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Abstract: In this project, we present a comparative study of the electrochemical performance for tubular
MCo2O4 (M = Cr, Mn, Ni) microstructures prepared using cotton fiber as a bio-template. Crystal
structure, surface properties, morphology, and electrochemical properties of MCo2O4 are characterized
using X-ray diffraction (XRD), gas adsorption, scanning electron microscopy (SEM), Fourier transforms
infrared spectroscopy (FTIR), cyclic voltammetry (CV), and galvanostatic charge-discharge cycling
(GCD). The electrochemical performance of the electrode made up of tubular MCo2O4 structures was
evaluated in aqueous 3M KOH electrolytes. The as-obtained templated MCo2O4 microstructures
inherit the tubular morphology. The large-surface-area of tubular microstructures leads to a noticeable
pseudocapacitive property with the excellent electrochemical performance of NiCo2O4 with specific
capacitance value exceeding 407.2 F/g at 2 mV/s scan rate. In addition, a Coulombic efficiency
~100%, and excellent cycling stability with 100% capacitance retention for MCo2O4 was noted even
after 5000 cycles. These tubular MCo2O4 microstructure display peak power density is exceeding
7000 W/Kg. The superior performance of the tubular MCo2O4 microstructure electrode is attributed
to their high surface area, adequate pore volume distribution, and active carbon matrix, which allows
effective redox reaction and diffusion of hydrated ions.

Keywords: bio-template; MCo2O4 (M = Cr, Mn, Ni); electrochemical; cyclic voltammetry;
specific capacitance

1. Introduction

Supercapacitors (SCs) are the energy storage device. SCs are in high demand because of their
greater power density compared to batteries and higher energy density compared to that of capacitors [1].
In the capacitor, there is no time lag during the charging process; hence it can give higher power
density, and in the battery, there is low self-discharge so that it can provide higher energy density [2].
Because of this, a supercapacitor is easy to charge within a short time and able to show significant
performance even after prolonged use. SCs are of three types: (i) electric double-layer capacitors
(EDLCs), (ii) pseudo capacitors (PCs), and (iii) hybrid capacitors. EDLCs are based on the principle
that physical adsorption takes place on the interface of a solid electrode, usually carbon-based material,
and liquid electrolytes [3,4]. In PCs, surface redox reaction takes place at the electrode-electrolyte
interface, which is responsible for storing electronic charges [5], where metal oxides and conducting
polymer-based materials are used as active electrode materials [6,7]. EDLCs have lower specific
capacitance and energy density as compared to PCs, hence, practically PCs are in higher demand.
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A hybrid capacitor is a combination of both EDLCs and PCs; examples are carbon nanotubes, graphene,
etc. [8,9]. They display hybrid charge–storage mechanisms and have the ability to deliver higher
capacity [10].

The electrolyte ion transport in supercapacitor devices occurs through an ion-transport layer
separated from the electrode. The charge storage mechanism follows at the electrode surface during
the charging-discharging process [11].

Transition metal oxides (TMOs) with novel nano-architectures and rich in redox reactions are
increasingly explored for their application in energy storage devices [12]. Among these, cobalt oxides
are highly attractive because of their higher theoretical value for specific capacitance, i.e., 3560 F/g [13].
The nanoarchitecture of these metal-oxides is controlled by the synthesis route, which often requires
complex technological strategies, including toxic organic reagents, which might make it difficult for
their mass industrial application. Thus, it is highly sought to explore cost-effective facile synthesis
strategies and environmentally benign techniques for preparing these electrodes. Furthermore, the ideal
electrode should have a high specific surface area for better specific capacitance, controlled porosity for
better rate capability as well as specific capacitance, and higher electronic conductivity to improve
rate capability and power density of supercapacitor. Nowadays, the bio-templating technique has
emerged as a convincing technique for the preparation of oxide supercapacitors [14–17]. Nature
offers rich and diverse bio-templates [18–20] like bamboo, lotus pollen grains [21], leaf [22], sorghum
straw [23], butterfly wing [24], jute fibers [25], and cotton [12]. Such bio-templates offer elaborate
interior and exterior surfaces, and geometries, which make these templates attractive materials to
produce multiscale hybrid and hierarchical morphologies.

