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Abstract: To implement the quality-relevant monitoring scheme for batch processes with multiple
output modes, this paper presents a novel methodology based on stochastic programming.
Bringing together tools from stochastic programming and ensemble learning, the developed
methodology focuses on the robust monitoring of process quality-relevant variables by taking
the stochastic nature of batch process parameters explicitly into consideration. To handle the problem
of missing data and lack of historical batch data, a bagging approach is introduced to generate
individual quality-relevant sub-datasets, which are used to construct the corresponding monitoring
sub-models. For each model, stochastic programming is used to construct an optimal quality
trajectory, which is regarded as the reference for online quality monitoring. Then, for each sub-model,
a corresponding control limit is obtained by computing historical residuals between the actual output
and the optimal trajectory. For online monitoring, the current sample is examined by all sub-models,
and whether the monitoring statistic exceeds the control limits is recorded for further analysis.
The final step is ensemble learning via Bayesian fusion strategy, which is under the probabilistic
framework. The implementation and effectiveness of the developed methodology are demonstrated
through two case studies, including a numerical example, and a simulated fed-batch penicillin
fermentation process.

Keywords: quality-relevant monitoring; batch processes; data-driven modeling; stochastic
programming; bagging algorithm; Bayesian fusion

1. Introduction

1.1. Background and Literature Review

Batch processes are widely used in modern industrial applications due to the growing requirements
of producing high-value products, such as food, plastics, pharmaceuticals, and biological and
semiconductor materials [1–4]. Since the products of batch processes often require extremely high
quality, the problem of quality-relevant monitoring has received increased attention in recent years.
The concept of “quality-relevant” monitoring—also known as “output-relevant” monitoring—was
proposed [5–7] to describe output-relevant faults that directly affect process quality, which is captured
by the output variables. It is important to develop output-relevant monitoring methods for process
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safety and quality enhancement in batch processes. Over the past few decades, various approaches
have been proposed to solve the problem using multivariate statistical process monitoring (MSPM)
methods, such as multiway principal component analysis (MPCA) and multiway partial least squares
(MPLS) [8,9]. These traditional data-based methods are developed for monitoring purposes based on
historical batch data [10,11]. Other approaches have also been proposed for quality-relevant monitoring
of batch processes to improve performance [12,13]. However, with the increased complexity and
integrated nature of modern industrial processes, the quality variables of different batches may
behave rather differently, primarily due to the stochastic nature of process parameters and other
process uncertainties.

Although existing methods can meet regular monitoring requirements, difficulties arising from
practical implementation considerations in industrial batch process operations need to be addressed
and accounted for explicitly in the monitoring method development. The lack of historical data, for
example, is an important problem that is encountered when data-based modeling is implemented.
This problem is commonly the result of the missing data problem, the insufficiency of historical batches,
and the lack of quality variables [14,15]. There are two major problems related to missing data: one
is missing measurements in historical data, and the other is missing observations in online data [16].
In most existing research works on the missing data problem, the focus has been more on the missing
observations, since offline model construction is made under the assumption that abundant historical
data have been acquired [17–20]. Meanwhile, insufficient batches are usually ignored for the same
reason. To deal with the problem of historical missing data, simple imputation (such as using mean
values of nearby samples) is used widely to fill missing elements. Furthermore, for most data-driven
monitoring methods for batch processes, quality variables are considered difficult to obtain. Thus,
soft-sensor methods, such as multi-block/multi-way partial least squares [21], are proposed to make
use of the limited quality data. As a result, it is necessary to deal with the deficiency in historical data to
construct more reliable offline models. While some data-based methods have been proposed to handle
these problems, the stochastic nature of batch processes is often ignored since the physico-chemical
mechanism underlying the process is not considered in data-based methods. It is therefore expected
that combining the mechanistic knowledge of the process together with the data collected from process
sensors will aid in developing a robust monitoring model. However, one is typically faced with the
challenge that the entire mechanism or the first-principles model of a process is difficult to obtain,
which is one of the limitations of model-based monitoring methods. As a result, a feasible compromise
is to use process data together with only partial process knowledge to construct a quality-relevant
monitoring model [22,23].

