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Abstract: Silver nanoparticle (AgNP) based approaches using plant materials have been accepted as
biomedical applications. The current study aimed to test the antibacterial, antibiofilm, and anticancer
activity of silver nanoparticles synthesized by seed extract of Nigella sativa (Ns) as stabilizing and
reducing agents. Characterization was done through UV–visible spectroscopy, X-ray diffraction
(XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), and
transmission electronic microscopy (TEM) analyses. UV-Vis spectroscopy showed a specific silver
plasmon peak at 400 nm and a quick color change was observed in the bio-reaction medium. Electron
microscopic images of Ns-AgNPs identified as spherical in shape with varied size ranged between 8
and 80 nm and zeta potential analysis evidenced the particles stability and polydisperity. Antibiofilm
activity of Ns-AgNPs was evident as at 12.5 µg/mL Ns-AgNps restricted the biofilm formation
by 88.42% for Enterococcus faecalis, 84.92% for E. coli, 81.86% for Klebsiella pneumonia, 82.84% for
Staphylococcus aureus, and 49.9% for Pseudomonas aeruginosa, respectively. Furthermore, biologically
synthesized AgNPs showed the significant bacteriostatic and bactericidal activity. Even the lowest
concentration of Ns-AgNps restricted the highest rate of inhibition against S. aureus (6.5 and 15 µg/mL)
and E. faecalis (6.5 and 15 µg/mL). Antimicrobial activity of S. aureus and E. fecalis was more prominent
than E. coli (15 and 30 µg/mL), K. pneumonia (15 and 30 µg/mL) and P. aeruginosa (30 and 60 µg/mL)
respectively. Moreover, Ns-AgNPs revealed significant cytotoxic ability and substantially killed
human breast cancer cell (HCC-712) viability. The results of current study advocate that Ns-AgNps
may be considered as a potential option in biomedical applications, alternative therapy, designing
anti-biofilm agents, treating multi drug resistance bacterial infection, and anti-cancer therapy.
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1. Introduction

Currently, modern research in the nanoscience and technology fields are developing rapidly
and attracting attention worldwide. In the interest of bio-nanomaterial synthesis, such as gold,
copper, platinum, and silver, due to its peculiar design and synthesis process, those metal
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nanoparticles ranging between 1 and 100 nanometers have drawn great attention towards potential
applications in multi-disciplinary areas such as biomedicine, environment, biotechnology, drug delivery,
and nanomedicine [1]. Physical and chemical methods for the synthesis of metal nanoparticles are limited
because of its costly equipment’s, toxicity, and environmental damage [2]. Currently, green-approach
technology is attracting consideration due to its being a biogenic, non-toxic, and cheap approach that
has become a central focusing area of research, leading to explore various types of bio-reducing agents.
Many researchers reported that microbes, plants and their products, such as Ananas comosus (L.), Cynara
scolymus, Oscillatoria limnetica, and Phoenix sylvestris L., have been used as bio-reducing agents [3–6] to
design and manipulate the metal particles for acquiring unique shape and size.

The constantly increasing antibiotic resistance in clinical strains is a serious concern to global
health sector that needs an urgent action. Therefore, discovering the new substitutes to the presently
applied antibiotics has become an essential task. Nayak et al synthesized crystalline and spherical
AgNPs using bark extracts showedantibacterial activity against gram-positive and -negative bacteria [7].
However, silver nanoparticles have been utilized in various sectors mainly in health and medicine
industry because of its excellent antimicrobial properties [8]. The biofilm formation is a critical method
applied by different pathogenic bacteria to stay lively in environment. Biofilm forming microbes can
cause numerous serious infections such as eye, skin, wound urinary and heart leading high mortality
and morbidity due to biomedical devices [9]. Traditional treatment for bacterial infection is commonly
based on bactericidal or bacterial static agents. Some pathogens showed protection against drugs due
to the development of biofilm. Furthermore, in the virulence of various pathogenic microbes, biofilms
play a vital role as well. In these circumstances, the bioscience and pharmaceutical applications have
been revolutionized due to the discovery of new biocide targeting biofilm [10]. According to the
National Institute of Health (NIH), approximately sixty percent of microbial infections have been found
to be association of biofilm. Various biofilm associated bacteria have proven ineffective to chemical
disinfectants, germicides, and antibiotics [11].

