Response Surface Methodology as a Useful Tool for Evaluation of the Recovery of the Fluoroquinolones from Plasma—The Study on Applicability of Box-Behnken Design, Central Composite Design and Doehlert Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. The Design Matrices
2.3. The Optimization of the Extraction Procedure
2.4. Statistical Analysis
2.5. The Chromatographic Analysis
3. Results
3.1. The Statistical Evaluation of the Model
3.2. Response Surface Methodology (RSM) in the Optimization of Recovery
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Czyrski, A.; Kondys, K.; Szałek, E.; Karbownik, A.; Grześkowiak, E. The pharmacokinetic interaction between levofloxacin and sunitinib. Pharmacol. Rep. 2015, 67, 542–544. [Google Scholar] [CrossRef] [PubMed]
- Czyrski, A.; Anusiak, K.; Teżyk, A. The degradation of levofloxacin in infusions exposed to daylight with an identification of a degradation product with HPLC-MS. Sci. Rep. 2019, 9, 3621. [Google Scholar] [CrossRef] [PubMed]
- Czyrski, A. Analytical Methods for Determining Third and Fourth Generation Fluoroquinolones: A Review. Chromatographia 2017, 80, 181–200. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Baranda, A.B.; Etxebarria, N.; Jiménez, R.M.; Alonso, R.M. Development of a liquid-liquid extraction procedure for five 1,4-dihydropyridines calcium channel antagonists from human plasma using experimental design. Talanta 2005, 67, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Bioanalytical Method Validation Guidance for Industry; 2018; pp. 1–44. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 3 March 2020).
- Hibbert, D.B. Experimental design in chromatography: A tutorial review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012, 910, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.K.; Ramisetti, N.R.; Cecchi, T.; Swain, S.; Patro, C.S.; Panda, J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal. 2018, 147, 590–611. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Dejaegher, B.; Heyden, Y.V. Experimental designs and their recent advances in set-up, data interpretation, and analytical applications. J. Pharm. Biomed. Anal. 2011, 56, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Khodadoust, S.; Sadeghi, H.; Pebdani, A.A.; Mohammadi, J.; Salehi, A. Optimization of ultrasound-assisted extraction of colchicine compound from Colchicum haussknechtii by using response surface methodology. J. Saudi Soc. Agric. Sci. 2017, 16, 163–170. [Google Scholar] [CrossRef][Green Version]
- Ares, A.M.; Fernández, P.; Regenjo, M.; Fernández, A.M.; Carro, A.M.; Lorenzo, R.A. A fast bioanalytical method based on microextraction by packed sorbent and UPLC-MS/MS for determining new psychoactive substances in oral fluid. Talanta 2017, 174, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.T.; Vu Thi, T.L.; Do, T.L.; Pham Thi, H.M.; Hoang Thi, B.; Chu, Q.T.; Lai Phuong, P.T.; Do, H.N.; Hoang Than, H.T.; Ta Thi, T.T.; et al. Optimization of Microwave-Assisted Extraction Process of Callicarpa candicans (Burm. f.) Hochr Essential Oil and Its Inhibitory Properties against Some Bacteria and Cancer Cell Lines. Processes 2020, 8, 173. [Google Scholar] [CrossRef][Green Version]