1.2. Research Motivation and Purpose

As is known to us, batch process monitoring is a necessary task in the modern industry. Due to
the increasing complexity of practical batch processes, monitoring methods under the assumption
that the process feature is simple and ideal can no longer provide accurate and robust monitoring
results. Although the relevant literatures can handle part of the difficulties for batch process monitoring
mentioned above, the monitoring problem of complex batch processes with multiple output modes is
still a difficult task to accomplish. Process stochastics and uncertainties, as well as the lack of modeling
data, and the insufficiency of historical batches, are crucial issues in the modeling procedure of complex
batch processes, resulting in unreliable monitoring accuracy and robustness.

To address the aforementioned challenges, we draw extreme attention to the monitoring scheme
of complicated batch processes with multiple output modes. With the combination of stochastic
programming and an ensemble learning strategy, an integrated individual monitoring framework
can solve some of the important issues pertaining to complicated batch process monitoring (e.g.,
multi-output modes and data deficiency of historical data).
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Stochastic programming is the core method to achieve robust modeling and monitoring in the
proposed monitoring framework [24]. By the use of stochastic programming, each multi-output mode
can be demonstrated as a local quality trajectory. Hence, quality trajectories are generated based on
historical process data and partially of quality-relevant process knowledge. To deal with the problem
of various output modes, a bagging approach is introduced. This approach is simple to implement
and widely used for ensemble modeling techniques. By generating multiple output trajectories with
different output modes based on process variables, the bagging method helps construct a family of
quality-relevant sub-datasets, which are used in conjunction with stochastic programming techniques
to obtain a family on sub-models for monitoring, to improve the robustness while facing model
uncertainties and process stochastics. For each sub-dataset, stochastic programming classifies historical
batches into different scenarios by solving a constrained optimization problem. Based on this method,
an optimal solution for the trajectories of the quality-relevant variables are obtained by minimizing
the residuals from the process quality variables, as well as the error between the estimates of missing
elements, and the mean value of existing ones. For monitoring purposes, control limits are developed
based on historical quality residuals for each sub-model. During the online monitoring procedure,
the monitoring results of different sub-models are further integrated by the Bayesian fusion strategy to
implement ensemble learning. The monitoring accuracy and robustness of complicated batch processes
with multiple output modes, and historical data deficiency, are expected to be improved, compared to
the existing methods.

The remainder of this paper is organized as follows. Section 2 introduces some preliminaries of
the proposed method, including a discussion of the stochastic nature of processes, basic knowledge of
batch process monitoring, and a brief introduction to stochastic programming. Section 3 presents the
detailed methodology of the optimization and monitoring steps. In Section 4, a numerical example and
a fed-batch penicillin fermentation process example is presented for performance evaluation. Finally,
concluding remarks are given in Section 5.

2. Preliminaries

2.1. Model Stochastics in Industrial Processes

Modern industrial processes are often complex and quite difficult to model. For process control
and optimization purposes, the development of accurate mathematical models requires parameter
estimation and the use of soft sensor methods. Various methods are available for parameter estimation
for process models, such as least square methods, genetic algorithms, and particle swarm optimization.
Most algorithms calculate optimal solutions of parameters, while the optimal parameters are just mean
values with standard deviations. Therefore, in most studies on process monitoring, the mean values of
parameters are provided to describe process models.

As an example, Table 1 [25] shows the parameter estimation results for a penicillin fed-batch
fermentation process by three different methods, including Nonlinear Programming Method (NPM) [26],
Particle Swarm Optimization (PSO) [27], and Gravitational Search Algorithm (GSA) [28]. This table
illustrates the fact that different parameter estimation methods have identified mean values of model
parameters, while the standard deviations of one parameter by different methods are not identical.
This is due to the stochastic nature of the process and other uncertainties, such as process dynamics,
nonlinearities, and non-Gaussian features. At the same time, when part of the process mathematical
model is used for variable calculation, mean values of parameters are usually used, which are identified
and provided by one parameter estimation method.
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Table 1. Comparison of parameter estimation results for different methods.