All over the world, women breast cancer has grown an immense concern, particularly with
treatment procedures which can cause adverse side effects [12]. Nowadays, different types of cancer
are spreading day by day, so there is an immediate requirement to discover and identify new anticancer
drugs with less side effects on the immune system [13]. In spite of various attempts, chemotherapy of
cancerous cells is not fully successful due to multi drug resistance [14]. However, silver nanoparticles
have been demonstrated for potential role in anticancer activity [15].

Black seed is indigenous to North Africa, Southwest Asia, and Southern Europe and it is farmed
in many countries like Saudi Arabia, Middle Eastern Mediterranean region, India, Pakistan, South
Europe, Turkey, Syria. Nigella sativa posesses therapeutic potential and biological activities and it
acquires broad spectrum of activities such as antioxidant, diuretic, antidiabetic, antihypertensive,
anticancer, antimicrobial, immunomodulatory, anti-schistosomiasis, anti-inflammatory, analgesics,
bronchodilator, spasmolytic, hepatoprotective, gastro protective, and renal protective [16]. Nigella
sativa oil is multipurpose product with nutritional and medicinal properties [17]. Several studies have
shown the application of AgNPs in different fields, but scanty reports are available to exhibit the role
of AgNPs as anti-biofilm activity as well as anti-cancerous activity. The aim of the current study was (i)
biosynthesis of AgNps using seed extract of Nigella sativa, (ii) characterization of prepared AgNPs
by different sophisticated techniques, (iii) investigation of antibacterial and anti-biofilm potential of
synthesized AgNPs against different bacterial strains for biomedical application, and (iv) evaluation of
the cytotoxic effect of biosynthesized AgNPs on human breast cancer (HCC-712) cell line for therapeutic
application in the treatment of breast cancer.
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2. Material and Methods

2.1. Bacterial Strains, Culture Media, Seeds and Chemicals

Nigella sativa seeds (Ns) were obtained from a local market, Qassim, Saudi Arabia. Analytical
grade Silver nitrate (AgNO3), were procured from Sigma- Aldrich Company. Breast cancer cell line
(HCC712) was acquired from National Centre for Cell Science (NCCS), Pune, India. Other reagents
and culture Medias were bought from Hi-Media, India. Bacterial cultures of K. pneumoniae (MTCC
618), E. coli (MTCC 40), S. aureus (MTCC 3160), P. aeruginosa (MTCC 1688) and E. faecalis (MTCC 439)
were obtained from Institute of microbial technology, IMTECH, Chandigarh, India.

2.2. Preparation of Aqueous Nigella Sativa Seed Extract

Briefly, 2.5 g of Nigella Sativa seed powder was dissolved in 100 mL of distilled water in a conical
flask. The solution was boiled at 70–80 ◦C for 15–20 min. in a water bath. Solution was filtered at room
temperature and stored at 4 ◦C for further analysis as previously done by Kuppuswamy et al. [18].

2.3. Biosynthesis of Silver Nanoparticles from Nigella Sativa

Biogenic AgNps were amalgamated by adding 10 mL of seed extract to 90 mL of 0.1 mM AgNO3.
The solution obtained was kept in dark condition to avoid auto-oxidation of silver.

2.4. Isolation and Purification of AgNPs

After synthesis the reaction mixture was sequentially centrifuged at 8000 rpm and 5000 rpm for
10 min by replacing supernatant with distilled water every time. The pellet form of silver nanoparticles
was dried up at 60 ◦C in hot air oven and was finally diluted in 1% dimethyl sulfoxide (DMSO).
The biosynthesized AgNps was stored and employed for further characterization process.

2.5. Characterization of Synthesized Ns-AgNps

The reduction of Ag+ ions was observed and recorded by using UV-Vis spectrophotometer
(Lambda 35, Perkin-Elmer, USA) at various time intervals in the range of 300 to 800 nm. Fourier
transform infrared spectroscopy (FTIR) was utilized to identify the presence of possible biomolecules or
functional groups in the aqueous seed extract of Nigella sativa, which are accountable for the reduction
of the Ag+ ions and capping of AgNPin the range of 400 to 4000 cm−1 at a resolution of 4 cm−1 at
25 ◦C using FTIR-Perkin Elmer Spectrum Two model, UK. The X-ray diffraction patterns of the AgNP
samples were examined by using XRD-Smart Lab (9kW)-RIKAGU, Japan). The size and morphology of
the prepared Ag NPs from the seed extracts were examined by transmission electron microscopy (TEM)
JEOL JEM2100 and Scanning electron microscopy JEOL JSM 5500. Dynamic light scattering (DLS)
(Zetasizer Nano ZS, Japan) were used to examine the nanoparticle size distribution with measuring
and recording the zeta potential.

