpose of
the regression process is to establish a mapping relationship between the vector set X∗ and the vector
set y∗ by analyzing the known data set, and finally realize the prediction of the matching the unknown
input value [44]. The equation of Gaussian process is:

f (X) ∼ GP(m(X), k(X, X′)) (15)

where, m(X) is mean function and k(X, X′) is the kernel function, k(X, X′) = E[( f (X) − m(X))
( f (X′)−m(X′))].

To consider the influence of noise on the observation target y, establish a general model of
GPR [45]:

y ∼ f (X) + ε (16)

where ε is an independent Gaussian white noise, which is Gaussian-distributed, with a mean of 0 and
a variance of σ2. Since the noiseis white noise independent of f (X), when f (X) obeys the Gaussian
distribution, y also obeys the Gaussian distribution, then the set of joint distributions can form a
Gaussian process, which can be expressed as:

y ∼ GP(m(X), k(X, X′ + σ2
nδij)) (17)

According to the Bayesian principle, GP establishes a priori function in a given data set D,
and converts to a posterior distribution under n given test data sets D1, then the joint Gaussian
distribution between the output vector y of the training data vector X and the output vector y∗ of the
test data X∗ can be expressed as:[

y
y∗

]
∼ N

(
0,

[
K(X, X) + σ2

nI K(X∗, X)T

K(X∗, X) K(X∗, X∗)

])
(18)

This gives a GPR equation, which can be expressed as:

p(y∗
∣∣∣X∗, X, y) = N[K(X∗, X)[K(X, X) + σ2

nI]−1y,

K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗)]

(19)

3. Performance Degradation Test of Axial Piston Pump

The field work picture of the test bench is illustrated in Figure 2. Figure 3 is a hydraulic system
diagram of the performance degradation test about the axial piston pump. The vane pump was used as
a slippage pump to make up oil for the hydraulic system, so as to improve the inadequate self-priming
ability of the axial piston pump when the valve plate was seriously worn. During the test, the vibration
acceleration sensor was placed at the end cover of the piston pump to collect the vibration signal of the
pump. Further, turbine flow meters were installed in the inlet and outlet ports of the piston pump to
collect real-time pump flow signals. In the degradation test of axial piston pump, only the degradation
of the valve plate took place.



Processes 2020, 8, 609 7 of 19

Piston pumpOverflow valve 

Flow meter Vibration sensor

Motor Bell cover

Figure 2. Test bench physical map.

1- Hydraulic oil tank    2- Filter 3-Liquid thermometer 4-Vane pump 5-Stop valve

6-Pressure gauge 7- Pressure sensor 8-Temperature sensor 9-Regulating valve 10-Flowmeter

11-Piston pump 12-Vibration sensor  13-proportional relief valve   14-Reversing valve 15-High pressure filter

Figure 3. Hydraulic system diagram of the performance degratation test of the piston pump.

The purpose of the experiment was to investigate the effect of a definite part of the axial piston
pump on the performance degradation. The principal wearing parts of the valve plate are the
auxiliary support surface of the high pressure area and the transition area of the distribution slots.
In this experiment, different degradation states were obtained by wearing the transition area of the
distribution slots with a grinding wheel. The degree of wearing will vary with the wear time.

In order to simulate the actual process that the degradation of valve plate affects the performance,
the first valve plate was not treated, and the other five identical valve plates were artificially treated
with different degrees of wear, then the different degradation states of valve plate were obtained.
The valve plates with different wear degrees are showed in Figure 4. Finally, the experiment was
carried out by changing the valve plate with different degrees of wear. In the experiment of each valve
plate, the pilot relief valve was adjusted to make the system pressure 15 MPa all the time, and the
sampling frequency of the signal acquisition system was set to 20 kHz and the sampling time to 8 s.
In this way, vibration signals and flow signals of six degraded states were obtained.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Valve plates in six different wear states. (a) Normal valve plate and local amplification of
its transition area. (b) No. 1 valve plate and local amplification of its transition area. (c) No. 2 valve
plate and local amplification of its transition area. (d) No. 3 valve plate and local amplification of its
transition area. (e) No. 4 valve plate and local amplification of its transition area. (f) No. 5 valve plate
and local amplification of its transition area.