- Gao, M.; Wang, H.; Ma, M.; Zhang, Y.; Yin, X.; Dahlgren, R.A.; Du, D.; Wang, X. Optimization of a phase separation based magnetic-stirring salt-induced liquid-liquid microextraction method for determination of fluoroquinolones in food. Food Chem. 2015, 175, 181–188. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Athankar, K.K.; Wasewar, K.L.; Varma, M.N.; Shende, D.Z. Reactive extraction of gallic acid with tri-n-caprylylamine. New J. Chem. 2016, 40, 2413–2417. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Bruns, R.E.; Ferreira, S.L.C. Statistical design-principal component analysis optimization of a multiple response procedure using cloud point extraction and simultaneous determination of metals by ICP OES. Anal. Chim. Acta 2006, 580, 251–257. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Durán Guerrero, E.; Natera Marín, R.; Castro Mejías, R.; García Barroso, C. Optimisation of stir bar sorptive extraction applied to the determination of volatile compounds in vinegars. J. Chromatogr. A 2006, 1104, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimzadeh, H.; Asgharinezhad, A.A.; Adlnasab, L.; Shekari, N. Optimization of ion-pair based hollow fiber liquid phase microextraction combined with HPLC-UV for the determination of methimazole in biological samples and animal feed. J. Sep. Sci. 2012, 35, 2040–2047. [Google Scholar] [CrossRef] [PubMed]
- Czyrski, A.; Sznura, J. The application of Box-Behnken-Design in the optimization of HPLC separation of fluoroquinolones. Sci. Rep. 2019, 9, 19458. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Asadollahzadeh, M.; Tavakoli, H.; Torab-Mostaedi, M.; Hosseini, G.; Hemmati, A. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples. Talanta 2014, 123, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.L.C.; Bruns, R.E.; da Silva, E.G.P.; Dos Santos, W.N.L.; Quintella, C.M.; David, J.M.; de Andrade, J.B.; Breitkreitz, M.C.; Jardim, I.C.S.F.; Neto, B.B. Statistical designs and response surface techniques for the optimization of chromatographic systems. J. Chromatogr. A 2007, 1158, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Szerkus, O.; Jacyna, J.; Wiczling, P.; Gibas, A.; Sieczkowski, M.; Siluk, D.; Matuszewski, M.; Kaliszan, R.; Markuszewski, M.J. Ultra-high performance liquid chromatographic determination of levofloxacin in human plasma and prostate tissue with use of experimental design optimization procedures. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1029–1030, 48–59. [Google Scholar] [CrossRef] [PubMed]
Coded Factors | ||
---|---|---|
Buffer pH | Volume of DCM | Time |
−1 | −1 | −1 |
1 | −1 | −1 |
−1 | 1 | −1 |
1 | 1 | −1 |
−1 | −1 | 1 |
1 | −1 | 1 |
−1 | 1 | 1 |
1 | 1 | 1 |
−α | 0 | 0 |
α | 0 | 0 |
0 | −α | 0 |
0 | α | 0 |
0 | 0 | −α |
0 | 0 | α |
0 | 0 | 0 |
Coded Factors | ||
---|---|---|
Buffer pH | Volume of DCM | Time |
1 | 0 | 0 |
0.5 | 0.866 | 0 |
0.5 | 0.289 | 0.817 |
−1 | 0 | 0 |
−0.5 | −0.866 | 0 |
−0.5 | −0.289 | −0.817 |
0.5 | −0.866 | 0 |
0.5 | −0.289 | −0.817 |
−0.5 | 0.866 | 0 |
0 | 0.577 | −0.817 |
−0.5 | 0.289 | 0.817 |
0 | −0.577 | 0.817 |
0 | 0 | 0 |
Coded Factors | ||
---|---|---|
Buffer pH | Volume of DCM | Time |
−1 | −1 | 0 |
1 | −1 | 0 |
−1 | 1 | 0 |
1 | 1 | 0 |
−1 | 0 | −1 |
1 | 0 | −1 |
−1 | 0 | 1 |
1 | 0 | 1 |
0 | −1 | −1 |
0 | 1 | −1 |