Numbers of research are published on the study of transition metal oxide-based electrodes such as
MnCo2O4 [5,26–28] and NiCo2O4 [29–33], Co3O4 [34], and NiFe2O4 [35] for their supercapacitive
application. The benefit of transition metal oxides as electrode materials are innumerable, as their
multiple oxidation states facilitate multiple redox reactions during electrochemical reaction vis-a-vise
offers stable structure. The co-existence of two different cations provides abundant active sites to perform
fast reversible faradic redox reaction on the electrode interface; as a result, higher specific capacity,
and excellent rate capability are achieved [25,36]. Additionally, the types of bonds between transition
metal ions and ligands are dictated by electronegativity and ionization energies [37]; with the former,
the structure is dense, while with later the structure is more open. The valence state, ionic radius,
electronegativity [38], and the local environment of the cations are affected by the change in Gibbs free
energy and electrochemical potential of the electrode. An increase in the electrochemical potential of
cathodes is observed with the increase in the number of electrons in d orbitals of transition metal elements.
This implies a higher consumption of energy during electron transfer [39]. In mixed transition metal
oxides, there is a synergetic effect between metal cations; this produces higher electrical conductivity of
single metal oxide where there is low activation energy to transfer electron between metal cations and
gives excellent structural stability [40,41].

Here we present a comparative study to understand the electrochemical behavior of MCo2O4

(M = Cr, Mn, and Ni) electrodes prepared via a facile bio-template method. The electronegativity
differences among M ions viz. Cr (1.66), Mn (1.55), Ni (1.99), and Co (1.88) could have a substantial effect
on the electrochemical performance of the said electrodes. The electronegativity difference determines
the structure, covalent vs. ionic, and the electric potential of the electrode for the charge transfer,
as discussed above. In the present study, MCo2O4 electrode material is prepared via the bio-template
method, where the product assumes the morphology of the microstructure of bio-template and ends up
with a carbon matrix. The bio-template method adapted to produce active material inherently fixed in
the carbon matrix. The carbon matrix is known to enhance electrode electrochemical performance [42].
The template supported mineralization MCo2O4 at room temperature (RT) produces 3D-hierarchical
and porous-MCo2O4 superstructures with tubular-like morphologies. The doped Co3O4 (MCo2O4) is
explicitly explored in this study as dopant atoms or vacancies are known to affect the crystal field [43],
thus modifying the electronic structure and adjusting the electrochemical potential [44].
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2. Experimental

2.1. Synthesis

All the chemicals required for the synthsis, such as Cobalt nitrate hexahydrate; Co(NO3)2.6H2O,
Chromium nitrate hexahydrate; Cr(NO3)2.6H2O, Manganese nitrate hexahydrate; Mn(NO3)2.6H2O,
and Nickel nitrate hexahydrate; Ni(NO3)2.6H2O were purchased from Sigma-Aldrich, St. Louis,
Missouri, USA. The spinel MCo2O4 (M = Cr, Mn, Ni) was synthesized by a facile bio-template method.
Quantities of 1.16 g of Co(NO3)2.6H2O and 0.8 gm of Cr(NO3)2.6H2O, 0.55 g of Co(NO3)2.6H2O and
0.17 gm of Mn(NO3)2.6H2O, and 0.86 g of Co(NO3)2.6H2O and 0.43 gm of Ni(NO3)2.6H2O were mixed
in 15 ml of distilled water separately, and the mixture was ultra-sonicated for 10 minutes to make
a homogenous solution. Then, 1.0 g of cotton was soaked in the mixture solutions for 5 minutes.
The resulting soaked cotton was filtered and dried at 150 ◦C for 30 minutes. The dried cotton was later
calcined at 520 ◦C for 3 hours in the air to obtain bio-templated CrCo2O4, MnCo2O4, and NiCo2O4
tubular microstructure.

2.2. Characterization

The x-ray diffraction patterns were obtained via Bruker D8 Advance X-ray diffractometer
(Bruker Corporation, Madison, WI, USA) using Cu Kα radiation to check phase purity and determine
the crystalline parameters of as-prepared samples. A scanning electron microscope (Phenom) at
10 keV analyzed the morphology of samples. The Brunauer–Emmett–Teller (BET) method was used
to measure the specific surface area of the samples. The surface area measurement was carried out
by adsorption-desorption isotherms at 77 K, (Quantachrome, Boynton Beach, FL 33426, model No.
AS1MP) using nitrogen as adsorbing gas. Thermogravimetric analyses (TGA, Instrument Specialist,
Inc., Twin Lakes, WI, USA), were performed in 24 to 550 ◦C temperature range. FTIR spectra were
collected via Theromo-Fisher Scientific FTIR spectrometer (Nicolet iS10, Thermo Fisher Scientific,
Waltham, MA, USA) between 450 and 1000 cm−1.