2.6. Assessment of Minimum Inhibitory Concentrations (MICs) and Minimum Biocidal Concentration
(MBCs) Activity

To evaluate the antibacterial activity of Ns-AgNps, it was tested against the bacterial strains such
as K. pneumoniae (MTCC 618), E. coli (MTCC 40), S. aureus (MTCC 3160), P. aeruginosa (MTCC 1688),
and E. faecalis (MTCC 439).

MIC values of synthesized AgNPs against different bacteria strains were examined by using
protocol described by Ansari et al [19]. Briefly, all the bacterial strains were cultured firstly on
blood agar plates at 37 ◦C for overnight and then next day single colony was inoculated into the
tryptic soy broth(TSB) for 5–6 h at 37 ◦C on rotor shaker with 100 rpm to get the bacterial growth of
105 to 106(CFUS/mL) for each standard strains. The Ns-AgNPs were serially diluted with different
concentrations (6.5–100 µg/mL). Then, 20 µL of bacterial culture of each strain was added into 180 µL



Processes 2020, 8, 388 4 of 14

TSB and then kept incubator at 37 ◦C for 24 h, and optical density was measured at 550 nm. The lowest
concentration of AgNPs which restricted the 99 % of bacterial growth was considered as MIC. Further
to determine the MBC value, 100 µL bacterial inoculums were streaked on the agar plate from the
MIC tubes and incubated at 37 ◦C for overnight. The lowest concentration of Ns-AgNps at which no
bacterial growth was seen on inoculated agar plate has been considered as MBC.

2.7. Detection of Anti-Biofilm Activity

The anti-biofilm activity of biosynthesized Ns-AgNPs was observed against the biofilm producing
standard bacterial strains with or without Ns-AgNPs. Biofilm production of the concerned pathogenic
bacteria was carried out using the tissue culture plate (TCP) method as explained by Balasamy et al. [20],
which is commonly applied worldwide and considered as standard test for detection of biofilm
production with some modifications. MTCC bacterial strains of K. pneumonia, E. coli, S. aureus,
P. aeruginosa, and E. faecalis were grown on blood agar plate for overnight at 37 ◦C and the next day a
single colony of all bacteria were inoculated into different conical flasks containing the 100 mL TSB
at 37 ◦C for 6–7 h with shaking at 100 rpm until to obtain approximately 2.5 × 108 CFUs/mL. These
bacterial inoculums were further diluted (1:100) with fresh TSB medium to approximately 106 CFUs/mL
and transferred it to 96 wells flat bottom TCPs and incubated at 37 ◦C for overnight. After completing
the incubation, the old culture medium was changed with a fresh TSB medium including different
concentrations of Ns-AgNPs (6.5–100 µg/mL), without disrupting the biofilm. Samples with AgNPs
were incubated further at 37 ◦C for 24 h. Thereafter, the medium was discarded; each well were gently
washed two times with sterile 1x Phosphate buffer saline (PBS) to get rid of the planktonic state or
free floating bacteria and dried it at room temperature for 20 min. 0.1% crystal violet solution was
added to each well for 15 min to stain the biofilms. The surplus stain was eliminated by washing three
times with sterile 1% PBS, and dried at room temperature for 30 min. 100 mL of 95% ethanol was
then added to each well. Optical densities (OD) of stained acquired biofilm were observed by a micro
ELISA reader at wavelength 595 nm. Experiments were repeated in triplicate. Average OD values of
sterile medium were measured and deducted from the all test values. [21]. The OD of sample was
converted to percentage of biofilm inhibition, calculated as follows:

Percentage of biofilm = OD of the test/OD of the control × 100

2.8. Determination of In Vitro Anticancer Activity of Synthesized AgNPs

2.8.1. Cell Culture and Cell Line Maintenance

Breast cancer cell line (HCC712) was acquired from National Centre for Cell Science (NCCS),
Pune, India. The HCC712 cells were freshly cultivated as monolayer in Dulbecco’s Modified Eagles’s
Medium (DMEM), supplemented with 10% FBS, 1% glutamine, and 100 U/mL penicillin/streptomycin
and incubated at 37 ◦C in 5% CO2 atmosphere. It was grown in a 75 cm2 tissue culture flask.

