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Abstract: Over a long period of time, humans have explored many natural resources looking for
remedies of various ailments. Traditional medicines have played an intrinsic role in human life
for thousands of years, with people depending on medicinal plants and their products as dietary
supplements as well as using them therapeutically for treatment of chronic disorders, such as cancer,
malaria, diabetes, arthritis, inflammation, and liver and cardiac disorders. However, plant resources
are not sufficient for treatment of recently emerging diseases. In addition, the seasonal availability
and other political factors put constrains on some rare plant species. The actual breakthrough in
drug discovery came concurrently with the discovery of penicillin from Penicillium notatum in 1929.
This discovery dramatically changed the research of natural products and positioned microbial
natural products as one of the most important clues in drug discovery due to availability, variability,
great biodiversity, unique structures, and the bioactivities produced. The number of commercially
available therapeutically active compounds from microbial sources to date exceeds those discovered
from other sources. In this review, we introduce a short history of microbial drug discovery as well
as certain features and recent research approaches, specifying the microbial origin, their featured
molecules, and the diversity of the producing species. Moreover, we discuss some bioactivities as
well as new approaches and trends in research in this field.
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1. Introduction

1.1. Historical Overview of Natural Products in Drug Discovery

Nature sustains unlimited resources of novel bioactive molecules, and the study of these resources
is very useful in the process of drug discovery [1]. These bioactive molecules are called natural products
(NPs). Natural products are metabolites and/or by-products derived from living organisms, such as
plants, animals, and microorganisms [2]. Natural products have played an intrinsic role in human life
for thousands of years. Due to their low cost and availability, natural products have been used as a
source of medicine, especially in developing countries. Moreover, they are chemically diverse with
various bioactivities and are the most valuable sources of drug discovery and development [3].
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According to the World Health Organization (WHO), about 60% of the world’s population depends
on traditional medicine for their health care [4–9]. It is possible that the use of natural products as
medicinal agents predates the earliest recorded history when humans used various and specific plants
to cure diseases [10]. The oldest records dating to ancient Mesopotamia (2600 BC) described about
1000 plants and plant-derived materials, such as the oils of Cedrus species (cedar) and the juice of the
poppy seed Papaver somniferum [11].

The ancient Egyptian Ebers Papyrus (1550 BC) contains about 800 complex prescriptions and
more than 700 natural substances, such as Aloe vera (aloe) and the oil of Ricinus communis (castor) [12].
The famous Greek physicians and pharmacists collected hundreds of natural agents and plant-derived
medicines and described their usage [13].

The Chinese are the leaders in the use of natural products in remedies. The oldest collection
of Chinese herbs is Shen Nung Pen Ts’ao, which lists 385 materials. The Pen Ts’ao Ma catalogue
(1573–1620) mentions 1898 herbal drugs and 8160 prescriptions. The number of medicinal herbs used in
China reached 5967 in 1979. One of the most famous Chinese traditional herbs is the ginseng root Panax
ginseng, which is used for health maintenance and treatment of various diseases. Other traditional
Chinese medicines (TCM) include the extract of Ginkgo biloba, which can improve memory and sharpen
mental preparedness, and the Indian hemp plant, Cannabis sativa, which has mind-altering effects.
Today, the Chinese still mostly depend on traditional medicines, with over 5000 plants and plant
products in their pharmacopeia [14]. In the United States, the development of drugs based on natural
products also has a long history. Although some traditional remedies are still used, their usage as
a proportion is very small in comparison with modern medications, particularly for treatment of
currently emerging diseases [15].

Accordingly, we can say that natural products provided important clues in drug discovery and
are therefore considered to be the cornerstone of drug development [16]. Actually, many drugs in the
market today were discovered from natural sources. For example, morphine, isolated from opium,
was produced and commercialized in 1826. It was developed as the first drug with ensured purity and
is still clinically used [17].