Parameter Result NPM PSO GSA

µx
Mean value 0.0913 0.0964 0.0997

Standard deviation 0.0002 0.0007 0.0004

Kx
Mean value 0.1362 0.1484 0.1512

Standard deviation 0.0016 0.0285 0.0030

KI
Mean value 0.0402 0.1441 0.1090

Standard deviation 0.0012 0.0093 0.0151

K
Mean value 0.0016 0.0445 0.0599

Standard deviation 9.396× 10−5 0.0155 0.0103

µp
Mean value 0.0033 0.0048 0.0064

Standard deviation 2.365× 10−5 0.0014 0.0009

Yx/s
Mean value 0.2860 0.4228 0.4441

Standard deviation 0.0021 0.0229 0.0175

ms
Mean value 0.0040 0.0137 0.0136

Standard deviation 0.0002 0.0012 0.0013

2.2. Stochastic Programming

Stochastic programming was first introduced by Dantzig [29] to deal with mathematical
programming under uncertainty, and further developed, in both theory and computational aspects,
by subsequent works. The purpose of stochastic programming is to obtain the optimal solution with
minimum output errors under different scenarios with constraints.

In mathematical programming terms, the so-called two-stage stochastic program is generally
defined as follows [30]:

min cTx + EξQ(x, ξ)
s.t. Ax = b, x ≥ 0

(1)

where Q(x, ξ) = min
{
qT y

∣∣∣Wy = h− Tx, y ≥ 0
}
, ξ is the vector comprised of the components of qT, hT,

and T, and Eξ denotes the mathematical expectation with respect to ξ. In batch processes, x represents
the vector of process variables, while cTx represents the component of the objective function related
to the process variables. In the expression for Q(x, ξ), y represents the output variables, which are
also known as the quality variables. The mapping Wy = h− Tx captures the relationship between the
process variables and the quality variables, and qT y is the part of the objective function related to the
output variables. The system of equations Ax = b represents the constraints on the process variables,
which are determined by the physical nature and operational constraints of the process. Finally, this
equation becomes a multi-objective optimization problem with constraints for batch processes.

3. Methodology

3.1. Generation of Sub-Datasets

Based on prior experience and historical data, various methods (such as soft sensor methods [31,32])
can be used to identify the relationship between the quality variables and critical process variables.
In soft sensor methods, for example, a regression model between selected process variables and the
quality variables can be obtained. With the help of such identification methods, the quality trajectories
can be estimated, and more accurate quality-relevant monitoring can be achieved. According to the
mathematical relationship between process variables and quality trajectories, a nonlinear mapping can
be built on the basis of the prior knowledge and historical data. Compared to model-based methods,



Processes 2020, 8, 164 5 of 19

it only requires a mapping between process variables and quality trajectories, which means that the
entire information of the model is no longer required.

Considering the stochastic nature of batch processes, the model uncertainty and data noise should
be introduced into the model. To illustrate stochastic behavior of the model, the values of model
parameters in the mapping equation are classified as different output modes to generate various
output trajectories. Therefore, the new dataset covers more output modes, which is expected to finally
improve the reliability and reduce false alarms for quality-relevant monitoring.

In the proposed method, bagging is introduced to generate output variables with different output
modes. Bagging, also called bootstrap aggregating, was proposed by Leo Breiman to improve the
performance of classification [33,34]. It is a machine-learning algorithm developed for ensemble
learning to improve the performance in statistical classification and regression. It also improves
reliability and reduces the chance of overfitting. For example, if I historical batches of process
variables have been obtained and N output modes exist, bagging is used to generate I ×N quality
trajectories, which allows more batches than the original ones to be used to construct sub-models
for further monitoring. The bagging strategy used for batch processes is shown in Figure 1, where
I ×N quality trajectories are generated based on I historical batches and N output modes as a data
re-sampling procedure.
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According to the bagging strategy with the original process dataset X ∈ RI×J×K, quality trajectories
are established as Y ∈ RI×K×N, where I represents batch numbers, J represents the number of process
variables, K represents sample numbers in one batch and N is the number of output mode. Therefore,
the re-sampled dataset for further training can be denoted as Tn = {X, Yn}where n = 1, 2, . . . , N. In the
re-sampled dataset, N reveals the total number of sub-dataset to construct individual sub-models
for monitoring. In such a bagging approach, the new sub-datasets keep the complete information of
the original dataset, including process dynamics for modeling, monitoring, and ensemble learning.
However, it is noticed that the historical batches have missing values, which confront corresponding
missing elements in quality trajectories and render further modeling and monitoring quite difficult.