Versastat 4–500 electrochemical workstation (Princeton Applied Research, USA) was used to
perform electrochemical measurements in a standard three-electrode configuration. To prepare an
electrode, slurry pastes of 80 wt % of the synthesized powder, 10 wt % of acetylene black, and 10 wt %
of polyvinylidene difluoride (PVDF) were mixed in the presence of N-methyl pyrrolidinone (NMP).
The thoroughly mixed paste was applied onto a nickel foam. Here, the active mass is 80% out of the
total pasted mass in the electrode. The prepared electrodes were dried under vacuum at 60 ◦C for 10
hours. The loading mass of all samples was about 2–3 mg, measured by weighing the nickel foam
before and after deposition with an analytical balance (MS105DU, Mettler Toledo, 0.01 mg of resolution).
MCo2O4 (M = Cr, Mn, Ni) coated nickel foam was used as a working electrode, a saturated calomel
electrode (SCE) as a reference electrode, and a platinum wire as a counter electrode. The electrochemical
performance of the electrodes was evaluated at RT in 3M KOH electrolyte via cyclic voltammetry and
galvanostatic charge-discharge techniques measurements.

3. Results and Discussion

Figure 1a shows the XRD patterns of the bio-templated CrCo2O4, MnCo2O4, and NiCo2O4

microstructure. The XRD patterns match with the face-centered cubic phase of CrCo2O4, MnCo2O4,
and NiCo2O4 (International Centre for Diffraction Data (ICDD) #02-0770). The main peaks at 30.9◦,
36.4◦, 44.3◦, 58.6◦, and 64.3◦ for CrCo2O4, 31.1◦, 36.7◦, 44.7◦, 59.2◦, and 65.9◦ for MnCo2O4, and 31.3◦,
36.8◦, 44.8◦, 59.4◦, and 65.2◦ for NiCo2O4 can be assigned to the (220), (311), (400), (511) and (440)
reflections of CrCo2O4, MnCo2O4, and NiCo2O4 respectively [45,46]. The pattern of NiCo2O4 shows a
peak at 43.2◦, which indicates the formation of NiO cubic phase as also confirmed by TOPAS fitting.
The lattice constants obtained using d-spacing for the sample are a = b = c = 0.816 nm, 0.808 nm, 0.807 nm,
and for CrCo2O4, MnCo2O4, and NiCo2O4, respectively. The crystallite size of CrCo2O4, MnCo2O4,

and NiCo2O4 as calculated using Scherrer’s formula [47] is around 10.57 nm, 14.65 nm, and 19.97 nm for



Processes 2020, 8, 343 4 of 18

CrCo2O4, MnCo2O4, and NiCo2O4, respectively (Table 1). FTIR spectrum, Figure 1b, further identifies
the structure of the bio-templated MCo2O4. The FTIR spectrum displays two distinct bands at 515.7 (ν1)
and 637 (ν2) cm−1, which arise from the stretching vibrations of the metal-oxygen bonds [48–50]. The ν1
band is characteristic of M-O (M = Cr, Mn, Ni) vibrations in octahedral coordination, and the ν2 band
is attributable to M-O (M - Co) bond vibration in tetrahedral coordination. These frequency bands are
the signature vibrational bands for the spinel lattice [51]. Hence FTIR spectrum at 519.1, 519.02, and
519.08 cm−1 indicate stretching vibration of Co3+-O2− in the octahedral sites, and at 638.6, 639.9, and
641.3 cm−1 indicate vibration of Cr3+-O−, Mn2+-O2−, and Ni2+-O− at tetrahedral sites for CrCo2O4,
MnCo2O4, and NiCo2O4, respectively [52]. The presence of vibration bands confirms the development
of pure phase spinal CrCo2O4, MnCo2O4, and NiCo2O4 nanostructures.

Table 1. Crystallite size and physical properties of MCo2O4 (M = Cr, Mn, Ni) determined using XRD,
the Barrette–Joyner–Halenda (BJH) method, and Brunauer–Emmett–Teller (BET) surface area analyzer.

Sample BET Surface
Area(m2/g)

BJH Surface
Area (m2/g)

BJH Avg. Pore
Radius (nm)

BJH Avg. Pore
Volume (cc/g)

Crystallite
Size (nm)

CrCo2O4 34.4 46.9 1.135 0.106 10.57
MnCo2O4 32.2 47.7 0.839 0.071 14.65
NiCo2O4 18.9 31.8 1.129 0.039 19.97
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Figure 1. (a) x-ray diffraction pattern, (b) FTIR, (c) adsorption-desorption curve and inset pore volume
distribution, and (d) thermogravimetric curve of tubular MCo2O4 (M = Cr, Mn, Ni) structures.