Nature provides us with a huge range of structurally diverse secondary metabolites. These structural
diversities reflect a variety of biological antitumor agents that include, for example, inhibitors of enzymes
and antitumor agents [18]. Bioactive products, such as antibiotics and antitumor and immunosuppressive
agents, are clinically important. In addition, growth promotors, insecticides, herbicides, and antiparasitics
are important for veterinary and agricultural applications [19].

Over 300,000 natural products exist, and they can be classified according to their chemical
nature into five categories: terpenoids and steroids, fatty-acid-derived substances and polyketides,
alkaloids, nonribosomal polypeptides, and shikimate-derived compounds [19]. These compounds
exhibit different bioactivities, such as antibacterial, antifungal, and antialgal activities, with different
mechanisms for killing pathogens. More than 10,000 of these compounds are biologically active, and
more than 8000 are antibiotic and antitumor agents [20].

1.2. Distribution of Natural Products

As previously mentioned, natural products can be produced by almost all types of living cells
(plants, animals, and microorganisms), although their production is not similar at all levels. However,
they represent valuable resources of many and diverse natural products, the so-called “natural sources
deriving compounds”. This biodiversity provides an unlimited source of novel chemical entities (NCE)
or secondary metabolites with potential bioactivities [21].

Moreover, it is well known that oceans cover about 70% of the Earth’s surface, highlighting, in
general, the importance of marine sources in the biodiscovery of drugs. The marine world contains a
huge variety of ecosystems covering a wide range of conditions, such as temperatures, nutrients, and
lighted/unlighted zones. This variety confers suitable conditions for the proliferation of a wide range of
organisms, such as invertebrates including sponges, coelenterates (sea whips, sea fans, and soft corals),
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ascidians (also called tunicates), opisthobranches mollusks (nudibranchs, sea hares, etc.), echinoderms
(starfish, sea cucumbers, etc.), and bryozoans (marine algae including green algae, brown algae, red
algae, golden algae, and diatoms) as well as marine microorganisms (bacteria and fungi) [22].

Thousands of novel secondary metabolites with a vast diversity of uniquely sophisticated chemical
entities have been isolated from marine organisms, especially invertebrates, proving that marine
organisms are a rich source of new structural classes of secondary metabolites. Some of the most
promising organisms for the discovery of new drugs are expected to be marine invertebrates and
microorganisms [23]. The exploration of many marine organisms, such as sponges, soft corals,
algae, ascidians, bryozoans, and mollusks, has produced unique secondary metabolites that exhibit
structural/chemical features not found in terrestrial natural products [24].

Amongst all the marine invertebrates, sponges represent the most described group with potential
application in medicinal chemistry, representing a valid starting point for new drug leads due to their
chemical defense mechanisms [25]. Sponges are the most primitive multicellular invertebrates and
have played an important role in the past 50 years, with many promising bioactive compounds isolated
from them [26], although only few compounds have been commercialized. Thus, a deep insight into
the chemical ecology of bioactive metabolites is desirable. The number of products isolated from
sponges and their related microorganisms exceeds 5000, and more than 200 novel compounds are
annually reported [27].

Over 1000 new bioactive compounds isolated from sponges were reported in 2009. Sponges serve
as hosts to different symbiotic/parasitic organisms, including blue-green algae and bacteria. However,
these metabolites are suggested to be produced by symbiotic microorganisms. The close similarities
between natural products from some classes of sponge and some terrestrial microorganisms support
this assumption [28].

Sponges alone produce more than 3300 antibiotics and other bioactive compounds. However, the
active compounds isolated from these animals have proven to mostly originate from microorganisms
that live symbiotically with them. Only a very few compounds with antibacterial activity have
been isolated from animal microbes (protozoa, ciliates). Bioactivities have been found to be rare in
compounds isolated from crustaceans, arachnids, fish, and birds [21,29].