2.8.2. Cell Viability Test

The colorimetric MTT assay was applied to scrutinize the cytotoxic effects. The activity of
Ns-AgNPs was examined against HCC712 cell lines (1 × 106 cells/mL) and the culture was seeded in
96 flat-bottom well plate that was suitable for high throughput screening. Different concentrations
(25 to 200 µg/mL) of silver nanoparticles were added to the cultures and incubated for 24 h in 5%
CO2 atmosphere. After 24 h, the cells were washed with PBS followed by mixing of 100 µL of MTT,
and the cells were again incubated for 3–4 hr at 37 ◦C in 5% CO2 atmosphere. The formazan crystals
were suspended in 200 µL of DMSO and optical density of each well was observed. The quantity of
formazan product as measured in the calorimetric assay at 570 nm with a reference filter at 630 nm
determined and the growth inhibition rates were calculated as a percentage. Growth inhibition = A570
of treated cells/A570 of control cells × 100.



Processes 2020, 8, 388 5 of 14

2.8.3. Measurement of Cytomorphological Changes in HCC712

After the adequate growth of HCC712 cells in tissue culture flask, it was treated with different
concentrations of Ns-AgNPs and then incubated for 24 h at 37 ◦C in 5% CO2 atmosphere. After the
incubation, the gross morphological changes in the cells were examined by bright field microscopy.

2.9. Statistical Analysis

All antibacterial and cytotoxic activities were performed with minimum of three replicates. Means,
standard deviations, error bars were calculated using Microsoft excel. The error bars are given for each
bar showing a 95% confidence interval.

2.10. Ethics Statement

As this experiment was totally based on in-vitro study using bacterial isolates to evaluate the
anti-microbial and anti-biofilm activity of black seed silver nanoparticle, ethical review is not required.

3. Results and Discussion

The synthesis of Ns-AgNPs was primarily authenticated visually and then by using UV–visible
spectroscopy which has been commonly applied to characterize the synthesized metal nanoparticles.
After mixing the silver nitrate into the homogenized extract, a change in colour from pale yellow to
tan-brownish colour was observed due to a surface plasmon resonance phenomenon, which confirmed
the formation of AgNPs in the reaction mixture.

3.1. UV-Vis Spectrum

UV–Vis spectroscopy is one of the best applicable tools to confirm the formation of AgNPs.
Moreover, surface plasmon resonance (SPR) patterns are frequently utilized as suggestive tools for metal
nanoparticles formation as SPR depends on a number of parameters, including size and medium dielectric
constant [22]. The maximum absorption spectrum was determined between 300–800 nm (Figure 1).
Moreover, characteristic peak at 400 nm in the UV-Vis spectrum was observed and this study specifically
provides evidence of formation of biosynthesized silver nanoparticles from Nigella sativa seeds extract
(Figure 1). This result is in consistent with the previous study, which exhibited that the synthesis of
silver nanoparticles from Phoenix dactylifera (date palm) seeds and recorded the plasma resonance peak at
459 nm [11]. In this context, another study result revealed that a reduction of silver ions was observed
between 300 and 600 nm and peak absorption was monitored at 440 nm by UV-Vis spectroscopy [23].
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3.2. FTIR Spectroscopy

FTIR spectroscopy, an analytical technique, was employed to discover the biomolecules of Nigella
sativa seeds extract that were bound particularly on the synthesized AgNPs. FTIR results (Figure 2A)
for Nigella sativa showed the compounds responsible for the synthesis of AgNPs. FTIR spectroscopy
was scanned at a range 400–4000 cm−1 of resolution to ensure the formation of silver nanoparticles.
Bands were observed at 3421.30, 2923.92, 2350.08, 1019.06, 666.76, and 2926 cm−1. The bands at 3421.30
and 2923.92 cm−1 demonstrated the reduction of silver ions in NPs. The band at 1019.06 cm−1 showed
the N-H bonding vibrate of amides. The band in seed extract at 1019.06 to 666.76 cm−1 after the bio
reduction of AgNP’s pointed out the C=C stretching mode in the aromatic compounds which validated
the presence of aromatic compounds like flavonoids. The peaks observed at the 605 cm−1 confirms the
C-S stretch (Figure 2B).