Figure 1c shows the BET specific surface area of tubular MCo2O4 microstructures. The specific
surface area was determined from N2 adsorption-desorption isotherms obtained at 77 K between
relative pressure P/Po~0.029 to 0.99, and the Barrette–Joyner–Halenda (BJH) method was used for
measuring corresponding pore sized distributions. The type IV isotherm hysteresis loops [53] suggest
the existence of mesopores in the samples. The BET specific surface area of biomorphic CrCo2O4,
MnCo2O4, and NiCo2O4 are 34.4 m2/g, 32.2 m2/g, and 18.9 m2/g, respectively. Figure 1c inset shows
the pore size distribution. Inset curves indicate having a more favorable condition for the fast ion
transport phenomenon within the electrode surface [54–57], which is confirmed by the presence of a
significant number of pores distribution at around 0.4 nm to 4.3 nm with the highest pore volume.
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Additionally, the large BET surface area of tubular MCo2O4 superstructures can provide plenty of
superficial electrochemical active sites to participate in the Faradaic redox reactions.

The thermogravimetric analysis was conducted on the infiltrated samples (cotton dipped in a
mixture of chemical solution and filtered it) to understand the temperature dependence mechanism
of the formation of biomorphic MCo2O4. Figure 1d shows the TGA plots of MCo2O4 measured
in the temperature range of 24 to 550 ◦C. The formation of MCo2O4 from the nitrate salts results
in three steps. The weight loss at around 110 ◦C for all three MCo2O4 is due to water desorption,
the second weight loss up to 187 ◦C for CrCo2O4, 241 ◦C for MnCo2O4, and 160 ◦C for NiCo2O4

is due to burning of cotton and start of decomposition of Co(NO3)2·6H2O and Cr(NO3)2·6H2O,
Co(NO3)2·6H2O and Mn(NO3)2·6H2O, Co(NO3)2·6H2O and Ni(NO3)2·6H2O respectively, there was
no weight loss at beyond 315, 320, and 200 ◦C which signifies the completion of the formation of
CrCo2O4, MnCo2O4, and NiCo2O4. Upon immersing fiber into the precursor solution, the water and
Cr(NO3)2·6H2O, Mn(NO3)2·6H2O, Co(NO3)2·6H2O and Ni(NO3)2·6H2O molecules were absorbed
onto the hydroxyl-group-rich cotton fiber substrate. With the heat treatment above 520 ◦C, nitrate salts
decomposed in the form CrCo2O4, MnCo2O4, and NiCo2O4 as follow [58],

2Co(NO3)2·6H2O + Cr(NO3)2·6H2O→ CrCo2O4 + 2O2 + 6NO2 + 18H2O (1)

2Co(NO3)2·6H2O + Mn(NO3)2·6H2O→MnCo2O4 + 2O2 + 6NO2 + 18H2O (2)

2Co(NO3)2·6H2O + Ni(NO3)2·6H2O→ NiCo2O4 + 2O2 + 6NO2 + 18H2O (3)

With the increase in calcination temperature, the removal of organic substance was achieved
where the remaining few portions of the organic substance change into carbon.

FE-SEM in Figure 2a–d displays tubular morphology of the cotton fibers, samples CrCo2O4,
MnCo2O4, and NiCo2O4, respectively, which resembles a biomorphic structure. Figure 3a–c shows
SEM images obtained using elemental mapping at chromium, manganese, and nickel energy peaks
and shows that the tubular structure is well decorated with the CrCo2O4, MnCo2O4, and NiCo2O4

nanoparticles. Table 2 gives the elemental composition and element distribution, which is obtained via
EDX (energy dispersive x-ray spectroscopy).
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Table 2. Elemental composition in wt % for MCo2O4 (M = Cr, Mn, Ni) obtained using energy dispersive
X-Ray analysis (EDX). The elemental composition is approximately determined using EDX. Ideally, EDX
can prove which elements are abundant in the particles, but not obtain the exact chemical composition.

Co C O Cr Mn Ni

CrCo2O4 19.5 49.4 23.2 7.8
MnCo2O4 33.1 34.6 23.5 8.8
NiCo2O4 27.2 42.4 19.3 11.1

The type of electrolytes and their molar concentration play a vital role in determining the
electrochemical behavior of oxide electrodes [59–61]. Therefore, many aqueous electrolytes such
as sulfates K2SO4, H2SO4, KNO3, Na2SO4, hydroxyl KOH, NaOH, LiOH, and chlorides KCl,
NaCl have been explored to be used in supercapacitors [62–66]. The ultimate performance of
the electrode is based on the properties of the electrode material and the intercalation efficiency of
the cations [51]. Since KOH electrolyte provides lower electrochemical series resistance with better
conductivity as compared to other electrolytes [67], KOH is chosen as an electrolyte in this study for
the electrochemical measurement.