3.2. Stochastic Programming for Quality-Relevant Monitoring

For each sub-dataset Tn, it is necessary to construct a corresponding sub-model for quality-relevant
monitoring. Based on the previous steps, the stochastic programming problem for quality-relevant
monitoring of batch processes for each sub-model is formulated as follows (see also the standard
formulation in Equation (1):

argmin
q(t)

I∑
i=1

(
λ1

∣∣∣yi(t) − q(t)
∣∣∣2 + M∑

m=1
λ2,m

∣∣∣x̂i,m(t) − xi,m(t)
∣∣∣2)

s.t. Ax̂ = b, Wq = d, x̂ ≥ 0, q ≥ 0
(2)

where q(t) is the optimal solution of the quality trajectory at time t, yi(t), is the process output of batch
i calculated at time t, hence yi(t) − q(t) represents the residual between the output and the optimal
solution at time instant t of the i-th batch; x̂i,m(t) is the reconstructed value of that the m-th missing
process variable of the i-th batch at time instant t calculated on the basis of q(t), xi,m(t) is the m-th
process variable of the i-th batch estimated by existing values of the corresponding variable at the
same time; λ1 the weighting parameter during the optimization for quality residuals, and λ2,m is the
weighting parameter during the optimization for the reconstructed error for the m-th missing variable.
Thus x̂i,m(t) − xi,m(t) represents the error between the estimated and reconstructed value of the current
process variable. For the vectors containing the elements x̂i,m(t) and q(t), respectively, Ax̂ = b is the
system of equations that describe the constraints on the estimated process variables, while Wc = d is
the system of equations representing the constraints on the optimal quality variables.

In Equation (2), the stochastic programming problem can be solved by minimum search methods,
since q(t) is the only unknown variable in this optimization problem. According to the relationship
between the process variables and quality variables, the reconstructed value of process variable x̂i,m(t)
can be a function of the form P(q(t), xi,l(t)), where l = 1, 2, . . . , J −M. Therefore, the above problem
becomes a multi-objective optimization problem at every time instant t to find the optimal quality
trajectory q(t) that minimizes the objective function.

Based on the solution to the above stochastic programming problem, N sub-models are constructed
with the datasets Tn, where n = 1, 2 . . . , N and each sub-model has individual optimal solutions and
corresponding residuals to implement subsequent monitoring steps in the proposed methodology.

3.3. Monitoring Statistics

For monitoring purposes, the average trajectory is usually calculated as the reference to determine
the control limit based on ±3σ (standard deviation) principle [35]. In each sub-model, the control limit
of the traditional method at time instant t is denoted as follows:

Limitu(t) =

I∑
i=1

yi(t)

I
+ 3σ(t) (3)
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Limitl(t) =

I∑
i=1

yi(t)

I
− 3σ(t) (4)

where Limitu(t) is the upper control limit and Limitl(t) is the lower control limit;
IN∑
i=1

yi(t)/I represents

the average trajectory and σ(t) is the standard deviation of output trajectories at time instant t.
In the proposed method, the datasets Tn for modeling consist of different output modes,

which means that the average trajectory is no longer a good reference for monitoring due to the variety
of output trajectory and its non-Gaussian distribution. Besides, the problem of missing elements will
influence the accuracy of calculation. To improve the reliability of the monitoring results, the optimal
trajectory is regarded as the reference in each sub-model. Then the residuals from the optimal trajectory
can be calculated to reveal whether the current output trajectory has a large deviation to the reference,
which is even of great significance for further process optimization. The modified control limit in each
sub-model is defined as follows:

ri(t) = yi(t) − q(t) (5)

Limitu(t) =

I−M(t)∑
i=1

ri(t)

I −M(t)
+ 3σ(t) (6)

Limitl(t) =

I−M(t)∑
i=1

ri(t)

I −M(t)
− 3σ(t) (7)

where ri(t) is the residual between the actual output and the optimal trajectory of the i-th batch at time
instant t, M(t) is the number of missing output elements at time instant t and σ(t) is the corresponding
standard deviation of the residuals.