Lichens and lower plants, such as the Bryophyta species, have produced hundreds of bioactive
compounds. Higher green plants (Spermatophyta), gymnosperms, and angiosperms produce structurally
unique secondary metabolites, including alkaloids, flavonoids, and terpenoids, exhibiting antimicrobial
and/or antitumor activities [30,31].

Despite all the aforementioned valuable resources for drug discovery, we are still in need for
exploration of new, unique, and unlimited sources to combat and overcome currently emerging
diseases. Moreover, the increased emergence of antibiotic-resistant pathogens is the biggest threat to
public health worldwide, which necessitates search for other unexplored sources of novel, effective
drugs to combat such resistance. The most promising source is microorganisms [30].

The most versatile producers are the microbial producers (prokaryotes and eukaryotes).
In prokaryotes, unicellular bacteria, namely, the Bacillus and Pseudomonas species, filamentous
actinomycetes, myxobacteria, and cyanobacteria, are the most frequent producers [32]. Species of the
order Actinomycetales produce over 10,000 bioactive compounds—7600 derived from Streptomyces and
2500 from the so-called rare actinomycetes species—representing the largest group (45%) of bioactive
microbial metabolites. On the other hand, eukaryotic fungi, especially endophytic fungal species, are
the most significant producers, while yeasts, phycomycetes, and slime molds rarely produce bioactive
metabolites. The total number of bioactive metabolites produced by fungal species is approximately
8600, representing 38% of all microbial products [33,34].

2. Microbial Sources in Drug Discovery

Microorganisms play an important role in the development of the chemistry of natural products
and medical therapy. They have been considered to be a rich source of unique bioactive compounds
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since the discovery of penicillin (Figure 1) in 1929 [34], which was structurally elucidated in 1945 and
introduced as the first antibiotic by Fleming, Chain, and Florey [35].
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Figure 1. (a) Core structure of penicillin, the first antibiotic from fungus; (b) Penicillium notatum.

Today, many microbial-originated antibiotics are available in the market, and more than 120 of the
most important medicines in use are obtained from terrestrial microorganisms [36]. A large number of
bioactive metabolites are used in medicine, agriculture, and industry, but about 100 of them are used
for therapeutic purposes, herbicidal activity, growth-promoting agents, or tools for biochemistry [37].

Recently, there has been great interest in natural products from unexplored microbial sources,
especially actinomycetes [38], marine ecosystems [39], and microorganisms associated with plants [40],
mammals [41], and invertebrates [42] from marine and terrestrial habitats. Despite the most important
antibiotics currently in use being derived from cultivable microorganisms, only a tiny fraction of
microorganisms can be cultivated in routine lab cultures [43]. The majority of microorganisms in
biosamples cannot be cultivated under normal laboratory conditions and are called uncultivated
microorganisms. This kind of microorganisms can be cultivated using systems developed specifically
for the organisms, such as synthetic medium mimicking the biosystem conditions and several other in
situ cultivation strategies [44].

2.1. Natural Products from Fungal Sources

Fungi are distributed in nature, and these eukaryotic, heterotrophic microorganisms often live
symbiotically. Fungi have been used for a long time by humankind for many purposes, including
food production (beer, wine, leavened bread, soy foods), treatments, and in everyday life. Thousands
of years ago, fungi were used to treat intestinal diseases by the Mayans. Since the discovery of
penicillin, which was isolated from the fungus Penicillium notatum, fungi have been a rich source of
many therapeutic agents [45]. Fungi are a rich source of biologically active secondary metabolites
(Figure 2).
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Many therapeutic agents, such as cyclosporine and mycophenolic acid (immunosuppressive
activity), fusidic acid and griseofulvin (antimicrobial activity), and other novel semisynthetic antifungal
drugs, such as anidulafungin and caspafungin, have been derived from fungal metabolites [45].
Recently, cyclosporine was used to develop Debio 025, which was clinically proven to have potent
antiviral activity [46].