Cyclic voltammetry and charge-discharge curves were measured to investigate the electrochemical
behavior of MCo2O4 nanoparticles. Figure 4 displays the CV curves for tubular MCo2O4 electrodes
measured in the 3M KOH electrolyte. Figure 4a,c, and Figure 4e shows the CV curves measured in
the voltage window of 0.0 to 0.6 V and measured at different scan rate from 2 to 300 mV/s. A pair
of redox peaks associated with the redox reactions involved in the alkaline electrolyte during the
charging and discharging process was observed in all CV plots. The CV curve is asymmetric, which
indicates a quasi-reversible redox reaction [68], the anodic and cathodic peak separation are 0.121 V,
0.124 V, and 0.123 V at 2 mV/s and 0.310 V, 0.186 V, and 0.333 V at 300 mV/s for CrCo2O4, MnCo2O4

and NiCo2O4 respectively. The presence of anodic and cathodic peaks, indicating the usefulness of
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the materials as a pseudocapacitor. Typical pseudo-capacitance behavior of MCo2O4 nanostructures
arises from the reversible surface or near-surface Faradic reactions for charge storage. The reversible
redox reaction involved in the charge-discharge process for MCo2O4 can be described as follows by
Equations (5)–(7) [69–71].

MO + OH−↔MOOH + e− (4)

CrCo2O4 + OH− + H2O↔ CrOOH + 2CoOOH + e− (5)

MnCo2O4 + OH− + H2O↔MnOOH + 2CoOOH + e− (6)

NiCo2O4 + OH− + H2O↔ NiOOH + 2CoOOH + e− (7)
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Figure 4. (a,c,e) show cyclic voltammetry curves of tubular MCo2O4 (M = Cr, Mn, Ni) electrode
obtained in the scan range of 5 mV/s to 300 mV/s measured in 3M KOH electrolyte. (b,d,f) show cyclic
stability curves measured up to 1000 cycles in 3M KOH electrolyte at scan rate of 40 mV/s.

Pseudocapacitive characteristics of electrodes are indicated by a non-rectangular form of CV
curves. Within the potential range from 0 to 0.6 V, a pair of reversible redox peaks can be observed.
With the increase in the scan rate, a small positive shift of the oxidation peak potential and a negative
shift of the reduction peak potential was observed, which can be primarily attributed to the influence
of the increasing electrochemical polarization as the scan rate scales up. Pairs of reversible redox curve
are indicative of pseudocapacitive behavior of the material with redox peaks attributed to M(II)/M(III)
redox process [72]. The redox potentials and shape of the CV curves are comparable to those reported
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for CrCo2O4, MnCo2O4, and NiCo2O4 electrodes [24,73–76], suggesting that the measured capacitance
mainly arises from the redox mechanism.

Figure 5a shows the specific capacitance, Csp, as a function of the voltage scan rate of the tubular
MCo2O4 electrode. The specific capacitance, Csp, was calculated from the CV plots using the following
Equation (8) [77].

Csp =

∫ V2
V1 i ∗V ∗ dV

m ∗ v ∗ (V2−V1)
(8)

where V1 and V2 stand for the working potential limits, i stands for the current, m stands for the mass
of the electroactive materials, and v is the scan rate in mV/s.
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Figure 5. (a) Specific capacitance vs. scan rate, (b) and peak current vs. (scan rate)1/2, and (c) diffusion
and capacitive contribution to the specific capacitance.

It is evident for this figure that the electrode displays higher Csp up to 407.2 F/g for NiCo2O4 in
3M KOH electrolyte at 2 mV/s, which is higher than the value that is observed for either CrCo2O4

(Csp ~ 403.2 F/g) or MnCo2O4 (Csp ~ 378.1 F/g) electrode, value are given in Table 3. The specific
capacitance for higher scan rates (>50 mV/s) remains practically constant because of limited ion
movement only at the surface of the electrode material. Hence EDLC becomes a dominant mechanism
at higher scan rates. At lower scan rates (<5 mV/s), the majority of active surface are utilized by the
ions for charge storage, and hence resulting in the higher specific capacitance. The CV cyclic stability
of the electrode was tested for 1000 cycles. Figure 4b,d, and Figure 4f show no significant differences in
the CV curves after the 100th, 500th, and 1000th cycle of repetition. The CV curves clearly show that
the current response is proportionally increased with the scan rate, indicating an excellent capacitive
behavior of the electrode materials. This can be ascribed to facile ion diffusion and large specific
surface area of the electrode materials. Furthermore, there is almost no relation between the shape of
CV curves and scan rates, which can be associated with the electron conduction and improved mass
transportation of electrode material [78].
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Table 3. Data of specific capacitance, energy density, and power density for MCo2O4 (M = Cr, Mn, Ni)
obtained from cyclic voltammetry and charge-discharge curves.