From the wearing stages of the valve plates, it is seen that there are plough-like stripes on the
working face of the valve plate. Wear degree of valve plate was measured by the profilometer as
showed in Figure 5.

profilometer

stylus

valve plate

Figure 5. The profilometer measures the wear degree of valve plate on site.

The stylus of the profilometer performed the slip measurement on the surface of the valve plate
to map the shape of the surface contour curve. The depth of the working surface of the valve plate in
different degraded states is shown in Table 1.
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Table 1. Wear scale of five different degrees of wear valve plates.

Wear Distribution Plate No. 1 No. 2 No. 3 No. 4 No. 5

Maximum wear (µm) 2 7 12 18 22
Average wear (µm) 0.67 2.33 4 6 7.3

4. Test Data Processing Of Vibration Signals

4.1. VMD-Based Test Data Processing

In this paper, the value of K in the VMD algorithm was set by observation method [46], and the
center frequency of each component of the vibration signals was observed. If the center of gravity
about the two components are small, it is deemed to be over-decomposed. Take the vibration signal
when the valve plate was not worn as an example. When different values were taken by K, the center
frequency of each IMF component was decomposed by VMD is given in Table 2.

Table 2. Center frequencies corresponding to different K values.

K Center Frequency

2 289 1484 – – – – –
3 288 1061 2194 – – – –
4 195 341 1451 2261 – – –
5 195 341 1068 1843 2608 – –
6 195 341 1039 1573 2208 2880 –
7 184 339 858 1421 2177 2880 2883

It is be seen from the above table that when K = 7, an over-decomposition phenomenon with
a similar center frequency occured, so the value of K is 6. Figure 6 shows a VMD exploded view of six
status signals.

The kurtosis index [47] is a parameter commonly used to reflect characteristics of the time domain,
which could well reflect the impact characteristics of vibration signals, it is defined as:

Kv =
1
N

N

∑
i=1

(|xi| − x̄)4/δ4
x (20)

where, xi is the signal value, x̄ is the signal mean value, N is the sampling length, and δx is the standard
deviation. Then kurtosis index was used to screen each IMF component of the vibration signals in six
states, and selected the component with the largest kurtosis value. Kurtosis values of IMFs about the
six states are shown in Table 3.

Table 3. Kurtosis values of the modal components of the six states.

Status of Valve Plate IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Normal 3.9203 3.8484 4.1237 3.9698 4.0062 4.0229
No. 1 2.0680 2.1577 2.2345 2.1181 3.4882 3.5078
No. 2 2.0651 3.1914 1.5823 2.9004 2.4964 2.3559
No. 3 3.6037 1.6157 2.3695 2.6594 1.5350 1.5569
No. 4 1.8410 2.7826 1.6882 1.9628 2.3981 2.5837
No. 5 3.1968 3.0251 3.0395 3.6564 1.6581 3.1946

From the above table, the magnitude of each IMF component is seen in the 6 states. We selected
the IMF3 of the normal valve plate’s vibration signal, the IMF6 of the No. 1 wear state, the IMF2 of the
No. 2 wear degree, the IMF1 of the No. 3 wear degree, the IMF2 of the No. 4 wear degree, and the
IMF1 of the No. 5 wear degree.
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Figure 6. VMD decomposition results of vibration signals in six states.

4.2. Feature Extraction Method Based on MPE

After the VMD and the kurtosis values processing, the selected IMFs in six degraded states were
analyzed by MPE to extract feature vectors. Two key parameters of MPE, delay time parameter λ and
embedding dimension m, were determined by mutual information and Cao’s method [48].

When the mutual information function obtained the minimum value for the first time,
the corresponding time was selected as the value of delay time λ. The relationship between the
delay time and the mutual information about selected IMFs is shown in Figure 7.