This finding was supported by the previous findings that were conducted on different plant
extract [24–26]. In this regard, silver nanoparticle using garlic extract reported stretching peaks at
3270 and 2930 cm−1, probably belonging to –O–H and –C–H peaks, correspondingly, which match to
sugars in the garlic extract. Furthermore, it is identified that garlic hold sugars including sucrose and
fructose, which play role as reducing and stabilizing agents [27]. So, based on finding FTIR results
confirmed that biomolecules and some proteins are present in the extract sample to protect it from
further changes and responsible for capping, stabilization and reduction of Ag+ to AgNPs.

3.3. X-ray Diffraction Analysis

XRD analysis was performed to examine the crystalline characteristics of the biosynthesized
AgNPs produced by the seed of Nigella sativa seeds extract. The X-ray diffraction pattern of the
biosynthesized AgNPs procured by the seed of Nigella sativa extract was determined at 29.18◦, 34.18◦,
39.45◦, 47.18◦ and can be indexed to the angle values of (111), (200), (220), (240) crystalline planes
of cubic silver (Figure 2C).The diffraction pattern result based on Nigella sativa extract established
the formation of particles was nano in size, crystalline and stable in nature. In this sense, similar
observations with biosynthesized nanoparticles have been demonstrated [28,29]. XRD data and The
Scherrer equation was used to calculate the average size of Ag nanoparticles from extract [30].
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3.4. SEM and TEM Analysis

SEM analysis was done to check the dimensions and shape of the nanoparticles. The AgNPs
synthesized from Nigella sativa were of uniform size disseminated evenly and spherical in shape
(Figure 3A,B). The result of SEM analysis of biosynthesized silver nanoparticles from extract was
obviously differentiable due to their size difference. The current results were in accordance with that of
Otunola et al. justified the similar range of Ag NPs from pepper and garlic [31]. EDX technique was
used to observe the elemental composition of biosynthesized Ag nanoparticles in solution. In X-ray
spectrum, all the elements showed a unique set of peaks with different atomic structure as shown in
(Figure 3C). Meanwhile, silver metal exhibited a strong signal in EDX image and weight percent 40%
clearly indicated the presence of metallic silver nanocrystals (Figure 3C,D).

The most appropriate microscopic technique to investigate the size and morphology of AgNPs is
TEM [32]. TEM was used to determine the biosynthesized AgNPs (Appendix A) in nanoscale from
extract. TEM analysis confirmed the presence of AgNPs in the sample of N. sativa average size ranging
between 8 and 80 nm, smaller size of particle good indicator for effective performance and quality of
AgNPs (Figure 4A,B). The previous report also showed that the AgNPs obtained from seed extract of
Phoenix dactylifera were mostly spherical in shape and similar sizes ranging [33]. Another pioneer study
result revealed that TEM image of AgNPs were found similar shape and with narrow distribution [34].
DLS was also used to investigate the particle size distribution, and revealed the particle size 8–80 nm
with average particle size 55 nm, as shown in (Figure 4C). Similar size distribution studies have been
reported previously [33].
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3.5. Assessment of MIC and MBC Activity

Initially, the effect of Ns-AgNps was investigated against E. coli, K. pneumonia, P. aeruginosa, S. aureus
and E. faecalis bacterialstrains. Ns-AgNps showed the significant bacteriostatic and bactericidal activity.
Even the lowest concentration of Ns-AgNps restricted the highest rate of inhibition against S. aureus
(6.5 and 15 µg/mL) and E. faecalis (6.5 and 15 µg/mL). Antimicrobial activity of S. aureus and E. fecalis
was more pronounced than E. coli (15 and 30 µg/mL), K. pneumonia (15 and 30 µg/mL), and P. aeruginosa
(30 and 60µg/mL) respectively (Table 1). In addition, Ns-AgNps concentration against above mentioned
bacterial strains showed 6.5–30 µg/mL concentration for MIC and MBC values were 15–60 µg/mL. Our
above-mentioned results revealed that Ns-AgNps exhibited excellent antibacterial activity and was
in accordance with the findings of a previous study [35]. Silver nanoparticle play an important role
in bactericidal, bacteriostatic and also kill the other types of pathogens. Sadeghi et al. evaluated the
bactericidal effect of silver nanoparticles and chlorhexidine against S. mutans to observe that silver
nanoparticles showed a statistically significant bactericidal effect as compared to chlorhexidine [36].

Table 1. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
activity of Ns-AgNps.