CrCo2O4 MnCo2O4 NiCo2O4

Specific Capacitance at 2mv/s 403.2 F/g 378.1 F/g 407.2 F/g
Specific Capacitance at 1A/g 231 F/g 161 F/g 190 F/g
Energy density 11.1 Wh/Kg 7.8 Wh/Kg 9.3 Wh/Kg
Power density 7287.34 W/Kg 7195.33 W/Kg 7186.12 W/Kg

The total stored charge has a contribution from three components; first is the Faradaic contribution
coming from the insertion process of electrolyte ions, second is the faradaic contribution from the
charge-transfer process with surface atoms, and third is pseudocapacitance and nonfaradic contribution
from the double layer effect [79]. Both pseudocapacitance and double-layer charging are substantial,
due to their higher surface area of nanoparticles. The capacitive effects are characterized by analyzing
the cyclic voltammetry data at various scan rates according to [80,81],

i = avb (9)

where i, v, a and b, are peak current (A), voltage scan rate (mV/s), and fitting parameters, respectively.
The charge storage mechanism is defined based on the value of the constant b, where b = 1 defines
capacitive or b = 0.5 defines diffusion-limited charge storage mechanism. Fitting the peak current,
i, vs. square root of the scan rate, SQRT (scan rate), v-1/2, curves, Figure 5b, with Equation (6), gives b
values of ~ 0.646, 0.711, and 0.648 for CrCo2O4, MnCo2O4, and NiCo2O4, respectively. This obtained b
value for our sample MCo2O4 (M = Cr, Mn, Ni) indicates the diffusive nature of the charge storage
mechanism is prominent for NiCo2O4 as compared to the other two.

Usually, the contribution to the current response at fixed potential comes from surface capacitive
effects and diffusion-controlled insertion processes [82,83]. These contributions to the specific
capacitance could be separated using the following Equation (10):

Csp = k1 + k2 v−1/2 (10)

For which k1 and k2 can be determined from the Csp vs. v−1/2 linear plot with slope k2 and intercept
k1. k1 and k2 are fractions of diffusion and capacitive contribution to the net specific capacitance at a
given voltage rate. The Csp was plotted against the slow scan rate up to 20 mV/s, and a regression
fit was performed using Equation (10). The obtained k1 and k2 values were used to determine the
fractional contribution to the net specific capacitance. Figure 5c shows capacitive and diffusive
fractional contributions to net specific capacitance for a slow scan rate of up to 20 mV/s. By comparing
the lower green area with the total capacitance, we find that capacitive effects contribute by 48%, 54%,
and 38% of the total specific capacitance for CrCo2O4, MnCo2O4, and NiCo2O4, respectively.

Figure 6a,c, and Figure 6e show the galvanostatic charge-discharge (GCD) plots measured in the
voltage window of 0.0 to 0.6 V at different current densities between 0.75 A/g to 30 A/g in 3M KOH.
From the observed non-linearity between the potential and time, it is confirmed that the capacitance of
the studied materials is not constant over the studied potential ranges. The specific capacitance of
electrodes was calculated using the following Equation (11):

Csp =
I ∗ t

m ∗ ∆V
(11)

where Csp, I, ∆V, m, and t are the specific capacitance (F/g), charge-discharge current (A), the potential
range (V), and the mass of the electroactive materials, and the discharging time (s), respectively.
The GCD curves with a plateau, usually displayed by oxide electrodes, show pseudocapacitive
behavior of electrode with respect to their discharging time for all electrolytes. This typical GCD
behavior could arise from the electrochemical adsorption-desorption of OH- electrolyte and/or a
redox reaction at the interface of electrode/electrolyte [84,85]. It is observed that the discharging time
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in biomorphic MCo2O4 is longer for CrCo2O4 in the KOH electrolyte. The specific capacitances of
biomorphic CrCo2O4, MnCo2O4, and NiCo2O4 at 1 A/g are 231 F/g, 161 F/g, and 190 F/g in 3M KOH
electrolytes, respectively are shown in Table 3. Figure 7a shows the dependence of current density
on the specific capacitance of the electrode material. Usually, insufficient Faradic redox reaction is
achieved at the high discharge current densities. This leads to increased potential drop due to the
resistance of tubular MoCo2O4 electrode resulting in an observed decrease in capacitance with the
increased discharge current density. This implies ion penetration is feasible at lower current densities
where ions have access to the inner structure, and thus all active area of the electrode. However,
at higher current densities, the effective use of the material is limited to only the outer surface of the
electrode. The specific capacitance of MCo2O4 electrodes in this study is compared with the literature
values at current density 1 A/g, 2 A/g, and 5 A/g and are listed in Table 4. It is evident from Table 4 that
electrochemical performance of bio-templated MCo2O4 comparable and, in some cases, outperformed
electrodes prepared via other techniques.
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Figure 6. (a,c,e) show charge-discharge (CD) curves of tubular MCo2O4 (M = Cr, Mn, Ni) electrode
measured in the current density window of 1 to 30 A/g in 3M KOH electrolyte, where red color CD curve
is for 1A/g, blue color CD curve is for 1.5A/g, orange color CD curve is for 2A/g and continuously time
is decreasing with increasing current density. (b,d,f) show cyclic stability (black color) and coulombic
efficiency (blue color) tested at 10 A/g current density for 5000 cycles in 3M KOH electrolytes of MCo2O4

(M = Cr, Mn, Ni).
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Table 4. Comparison of electrochemical performance of MCo2O4 (M = Cr, Mn, Ni) as available from
the literature.