It is seen from Figure 7 that when the value of delay time was 1, the mutual information obtained
the minimum value for the first time, so the delay time λ = 1. After determining the value, Cao’s
method was used to select the value of embedding dimension m. The result is shown in Figure 8.
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Figure 7. Relation of mutual information and delay time.
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Figure 8. The curve of the embedding dimension.

As could be observed in Figure 8 when m ≥ 6, the value of E1(m) gradually became stable, so the
embedding dimension m was taken as 6. Therefore, we analyzed the selected IMFs by MPE. Take λ = 1,
m = 6, and selected the largest scale factor l to be 10. The MPE in different states is shown in Figure 9:
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Figure 9. MPE in different degenerate states.

It can be observed in the figure that with the increase of scale factor, the degradation states of
different degrees have obvious difference. The higher the degradation degree was, the higher the MPE
value was. In the same state, with the increase of scale factor, the randomness and complexity of time
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series decreased, and the values of MPE tended to change smoothly. MPE distinguished the signals of
different degraded state, so it was used as feature vectors to identify the state of the valve plate.

If 10 feature vectors are utilized to training, information redundancy will be caused and the
training will be time-consuming. Therefore, the weights of feature vectors were calculated by using
the ReliefF. The two feature vectors with the highest weight were selected, the results are shown in
Figure 10. It is seen from the figure that different degradation states distinguish obviously.
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Figure 10. The result of feature vector selection.

4.3. Axial Piston Pump State Identification Based on Multi-Class Gaussian Process Classification

In this paper, multi-class Gaussian process classification model [49] was proposed. The essence
of this classification model is to convert C different types of multi-classification into the sum of
C two-category.

The training set D = (X, y) and test data X∗ are assumed, where X = [x1, x2, ..., xc]T,
y = [y1, y2, ..., yc]T, the test data X∗ is respectively input into C two-class classifiers. Thereby obtaining C
prediction probabilities, then the maximum prediction probability can be obtained from it. This maximum
prediction probability means that X∗ belongs to category(k). The specific steps are as follows:

a. In the training phase of the binary Gaussian process classification, the eigenvector data of the
normal valve plate is marked as yi = 1, the others are marked as yi = −1. The first two-class
classifier can be obtained by the Gaussian processes for binary classification used in Section 2.2.

b. The value of K is defined from 2 to 6 in turning. The training data of class K is indicated as
yi = 1 and the other five training data are marked as K-class members of yi = −1. Then, we get
the training model of classifiers with different wear degrees, and finally six two-class classifiers
are obtained.

c. The probability p∗k of the test data X∗ belonging to the class K can be obtained by
the above-mentioned six two-class classifiers respectively, and then a probability vector
P∗ = (p∗1 , p∗2 , ..., p∗k ) is obtained. Finally, X∗ can be classified as category (K) by maximum
probability, which can be found from P∗.

In this paper, the feature vectors of vibration signals after VMD and MPE processing are selected.
50 sets of data samples were selected from each degradation state, 20 sets of data were used as training
sets for multi-class Gaussian process classification model and 30 sets of data were used to test the
accuracy of the model. Table 4 is a statistical table of classification accuracy rate.
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Table 4. Recognition accuracy of multi-class Gaussian process classification.

Number of Samples Number of Test Samples Identify the Number Recognition Accuracy

Normal 20 30 29 0.967
No. 1 20 30 29 0.967
No. 2 20 30 30 1
No. 3 20 30 30 1
No. 4 20 30 30 1
No. 5 20 30 30 1

From Table 4, only in the normal data and the No. 1 data, there is an error in the hydraulic pump
data, but overall it has a good recognition effect. The recognition accuracy of multi-class Gaussian
process classification is 98.9% (178/180).

In the same test environment and the same data, this paper introduced BP neural network [50]
and SVM [51] method, compared the recognition accuracy and decision time with multi-class Gaussian
process classification. The BP neural network is selected as three layers (two input neurons, nine hidden
neurons, six output neurons). The kernel function of SVM is RBF, and two important parameters of
SVM, penalty coefficient and gamma, are obtained by cross validation. Penalty coefficient is 4 and
gamma is 0.1. The results are shown in the Table 5:

Table 5. Comparison of degradation state recognition results.