One of the most important drugs are statins, including mevastatin from Penicillium citrinum [47]
and lovastatin from Aspergillus terreus [48]. Statins, an important class of antilipidemic drugs for the
treatment of cardiovascular diseases [49], are also derived from microbial sources. Fungal metabolites
are not only important for medicine but also for plant protection. For instance, the discovery
of strobilurins, which were first isolated from Strobilurus species, led to compounds for synthetic
fungicides, such as trifloxystrobin [50].

Plant endophytes have been defined in several ways. The most common definition is “all
organisms inhabiting plant organs that at some time in their life can colonize internal plant tissues
without causing apparent harm to the host” [51]. Fungi are more frequently observed as endophytes
than bacteria [52]. An endophytic fungus is a fungus that can colonize healthy tissues of the host plant,
typically causing no apparent symptoms of disease. There are symbiotic relationships between the host
plants and their endophytes by which the host can support and provide nutrients to the fungus and
later produce metabolites that are important to the host. This symbiotic relationship may be suddenly
reversed to opportunistic if the host plant is weakened [52].

Endophytes are a polyphyletic group of primarily ascomycetous fungi, whereas basidiomycetes,
deuteromycetes, and oomycetes rarely exist [53]. There is no host specificity, but it has been noticed that
some families frequently colonize certain hosts. The great diversity and ecological roles of endophytes
produce a variety of pharmaceutically and agrochemically promising secondary metabolites [54,55].

About 140 new bioactive compounds were isolated from endophytic fungi in the period between
1987 and 2000. Between 2000 and 2006, a similar number of compounds were isolated [56]. The ability
to produce pharmacologically important natural products is not only restricted to plant sources but is
also inherent to associated endophytes [57,58]. Amongst the isolated products, cryptocin, from the
endophytic fungus Cryptosporiopsis quercina, an endophyte of Tripterigeum wilfordii, has shown potent
activity against the world’s worst plant pest, Pyricularia oryzae, and other plant pathogenic fungi [57].
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Phomol, an active polyketide lactone that is isolated from the endophyte Phomopsis sp., an endophyte of
the medicinal plant Erythrina crista-galli, exhibits anti-inflammatory as well as antimicrobial activity [59].
Some of the US Food and Drug Administration (FDA)-approved drugs from fungi are presented in
Table 1.

Several endophytic fungi can produce secondary metabolites that are also biosynthesized by their
host plants (Figure 3) [60]. These include, for example, antineoplastic paclitaxel [61], camptothecin
and its structural analogues [62], the anticancer drug lead compounds podophyllotoxin [63] and
deoxypodophyllotoxin [64], the antidepressant hypericin along with emodin [65], and the natural
insecticides azadirachtin A and B [55].
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Table 1. Some US Food and Drug Administration (FDA)-approved drugs from fungi.

Compound Derived Product Producing Fungus Application Reference

Compactin Mevastatin Penicillium compactum Cholesterol-lowering
agent [66]

Mevacor Lovastatin Aspergillus terreus Cholesterol-lowering
agent [48]

Pravastatin Pravachol
Penicillium compactum

Aspergillus spp.,
Monascus spp.

Cholesterol-lowering
agent; Antithrombotic
and anti-inflammatory

agents

[3,9]

Compactin ML-236B Penicillium
brevicompactum Antifungal activity [2]

Caspofungin Cancidas Glarea lozoyensis Fungal infections [18]
Anidulafungin Anidulafungin Aspergillus nidulans Fungicidal [10]

Strobilurins Strobilurins Stobilurus tenacellus Agricultural fungicides [22,50]

Taxol Paclitaxol Sporangium cellulosum Antitumor and
antifungal activity [11,12]
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Table 1. Cont.