Electrode
Material Electrolyte Specific

Capacitance
Energy
Density

Power
Density

Cyclic
Performance
(retention)

Ref.

MnCo2O4
nanofiber 108 F/g at 10 A/g 54 Wh/Kg 9851 W/Kg 85 % after

3000 cycles [5]

Nanorods
MnCo2O4

1M KOH 349.8 F/g at 1 A/g 35.4 Wh/Kg 225 W/Kg 92.7% after
50 cycles [86]

Nanoneedles
MnCo2O4

6M KOH 1535 F/g at 1 A/g 35.4 Wh/Kg 225 W/Kg 94.3% after
12000 cycles [87]

Nanorods
MnCo2O4

2M KOH 845.6 F/g at 1 A/g 35.4 Wh/Kg 225 W/Kg 90.2% after
2000 cycles [24]

Nanorods
MnCo2O4

1M KOH 308.3 F/g at 1 A/g 55.5 Wh/Kg 5400 W/Kg 88.76% after
2000 cycles [88]

MnCo2O4
nanowires

@MnO2

- 2262 F/g at 1 A/g 85.7 Wh/Kg 800 W/Kg - [89]

Nanorods
MnCo2O4

718 F/g at 0.5 A/g - - 84 % after
1000 cycles [90]

NiCo2O4
nanorods 2M KOH 565 F/g at 1 A/g - - 77.6% after

1000 cycles [69]

RGO decorated
nanorods

bundle NiCo2O4

6M KOH 1278F/g at 1 A/g - - 95% after
1000 cycles [84]

Nanorods
assemble
NiCo2O4

2M KOH 764 F/g at 2 A/g - - 101.7% after
1500 cycles [91]

Nanorods
NiCo2O4

2M KOH 823 F/g at 0.823 A/g 28.51 Wh/Kg - 101.7% after
1500 cycles [2]

GO/ Nanorods
NiCo2O4

1M KOH 709.7 F/g at 1 A/g 28 Wh/Kg 8000 W/Kg 94.3% after
5000 cycles [92]

Nanorods
NiCo2O4

2M KOH 600 F/g at 5 A/g - - 80% after
1500 cycles [70]

Nanorods
NiCo2O4
@PANI

1M H2So4 901 F/g at 5 A/g - - 91% after
3000 cycles [93]

Templated
CrCo2O4,

MnCo2O4, and
NiCo2O4

microstructure

3M
KOH

403.4, 378, and 407.2
F/g at 2mV/s and

231, 161, and 190 F/g
at 1 A/g,

respectively

11.1, 7.8, and
9.3 Wh/kg,

respectively

7287.3,
7195.3, and

7186.1 W/Kg,
respectively

92% after
5000 cycles
91% after

5000 cycles
and 100%

after
5000 cycles,
respectively.

[This work]
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Estimation of the electrochemical utilization of the active materials (CrCo2O4, MnCo2O4, and
NiCo2O4 electrode), was evaluated from the fraction of cobalt sites, z. The fraction, z, can be evaluated
using Faraday’s law as following [94]:

z = Csp MW ∆V/F (12)

where Csp, MW, ∆V and F is the specific capacitance value, the molecular weight, the applied potential
window, and the Faraday’s constant, respectively. The z value of 1 indicates the complete involvement
of electroactive material. i.e., all active metal sites participating in the redox process. The molecular
weight of Co (84.03 g/mol) and Cr (51.996 g/mol) in CrCo2O4, Co (84.03 g/mol) and Mn (54.93 g/mol) in
MnCo2O4, and Co (84.03 g/mol) and Ni (58.69 g/mol) in NiCo2O4 the specific capacitance at a current
density of 1 A/g (Csp~ 231 F/g, 161 F/g, and 190 F/g) for CrCo2O4, MnCo2O4, and NiCo2O4, Figure 5b,
and a potential window of 0.6 V gives a z value of 0.195, 0.139, and 0.169 respectively. In other words,
~20%, 14%, and 17% of the total active material Cr, Mn, and Ni atoms participate in the redox reaction
for the charge storage. The observed low value of z suggests that the charge storage in tubular MCo2O4

structure via a redox reaction process occurs mainly at the surface with little bulk interaction due to
diffusion of OH− ions into the material. It could be concluded that the charge storage due to the redox
process in MCo2O4 mostly occurs only at the redox sites predominantly located on the surface of the
particles [71].