Classification Method Correct Identifications Recognition Accuracy (%) Decision Time (s)

back propagation (BP)
neural network 167 92.8 3.135

support vector machine (SVM) 171 95.0 1.903
Multi-class Gaussian
process classification 178 98.9 1.257

Table 6. A comprehensive study between the current work and some recent publications.

Reference Feature
Extraction Method

Feature
Reduction Method Classification Technique Recognition

Rate (%)

[6]

empirical mode
decomposition (EMD),

wavelet transform (WT),
multifractal detrended

fluctuation analysis
(MF-DFA)

– Mahalanobis
distance criterion 94.4–100

[7]
Smooth Processing,
Transform Relative
Spectrum Entropy

– weighted grey
correlation 88.8

[8]

redundant
second-generation

wavelet packet
transform (RSGWPT)

neighborhood
rough set (NRS) SVM 93.9

[9]
wavelet correlation

feature scale
entropy (WCFSE)

Kernel Principal
component

analysis (KPCA)

hidden
Semi–Markov

model(HSMM)
90

[12]
WT, time domain,
frequency domain,

time-frequency domain

principal component
analysis (PCA) BP neural network 89.4–94.4

[14]

ensemble empirical
mode decomposition

(EEMD),
Permutation entropy

– SVM 93.4–98.3

[15]

EEMD, correlation
coefficient method,

time domain,
frequency domain,

time-frequency domain

PCA support vector
regression (SVR) 97.8–100

Present work VMD, Kurtosis and MPE ReliefF multi-class Gaussian
process classification 98.9

It can be seen from the table that the accuracy of BP neural network was the lowest, which was
92.8%, followed by that of SVM, which was 95.0%. Compared with the two algorithms, the accuracy of
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multi-class Gaussian process classification was more accurate. In terms of decision time, BP neural
network took 3.135 s, SVM took 1.903 s, and multi-classification method based on Gaussian process
took 1.257 s, so the running time of multi-class Gaussian process classification was the shortest.
On the whole, no matter the decision time or recognition accuracy, the multi-class Gaussian process
classification was more effective and comprehensive, which provides a new method for the degradation
state identification of axial piston pump. In order to further prove the superiority and effectiveness of
the methods proposed in this paper, some comparisons between the present work and the methods
mentioned in the above literature using different methods were done. The comparative result is shown
in Table 6.

The comparison results in Table 6 show that multi-class Gaussian process classification combined
with VMD, MPE and ReliefF is a promising method for degradation state recognition.

5. Test Data Processing of Flow Signals

In the working process of hydraulic pump, the wear between the valve plate and the cylinder
block will gradually increase with the increase of time, and irregular scratches will appear on the cross
section of the valve plate and the cylinder block to increase the surface roughness. This results in poor
coordination between the cylinder block and the valve plate, which can not form a stable and uniform
oil film, and then under the action of high pressure, hydraulic oil leakage occurs, which increases the
leakage flow rate. The relationship between the leakage flow caused by the wear of the valve plate and
the cylinder block is calculated according to the following formula.

When the number of pistons in a piston pump is odd, the number of pistons that suck and
discharge oil at different times is constantly changing, and the wrap angle of the oil distribution belt is
also different [52]. When there are (z + 1)/2 pistons for oil discharge, the actual wrap φ1 angle of the
oil seal belts is calculated as follows:

φ1 =
z−1

2
α + α0 (21)

When there are (z − 1)/2 pistons for oil discharge, the actual wrap angle of the oil seal belts is
calculated as follows:

φ2 =
z− 3

2
α + α0 (22)

Then the average wrap angle is as follows:

φp =
z− 2

2
α + α0 (23)

where z is number of plungers, α0 is wrapping angle of oil hole in piston chamber, α is the piston
spacing angle. The formula for the total leakage of the axial piston pump is as follows:

q=
ϕ1δ3 pb

12µ ln R1
R2

+
ϕ1δ3 pb

12µ ln R3
R4

(24)

where δ is wear volume, µ is dynamic viscosity of hydraulic oil, pb is pressure at the outlet or suction
port. φ1 is actually wrapping angle of oil seal belt, R1, R2, R3 and R4 are sizes of inner and outer sealing
oil belt of the valve plates.