Compound Derived Product Producing Fungus Application Reference

Cryptocin Cryptocin Cryptosporiopsis
quercina Pesticide [57]

Phomol Phomol Phomopsis sp. Anti-inflammatory and
antimicrobial activities [59]

Penicillins Penicillins Penicillium notatum Bacterial infections [13]
Cephalosporins Cephalosporins Cephalosporium Bacterial infections [14]

Fusidic Acid Fucidin Fusidium coccineum Bacterial infections [15]

Cyclosporin A Cyclosporin A Tolypocladium inflatum
Immunosuppressive

agent in organ
transplantation

[16]

Mycophenolic Acid Myfortic, CellCept Penicillium stoloniferum
Immunosuppressive

agent in organ
transplantation

[17]

Fingolimod Gilenya Isaria sinclairii Multiple sclerosis [19,67]
Ergot Ergotamine Claviceps purpurea Migraine headaches [20,21]

2.2. Natural Products from Bacterial Sources

Nearly three-quarters of microbial-produced bioactive compounds are from actinomycete bacteria.
Streptomycetes are the most widely identified group, producing a wide range of biologically active
compounds. They are Gram-positive aerobic filamentous (often soil) bacteria [68]. Euzeby (2008) [69]
described more than 500 species of streptomycetes. They mostly produce spores and are characterized
by the production of geosmin, a volatile metabolite that give them “earthy” odor. The spore
germination process depends on the environmental conditions. In normal conditions, the germination
of streptomycete spores starts by arthrospore (substrate mycelium), but in the case of nutrient depletion,
the growth starts with aerial mycelium. In other words, under favorable conditions, a fully matured
mycelia is produced. Under drastic conditions, on the other hand, the aerial mycelium is subdivided
by septa, then into spores, which in turn can, under certain conditions, germinate into mycelium [70].

Actinomycetes are known to produce various types of antibiotics, namely, peptides/glycopeptides [71],
angucyclinone [72], tetracyclines [73], phenazines [74], macrolides [75], anthraquinones [76], polyenes [77],
anthracyclines [78], beta-lactams [79], piercidins [80], octaketides [81], benzoxazolophenanthridines [82],
heptadecaglycosides [83], and lactones [84].

The production of secondary metabolites in actinomycetes is greatly affected by various
fermentation parameters, such as nutrients availability, pH, aeration, temperature, mineral salts, heavy
metals, precursors, inducers, and inhibitors, which often vary from organism to organism [85,86].

Streptomycetes are good soil inhabitants and are considered to be valuable sources of many
enzymes, such as lipases and cellulases [87]. In addition, some genes from these bacteria may be
applied to plants to produce genetically modified plants with improved characteristics [88]. The genes
for the production of secondary metabolites are considered to be nonessential and are often found near
the ends of linear chromosomes; the chromosomes of streptomycetes, in general, are linear [89].

Streptomycetes are a rich source of many bioactive compounds. Most antifungals derived from
streptomycetes tend to be macrolide polyene, such as nystatin, produced by streptomyces. noursei [90];
amphotericin B, produced from streptomyces nodosus, and natamycin, produced by streptomyces
natalensis [91]. A huge number of streptomyces-derived antibiotics are used as antibacterial agents.
Starting with aminoglycosides, a large number show antibacterial activity, such as streptomycin,
produced by streptomyces griseus [92]; neomycin, produced by streptomyces fradiae [93]; and kanamycin,
produced by streptomyces kanamyceticus [94]. Other antibacterial antibiotics from streptomycetes include
erythromycin, produced by streptomyces erythraea; tetracycline produced by streptomyces rimosus [95];
chloramphenicol produced by streptomyces venezuelae [96]; vancomycin, produced by streptomyces
orientalis; and thienamycin, produced by Streptomyces cattleya [97]. Some chemical alterations could be
useful for producing novel structures with new properties in so-called “semisynthetic drugs” [91].
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Tigecycline, a derivative of minocycline, is semisynthesized from chlortetracycline (produced
by streptomyces aureofaciens) and exhibits antibacterial activity [98]. Everolimus, a derivative of
rapamycin (produced by streptomyces hygroscopicus), exhibits an immunosuppressive activity [99].
Another example, brostallicin, a derivative of distamycin A (isolated from streptomyces distallicus),
exhibits anticancer activity [100].