3.4. Bayesian Fusion Ensemble Strategy

Based on the current residuals in each sub-model as rc, these individual monitoring results are
combined under Bayesian framework. In the proposed method, the Bayesian fusion (BF) strategy
is used as the ensemble strategy for fault detection. The monitoring results are determined by the
Bayesian rule as follows:

Pn(F|rn) =
Pn(rn

∣∣∣F)Pn(F)

Pn(rn)
(8)

Pn(rn) = Pn(rn
∣∣∣F)Pn(F) + Pn(rn

∣∣∣N)Pn(N) (9)

where n = 1, 2, . . . , N represents the index of sub-models, “F” is fault condition and “N” is normal
condition; Pn(F), Pn(N) are the prior probabilities of the fault condition and normal condition,
respectively. In such a strategy, Pn(N) can simply be regarded as the confidence level 1− α while Pn(F)
can be determined as α. Thus, to figure out the final fault probability Pn(F

∣∣∣rn) given a new residual rn,
Pn(rn

∣∣∣F) and Pn(rn
∣∣∣N) should be calculated at first. In the proposed method, they are determined

as follows:

Pn(rn|F) = exp{
rn − Limitn

u∣∣∣rn − rn
∣∣∣ } (10)

Pn(rn|N) = exp{

∣∣∣rn − rn
∣∣∣

rn − Limitn
u
} (11)

where Limitn
u is the upper control limit of sub-model n as defined in Equation (6), rn is the average

residual of sub-model n calculated through the historical sub-dataset. Therefore, the corresponding
fault probabilities Pn(F

∣∣∣rn) have been obtained, where n = 1, 2, . . . , N. Final decision should be made
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according to these individual monitoring results of different sub-models. Thus, the ensemble result is
calculated as follows:

P(F|xnew) =

N∑
n=1

P(Moden|xnew)Pn(F|rn)

N∑
n=1

P(Moden|xnew)

(12)

where P(Moden
∣∣∣xnew) denotes the probability that the current sample belongs to output mode n.

A simple case is that no prior knowledge can help to determine the probability of output modes, then
P(Moden

∣∣∣xnew) is regarded as equal for each mode. Thus, Equation (12) can be simplified as follows:

P(F|xnew) =
1
N

N∑
n=1

Pn(F
∣∣∣rn) (13)

Since the confidence level of the ensemble step is determined as 1− α, the process is judged to be
abnormal if P(F

∣∣∣xnew) ≥ α . On the contrary, the process is judged to be normal when P(F
∣∣∣xnew) < α .

3.5. Procedures and Discussions

The main purpose of the methodology developed in this work is to achieve quality-relevant
monitoring for batch processes based on stochastic programming and ensemble learning strategy.
The implementation procedures are described as follows:

Step 1: Generate I ×N sub-datasets based on N output modes and historical dataset with I batches
process data.

Step 2: Calculate optimal quality trajectories for each sub-model by stochastic programming
according to Equation (2).

Step 3: Construct N sub-models for monitoring purposes according to the residuals from
optimal trajectories.

Step 4: Estimate quality trajectories of the current sample under different output modes.
Step 5: Introduce current quality trajectories to each sub-model and calculate residuals.
Step 6: Implement the Bayesian fusion strategy to combine the individual monitoring results.
The corresponding flow diagram of the proposed methodology is shown in Figure 2.
For most data-based monitoring methods, monitoring statistics are designed with control limits

of different confidence levels. When the sample size is large enough and the distribution of samples
can be identified, one reliable monitoring model is typically efficient for fault detection as it can
adequately explain process conditions. However, when the sample size is small and the historical data
is not enough (as is the case in the current work), it is difficult to construct an accurate monitoring
model with limited data. Under such circumstances, errors will occur when process conditions
experience significant variations since the limited data cannot adequately explain these complicated
distributions again. For example, outliers may exist in historical data, and when the data sizes are
not large enough to identify these outliers, the offline monitoring model will be affected. Meanwhile,
the missing data problem will affect the modeling as well, especially for batch processes because of the
batch-to-batch variations.