Axial piston pump of 10MCY14-1B model was used, the actual sizes of valve plate are: R1 = 25 mm,
R2 = 23 mm, R3 = 19 mm, R4 = 17 mm, Z = 7, α0 = 60. By using the pressure sensor, the inlet pressure of
axial piston pumps was 0.3 MPa. The flow signals were collected when working pressure of the axial
piston pump was 15 MPa. After the end of test, the valve plates were removed and cleaned. The wear
of valve plates were measured by a profiler, the measurement results are showed in Table 1.

Since the flow signal of the piston pump also has noise, the leakage flow signals with different
wear degrees are denoised by VMD. The processing results are shown in Figure 11.
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Figure 11. VMD decomposition results of flow signals in six states.

Then kurtosis index was used to filter the IMF component of the flow signal in the six states,
and IMF components with the largest kurtosis value were selected. The average flow of the selected
IMF components were calculated, and the results are shown in Table 7.

Table 7. Average flow in 6 states.

Valve Plate Normal No. 1 No. 2 No. 3 No. 4 No. 5

Average flow (L/h) 72.1869 72.2447 72.5100 73.8853 76.8569 81.2677
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Failure Prediction of Axial Piston Pump

When the volumetric efficiency decreased by 5%, the axial piston pump failed. The fit curve of
GPR is used to predict the wear of the valve plate in the failure of the piston pump. The result is shown
in Figure 12. According to the Equation (24), the relationship between the wear of valve plates and the
flow was established. The actual curve is as shown in Figure 12.
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Figure 12. Gaussian Process regression fit curve.

In order to evaluate the estimation effect, this paper introduced three evaluation indexes: square
sum of error (SSE), root mean square error (RMSE) and correlation coefficient R2. The estimation error
of GPR is showed in Table 8. It is seen from Table 8 that the GPR model is ideal for estimating the axial
piston pump leakage flow curve.

Table 8. Gaussian process regression estimation error table.

Evaluation Index SSE RMSE R2

Gaussian regression 0.1114 0.1362 0.9991

According to the performance of 10MCY14-1B piston pump, when the volumetric efficiency
decreased by 5%, the flow rate was 117.19 L/h. It is concluded from Figure 12, according to the
theoretical calculation, that when the axis piston pumps failed, the wear amount of the valve plate was
12.8 µm. According to the fitting curve of Gaussian process regression, when the axis piston pump
failed, the wear amount of the valve plate was 12.4 µm. By comparing the theoretical result with the
predicted result, the Relative error was 3.125%. Therefore, the fitting curve of GPR in this paper had
a good effect on the failure prediction by leakage of the axis piston pump.

6. Conclusions

In this paper, the wear of the valve plate, which is one of the key factors causing the failure of
axial piston pump, is studied. The vibration signals and flow signals of the axial piston pump under
wear conditions are collected by establishing the degradation test-bed. The following conclusions have
been drawn:

a. The combination of VMD, MPE, and ReliefF has obvious advantages in feature extraction.
Moreover, the complexity and time of the operation are decreased by reducing the dimension
of the feature. At the same time, the discrimination of the feature vectors in different degraded
states is very high, and there is almost no overlap of data values.

b. The multi-class Gaussian process classification model is used to realize the state recognition,
which has high accuracy and enriches the research on the vibration signals processing and
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analysis of axial piston pump. In the same test conditions, compared with the BP neural network
and the SVM method, the multi-class Gaussian process classification provides a better recognition
effect and shorter decision time.

c. The mathematical model of the relationship between the flow and the wear of the valve plate is
established by using the GPR, and compared with the actual curve to determine its superiority.
Therefore, the failure prediction by GPR provides a new idea for the research on the relationship
between the wear and failure of axial piston pump.
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