Cyclic stability tests were performed to evaluate the practical performance of electrodes as a
supercapacitor. The stability test of electrode materials was assessed via galvanostatic CD measurement
for 5000 cycles for a current density of 10 A g−1 in 3M KOH and is shown in Figure 6b,d, and Figure 6f.
The Coulombic efficiency (η) of the devices was calculated from its charging (Tc) and the discharging
(Td) times from GCD curves following the relation, η = Td/Tc × 100, and is plotted in Figure 6b,d,f
as a function of cyclic time. The initial η of the device was ~100%, which remained practically the
same even after 5000 cycles. For the practical applications, the study of cycling performance for
electroactive material is very significant parameter. The percentage retention in specific capacitance
was calculated using,

% retention in specific capacitance = (C#/C1)×100 (13)

where C# and C1 are specific capacitance at various cycles and the 1st cycle, respectively. The specific
capacitance of the electrode is reduced by 7.68% in CrCo2O4, reduced by 9.12% in MnCo2O4, and
increased by 0.48% in NiCo2O4.

Figure 5h shows the Ragone plots of as-synthesized MCo2O4 electrodes. The energy densities (E)
and power densities (P) of the electrochemical cells are calculated using the following equations [95]:

E = (1/2)CV2 (14)

P = E/t (15)

where C, V, and t are the specific capacitance that depends on the mass of the electrodes, the operating
voltage of the cell, and discharge time in seconds, respectively. The essential point for high-performance
supercapacitors is to obtain a high energy density and meanwhile providing an outstanding power
density. It is observed from Figure 7b that the tubular CrCo2O4, MnCo2O4, and NiCo2O4 electrode
display superior performance over energy density up to 11.1 Wh/kg, 7.8 Wh/kg, and 9.3 Wh/kg with
a peak power density up to 7287.34 W/kg, 7195.33 W/kg, and 7186.12 W/kg, respectively are given
in Table 3. As supercapacitor is expected to provide higher power and energy density at the same
time, hence NiCo2O4 displays an overall better energy density of 9.3 Wh/kg and a power density of
7186.12 W/kg as compared to MnCo2O4 and CrCo2O4.
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Ideally, to develop a higher energy density battery with a given anode, a cathode with high
electrochemical interaction potential is desired. This is because the energy density of the device equals
the product of the working voltage, which is obtained from the electrochemical potentials different
between the cathode and anode and specific capacity of the electrode materials [63]. On the other hand,
the theoretical capacity of electrode materials depend on the number of reactive electrons (n) and molar
weight (M) of the materials and is expressed as Equation (16) [96],

Ct = n∗F/3.6∗M (16)

Here, F is the Faraday constant, n is the number of reactive electrons, and M is the molar weight
of materials. Theoretically, the equation predicts that an electrode material having a smaller molecular
weight can produce a higher capacity. The molecular weight of CrCo2O4, MnCo2O4, and NiCo2O4 is
~ 233.86, 236.80, and 240.55 g/mol, respectively. Thus, in line with the Equation (11), at low current
density, among three electrodes studied, the CrCo2O4 displays higher specific capacitance. However,
overall superior performance in terms of energy and power density was displayed by the NiCo2O4

electrode. NiCo2O4 is known to possess rich electroactive sites, narrow pore size, and higher electrical
conductivity (at least two magnitudes higher) than that of Co3O4 and NiO, which could be the reason
for the observed overall better performance of NiCo2O4 [97,98].

4. Conclusions

In conclusion, biomorphic tubular CrCo2O4, MnCo2O4, and NiCo2O4 nanostructures were
prepared using cotton by a cost-effective and straightforward bio-template method. The synthesized
tubular MCo2O4 display excellent crystallinity, phase purity and display desirable electrochemical
properties, which indicate a good chance for the fabrication of high-performance supercapacitor
devices. Electrodes constructed using the tubular MCo2O4 demonstrate high specific capacitance,
cyclic stability, power, and energy density when evaluated in 3M KOH electrolyte. The study suggests
that it is imperative to account for the nature of the electroactive sites and the conductivity of materials
when choosing materials from the series of transition metal oxide as the electrode for the supercapacitor
application. Furthermore, the superior electrochemical performance of tubular MCo2O4 microstructure
owes to the presence of conducting a carbonaceous structure. The highly porous carbonaceous structure
can allow electrolyte access throughout the electrode structure. Thus, it produces a large surface area
for ion transfer between the electrolyte and the active materials, which leads to achieving ultrafast
storage and release of energy.
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