About two-thirds of bioactive compounds are produced by this group, and they have many
clinical efficacies against different kinds of organisms, such as bacteria, fungi, and parasites. In addition,
other drugs in this category exhibit antitumor activities, such as aclacinomycin A, actinomycin D,
bleomycin, daunorubicin, mithramycin, mitomycin C, and nogalamycin (produced by Streptomyces
glalilaeus, Streptomyces antibioticus, Streptoverticillium verticillium, Streptomyces paecetius, Streptomyces
argillaceus, Streptomyces lavendulae, and Streptomyces nogalater, respectively) [101]. These drugs can
act on DNA by altering its function via different mechanisms, such as intercalation, cross-linking,
DNA strand breakage, or interacting with DNA non-intercalatively [102]. Approximately 3% of all
antibacterial have been synthesized by streptomycetes [103], which serves as a promising source for
discovering novel drugs.

Accordingly, actinobacteria have played a significant role in human health in the last decades
throughout the world. Like fungi, there are many actinobacteria that can be associated with and
colonize the inner tissues of higher plants but do not visibly harm the plants. These are called
endophytic actinobacteria and represent an important source of many bioactive compounds. These
microbes inhabit different plant organs inter- and intracellularly. It is worth mentioning that there
are about 300,000 plant species on Earth and that each individual plant is considered to host one or
more type of endophytes, creating huge biodiversity of compounds and functions [104]. Endophytic
actinobacteria associated with traditionally used medicinal plants, especially of the tropics, could
be a rich source of promising compounds. Many endophytic actinobacteria, especially those from
medicinal plants, possess the ability to inhibit or kill a wide variety of harmful microorganisms like
pathogenic bacteria, fungi, and viruses [44].

The most promising value of endophytes is to produce many new antitumor and anti-inflammatory
agents. Considering that endophytic actinobacteria are closely associated with their host plant, it
is possible for horizontal gene transfer (HGT) to occur, resulting in the production of plant-derived
compounds by a microbe, such as the paclitaxel-producing Kitasatospora sp. isolated from Taxus
baccata in Italy [105]. Maytansinoids are extraordinarily potent antitumor agents that were originally
isolated from members of the higher plant families Celastraceae, Rhamnaceae, and Euphorbiaceae [106,107]
as well as some mosses [108] and, remarkably, from plant-associated actinomycete Actino-synnema
pretiosum [109].

Recently, two compounds, 5, 7-dimethoxy-4-phenylcoumarin and 5, 7-dimethoxy-4-p-methoxylphenyl
coumarin, originally produced by numerous species of plants, were isolated from endophytic Streptomyces
aureofaciens CMUAc130 and were shown to have antifungal and antitumor activity [110]. Endophytic
actinobacteria also produce other bioactive compounds with different functions, such as the antimalarial
coronamycin, isolated from Streptomyces sp. (MSU-2110), an endophyte of Monstera sp. Recently, endophytic
actinobacteria have been used to produce some biological control agents in order to protect plants against
different soilborne plant pathogens, including Rhizoctonia solani, Verticillium dahliae, Plectosporium tabacinum,
Gaeumannomyces graminis var. tritici, Fusarium oxysporum, Pythium aphanidermatum, and Colletotrichum
orbiculare [111,112].

Endophytic actinobacteria have sparked great interest because they possess many properties
that could be beneficial for plant growth. For example, several endophytic actinobacteria isolated
from winter rye produced indolyl-3-acetic acid, which enhanced seedling germination [113]. In most
cases, natural compounds from bacteria need some modifications to optimize their properties. These
alterations may be controlled during synthesis by metabolic engineering or by changing synthesis
technology, as studied in several bacteria [114]. Such methods may produce novel compounds by
expressing a newly identified pathway or using gene combination to create a new synthetic pathway.
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However, the enzymes involved in biosynthetic pathway are like fatty acid synthases, which are
conserved in eukaryotes and prokaryotes [115].