S. No Bacterial Strains
Synthesized Ns-AgNps

MIC (µg/mL) MBC (µg/mL)

1 Klebsiella pneumonia (MTCC 618) 15 30
2 Pseudomonas aeruginosa (MTCC 1688) 30 60
3 Escherichia coli (MTCC 40) 15 30
4 Staphylococcus aureus (MTCC 3160) 6.5 15
5 Enterococcus faecalis (MTCC 439) 6.5 15
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3.6. Anti-Biofilm Activity

The results of tissue culture plate method demonstrated that antibiofilm activity of the
biosynthesized AgNPs from N. sativa seed extract was 88.42% for E. faecalis, 84.92% for E. coli,
81.86% for K. pneumonia, and 82.84% for S. aureus, respectively at 12.5 µg/mL, while with the same
concentration, the biofilm formation was reduced by 49.9% in the case of P. aeruginosa (Figure 5).
Moreover, the evidence for screening the biofilm inhibition in the presence of Ns-AgNPs is shown in
Figure 6. These findings suggest that the uptake of the biosynthesised Ns-AgNPs could diminish the
biofilm forming abilities of tested pathogens. Similar studies were documented as results of biofilm
inhibition at 100 µg/mL AgNPs [37]. Moreover, another study based on anti-biofilm demonstrated that
the AgNPs synthesized from Momordica charantia extract were exhibited improved anti-biofilm activity
against E.faecalis and A. hydrophilia. Additionally, the antibiofilm activity of AgNPs was attributed to
the diffusion through the biofilms imparting antimicrobial actions [38].
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C&D-Positive control (P.C.): Culture media plus 5 different bacterial colonies in different wells
accordingly and no Ns-AgNPs; Row E to H-Culture media plus 5 different bacterial colonies in different
wells accordingly and various concentrations (100 to 12.5 µg/mL) of AgNPs synthesized from Nigella
sativa extract. E.C.-E. coli; S.A.-S. aureus; P.A.-P. aeruginosa; E.F.-E. faecalis; K.A.-K. pneumoniae

3.7. Effect of Ns-AgNPs Against Human (HCC712) Cell Lines

The cytotoxic effect of Ns-AgNPs in the current study was examined against HCC712 (human
breast cancer cells) using MTT assay. The toxicities were examined at different concentrations (25 to
200 µg/mL) and compared to control. The percent inhibition of cell growth was increased with the
concentration of the nanoparticles (Figure 7). The inhibition effect was time and dose dependent and
the IC50 value of 150 µg/mL supports the levels of the inhibition.
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Figure 7. MTT assay results confirming the in-vitro cytotoxicity of the Ns-AgNPsagainst HCC 712
human breast cancer cell-lines.

It was observed that a high concentration of Ns-AgNPs showed promising activity against breast
cancer cell lines and cell proliferation decreased after 24 h. Moreover, findings exhibited that 150 µg/mL
concentration of AgNPs is able to provoke the approximately 50% of cell mortality at different time
intervals. The cell viability in the presence of AgNPs at different concentrations is illustrated in
(Figure 8 A–F). The calculated IC50 value is approximately 175 µg/mL concentrations of Ns-AgNPs.
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Previously, similar findings were reported by Khateef et al. [39] in the form of a cytotoxicity effect
in human breast cancer cells (MCF-7) against green synthesized AgNPs procured from Buchanania
axillaris extracts. The morphological observation of the HCC712 cancer cells exhibited significant
morphological changes and the cell density was decreased, which is a predictable mark of apoptotic
cells (Figure 9).
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4. Conclusions

The study provides another example of an easy, non-toxic, and low cost, preparation of
nanoparticles by Nigella sativa seed extract without any involvement of toxic chemical reducing
agents. The biologically synthesized particles exhibited significant levels of activity such as an
antimicrobial effect and the inhibition of biofilm formation against E. coli, K. pneumonia, P. aeruginosa,



Processes 2020, 8, 388 12 of 14

S. aureus, and E. faecalis. The current study findings revealed that Ns-AgNPs showed a significant
cytotoxic effect on HCC712 breast cancer cell lines. In summary, our results a suggest cost-effective
and eco-friendly approach for Ns-AgNps synthesis which may support the advancement of potential
biomedical applications and alternative therapy involving the design of novel antibiofilm agents
and multi drug resistance bacterial infection, and further could be developed as a template for other
anti-cancer actions.
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Appendix A

Ns Nigella sativa
AgNPs Silver nanoparticles

DLS Dynamic light scattering
UV-Vis Ultraviolet visible
FTIR Fourier-Transform Infrared Radiometer
SEM Scanning light microscope
EDX Energy dispersed X-ray
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