0 | −1 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
The Coded Level | Buffer pH | Volume of DCM (mL) | Time (min) |
---|---|---|---|
−α | 4.82 | 0.820 | 1.60 |
−1 | 5.50 | 1.500 | 5.00 |
−0.866 | − | 1.634 | − |
−0.817 | − | − | 5.92 |
−0.577 | − | 1.923 | − |
−0.5 | 6.00 | − | − |
−0.289 | − | 2.211 | − |
0 | 6.50 | 2.500 | 10.00 |
0.289 | − | 2.789 | − |
0.5 | 7.00 | − | − |
0.577 | − | 3.077 | − |
0.817 | − | − | 14.08 |
0.866 | − | 3.360 | − |
1 | 7.50 | 3.500 | 15.00 |
α | 8.18 | 4.180 | 18.40 |
Central Composite Design | |||
---|---|---|---|
CIPRO | LEVO | MOXI | |
F | 29.27 | 27.14 | 48.500 |
p | <0.0001 | <0.0001 | <0.0001 |
R2 | 0.9777 | 0.9760 | 0.9842 |
R2-adjusted | 0.9443 | 0.9401 | 0.9639 |
Lack of fit | NS | NS | NS |
Doehlert Design | |||
CIPRO | LEVO | MOXI | |
F | 14.390 | 20.520 | 13.210 |
p | 0.011 | 0.002 | 0.019 |
R2 | 0.9664 | 0.9636 | 0.9824 |
R2-adjusted | 0.8993 | 0.9262 | 0.9689 |
Lack of fit | NS | NS | NS |
Box–Behnken Design | |||
CIPRO | LEVO | MOXI | |
F | 2.320 | 3.430 | 4.920 |
p | 0.184 | 0.054 | 0.047 |
R2 | 0.8066 | 0.8605 | 0.8986 |
R2-adjusted | 0.4854 | 0.6094 | 0.7160 |
Lack of fit | 0.006 | <0.001 | 0.018 |
CIPRO | LEVO | MOXI | ||||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | |||
Model | 29.27 | <0.001 | Model | 27.14 | <0.001 | Model | 48.50 | <0.001 |
linear | 9.23 | 0.012 | linear | 67.11 | <0.001 | linear | 22.78 | 0.001 |
pH | 10.10 | 0.019 | pH | 0.40 | 0.552 | pH | 8.09 | 0.025 |
VDCM | 1.26 | 0.305 | VDCM | 185.80 | <0.001 | VDCM | 57.02 | <0.001 |
time | 16.23 | 0.007 | time | 15.15 | 0.008 | time | 3.23 | 0.115 |
quadratic | 69.58 | <0.001 | quadratic | 18.51 | 0.002 | quadratic | 120.46 | <0.001 |
pH × pH | 142.69 | <0.001 | pH × pH | 20.92 | 0.004 | pH × pH | 234.47 | <0.001 |
VDCM × VDCM | 108.46 | <0.001 | VDCM × VDCM | 16.24 | 0.007 | VDCM × VDCM | 180.08 | <0.001 |
time × time | 82.52 | <0.001 | time × time | 38.08 | 0.001 | time × time | 154.15 | <0.001 |
2-FI | 3.01 | 0.116 | 2FI | 12.54 | 0.005 | 2-FI | 2.26 | 0.168 |
pH × VDCM | 0.11 | 0.753 | pH × VDCM | 8.79 | 0.025 | pH × VDCM | 0.59 | 0.466 |
pH × time | 4.00 | 0.092 | pH × time | 6.09 | 0.049 | pH × time | 0.39 | 0.555 |
VDCM × time | 6.76 | 0.041 | VDCM × time | 22.74 | 0.003 | VDCM × time | 5.81 | 0.047 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czyrski, A.; Jarzębski, H. Response Surface Methodology as a Useful Tool for Evaluation of the Recovery of the Fluoroquinolones from Plasma—The Study on Applicability of Box-Behnken Design, Central Composite Design and Doehlert Design. Processes 2020, 8, 473. https://doi.org/10.3390/pr8040473
Czyrski A, Jarzębski H. Response Surface Methodology as a Useful Tool for Evaluation of the Recovery of the Fluoroquinolones from Plasma—The Study on Applicability of Box-Behnken Design, Central Composite Design and Doehlert Design. Processes. 2020; 8(4):473. https://doi.org/10.3390/pr8040473
Chicago/Turabian StyleCzyrski, Andrzej, and Hubert Jarzębski. 2020. "Response Surface Methodology as a Useful Tool for Evaluation of the Recovery of the Fluoroquinolones from Plasma—The Study on Applicability of Box-Behnken Design, Central Composite Design and Doehlert Design" Processes 8, no. 4: 473. https://doi.org/10.3390/pr8040473