Due to the drug-resistance phenomena, new approaches have been employed to find new
drugs from microorganisms by studying well-known productive strains, developing new screening
methods [116], carrying out chemical modifications of biosynthesized precursors and combinatorial
biosynthesis [117], and doing intensive studies to select and discover new strains from new sources.
Thus, much effort has to be made to compensate for the emerging resistance as no novel compounds
have been discovered during the period between the introduction of quinolone nalidixic acid (1962)
and linezolid (2000) [118].

One of the factors that enhanced the resistance problem is the use of about 50% of existing
antimicrobials for purposes other than therapeutic use [119], such as food additives in livestock
breeding. The study of metabolic pathways and the genetics of microbes are beneficial in production
strategies and in regulatory mechanisms employed by the productive strain, such as in the Streptomyces
coelicolor [120] and Streptomyces avirmitilis genome projects [121].

Recently, marine actinomycetes have been considered to be a promising and unique resource for
novel bioactive secondary metabolites [122] because environmental conditions of the sea are extremely
different from terrestrial conditions and they are widely distributed within the marine ecosystem and
found in intertidal zones, seawater, animals, plants, sponges, and in ocean sediments [123–125].

In addition, these actinomycetes have the ability to form stable populations in different habitats
and produce many compounds with various activities [126]. This explains the importance of this group
as a source of novel compounds. Many novel pharmaceutically important compounds have been
produced from marine actinomycetes, such as the anticancer salinosporamide A, which is produced by
Salinispora tropica [127]; salinipyrones A and B, produced by Salinispora pacifica [128]; iodopyridone,
produced by marine Saccharomonospora sp. [128]; and srenimycin, produced by Salinispora arenicola [129]
(Figure 4). Table 2 lists some of FDA-approved drugs from actinomycetes.
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Table 2. Some FDA-approved drugs from bacteria.

Compound Producing Bacteria Application Reference

Tigecycline Streptomyces aureofaciens Antibacterial for
tetracycline-resistant organisms [98]

Telithromycin Saccharopolyspora erythraea Antibacterial activity [130]
Biapenem and

Ertapenem Streptomyces cattleya Antibacterial activity [131,132]

Everolimus Streptomyces hygroscopicus Immunosuppresive agent [99]
Miglustat Streptomyces lavendulae Type 1 Gaucher disease [133]

Daptomycin Streptomyces roseosporus Skin structure infection [134]
Amrubicin Streptomyces peuceticus Antitumor activity [135]

Pimecrolimus Streptomyces hygroscopicus var
ascomyceticus Anti-inflammatory for skin disease [135]

Gemtuzumab
ozogamicin

Micromonospora echinospora sp.
calichensis Acute myeloid lymphoma treatment [136]

2.3. Natural Products from Algae

Algae are a prolific source in natural product chemistry and include prokaryotic (cyanobacteria)
and eukaryotic species. They are represented by approximately 30,000 species that have a function
of supplying oxygen to the biosphere [137]. They are also a very good nutritional source for fish
and humans. Moreover, they can be used in medicine and fertilizers. The most important group of
compounds produced by algae are terpenoids, which comprise many classes, including brominated
derivatives, phenazine derivatives, oxygen and nitrogen heterocycles, amino acids, and guanidine
derivatives [138].

Investigation of natural products from algae started in 1970 [139]. Among the important
compounds produced by algae are polycavernoside A from the red alga Polycaverosa tsudai [128];
antitumor active 4-acetoxydictylolactone, dictyolide A, B (diterpenes), and nordictyolide from the brown
alga, Dictyota dichotoma [140]; and antimicrobially active crenuladial, which is isolated from the brown
alga Dilophus ligatus [141] (Figure 5). However, red algae, especially the genus Laurencia (Rhodophyta),
commonly produce halogenated sesquiterpenes and diterpenes [142]. It is worth mentioning that algae
are a very extensive source of new insecticides and have replaced chemically resistant synthesized
pesticides [143]. Examples of potent insecticides from algae include (Z)-laureatin, laurepinnacin, and
1β-(2-E-chlorovinyl)-2β,4α,5α-trichloro-1α,5β-dimethylcyclohexane and its enantiomer [144].

2.4. Natural Products from Microbial Community Interactions

Among the many recent approaches for the discovery of new drugs is cocultivation (mixed
cultures), by which we can cultivate together two or more organisms from different species, mimicking
the natural microbial community interactions. Recent investigations have indicated that microbial
interactions induce the production of new specialized metabolites through the activation of some
cryptic genes, providing a very promising tool for drug discovery [145,146].

Two new compounds, namely, fumiformamide and N,N′-((1Z,3Z)-1,4-bis(4-methoxyphenyl)buta-
1,3-diene-2,3-diyl) diformamide, have been isolated from the mixed culture of Aspergillus fumigatus with
Streptomyces peucetius [147]. Many other new bioactive compounds have been isolated via bacterial–fungal
cocultivation, such as potent bactericidal pestalones [148], potent cytotoxic libertellenones D [149],
antimicrobially active emericellamides A [150], and anti-tumor glionitrin A [151].

Several novel compounds, namely, arcyriaflavin E [147], chojalactones A–C, niizalactams A–C [151],
and 5-alkyl-1,2,3,4-tetrahydroquinolines, have been isolated from cocultures of Streptomyces spp. with
Tsukamurella pulmonis. Moreover, the new keyicin which is anthracyclic antibiotic active against some
Gram-positive bacteria, is isolated from coculturing of two bacterial strains, Micromonospora sp. with
Rhodococcus sp. [152]. All these findings indicate that the cocultivation strategy is a very promising tool
in drug discovery from microorganisms.
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3. Conclusions

In summary, natural products play a significant role in human life. Microbial natural products are
the most versatile and are of interest because of their unique structures and functions, due to which
they are considered the cornerstone of drug discovery. Despite the use of microorganisms as a source
of drugs being a recent discovery, the most important and commercially available antibiotics and many
other anti-infectives are obtained from them. Recent research initiatives have been directed toward
endophytic microorganisms due to their importance as a source of novel compounds.

Furthermore, marine macro- and microorganisms provide endless resources for novel bioactive
compounds as they cover about 70% of the Earth’s area. Even marine macroorganisms (plants
and animals) are interesting sources of novel bioactive compounds, mostly due to their inhabitant
microbiota, which are often responsible for the production of their secondary metabolites. However,
only a small number of microorganisms can be used for defense mechanisms of their hosts (plants
and animals) and for other ecological interactions within their microbiota, such as commensalism and
symbiosis, which produce very useful products for them and their hosts. Because only a small number
of microorganisms can be cultivated under laboratory conditions, more of such systems need to be
developed using in situ cultivation strategies.

One of the most recent approaches in drug discovery from microorganisms is cocultivation. In the
cocultivation strategy, we can cultivate two or more organism from different species. Through this,
their physiology can be changed to produce cryptic compounds that cannot otherwise be produced in
routine cultivation media.
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Overall, the present review highlighted the role of biodiversity in providing a vital link for
expanding the molecular diversity needed for successful drug discovery attempts in the future, with
microbial inhabitants being a unique source of bioactive secondary metabolites and their therapeutic
applications. This review therefore attempted to place emphasis on many important concepts in the
field of microbial natural products that use cost-effective techniques utilizing recent cultivation ideas
mimicking the natural ecological conditions where microorganisms always co-exist within complex
microbial communities, such as cocultivation and in situ cultivation. We will further discuss the
recombinant DNA technology and other probable molecular tools in future studies to address the most
applicable approaches.
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