In the proposed method, stochastic programming is introduced to solve this problem by computing
an optimal solution of historical quality trajectories, with the aid of partial knowledge related to process
output, which accounts for intrinsic variabilities and uncertainties in the process and the quality data.
To handle the problems of missing data and lack of historical batches, the bagging method is selected
as a data re-sampling step to generate more sub-datasets with different output modes, which helps
improve the robustness of offline modeling. As a result, an optimal quality-relevant trajectory obtained
through stochastic programming is established. On the other hand, historical outputs can be compared
with the optimal solution, generating residuals between them.
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Generally, most data-based methods only have one monitoring model, and one implements a fault
detection scheme merely based on the specific offline model. As described above, this may increase the
chances of false or missed alarms due to the complex nature of process data in practical applications.
Benefitting from the bagging method, several sub-models can be constructed and further used for
ensemble learning. Hence, different sub-models have individual monitoring models with control limits
according to the offline residuals.

For online monitoring purposes, the Bayesian fusion strategy is introduced for decision making
as the ensemble learning method. Monitoring results of different individual sub-models are integrated
under probabilistic framework, judging whether the current probability of abnormal condition at a
specific time is more than the threshold that can be tolerated by the process.

In summary, the advantages of the proposed method include overcoming some of the limitations
of traditional data-based monitoring methods, explicitly accounting for output uncertainties and
variabilities, and making monitoring decisions in a robust ensemble learning way. Hence, compared
to current data-based methods, both reliability and sensitivity are taken into consideration while
implementing offline modeling and online monitoring.

4. Case Studies

Authors should discuss the results and how they can be interpreted in perspective of previous
studies and of the working hypotheses. The findings and their implications should be discussed in the
broadest context possible. Future research directions may also be highlighted.

In this section, two case studies are introduced to evaluate the performance of the proposed
method. The first case study involves a numerical example, illustrating the monitoring results under
different faulty conditions. The second case study is a fed-batch penicillin fermentation process,
which is a benchmark process that is widely used in batch process simulations.
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4.1. A Numerical Simulation

We consider a nonlinear system with 3 variables as follows:

x1(t) = t + 1 + e1

x2(t) = t2 + 6t + 2 + e2

x3(t) = t3
− t2 + 3 + e3

y(t) = ax1(t) + bx2(t) + cx3(t)

(14)

where x1, x2, x3 are the process variables, t represents the latent variable, e1, e2, e3 are independent
Gaussian noises, and a, b, c represent model parameters in the equation between process variables and
output variable. The above system is run for a finite time, and a total of 200 samples are generated
in each batch. Several normal batches and two faulty batches are introduced to test the monitoring
performance of the proposed method. To evaluate the performance under the conditions of missing
and limited data, only 10 normal batches are generated as training data and 40 samples in each normal
batch are randomly missing, which results in a complicated dataset for offline modeling. Therefore,
the missing sample rate is 20%, and this system becomes a batch process example with limited historical
batches and missing data.

The first fault considered is a gradual fault affecting variable 1, which is introduced from the 101st
sample and returned to normal after the 150th sample. The system equations of process variables
under this fault are given by:

x1(t) = t + 1 + e1+1.5(t−100)
x2(t) = t2 + 6t + 2 + e2

x3(t) = t3
− t2 + 3 + e3

(15)

The second fault is a step bias of variable 2, introduced between the 101st sample and the 150th
sample. This step fault is described in process variables by:

x1(t) = t + 1 + e1

x2(t) = t2 + 6t + 2 + e2+3
x3(t) = t3

− t2 + 3 + e3

(16)

Due to the limited batches and missing data of the historical dataset, the bagging method is
used to generate 40 sub-datasets based on the original dataset and four output modes, preparing for
the construction of 4 sub-models. In each sub-model, X ∈ R10×3×200 is extracted as process dataset
and Yn ∈ R10×200 used as quality data. Since the stochastic nature of process output is taken into
consideration, we assume that the parameters a, b, c in Equation (14) vary from mode to mode as
shown in Table 2. Hence, the optimal trajectories of the individual sub-models are computed using the
proposed stochastic programming approach. All weighting parameters are set as 1 for simplicity.

Table 2. Parameter values of different output modes in numerical example.

a b c

Mode 1 5.00 −0.5 1.52
Mode 2 5.06 −0.53 1.58
Mode 3 4.95 −0.50 1.60
Mode 4 5.12 −0.47 1.50

During the online monitoring procedures, one normal batch and two faulty batches are simulated
to calculate the values of monitoring statistics at each time instant. After the implementation of
stochastic programming with four modes, the optimal trajectory is calculated as shown in Figure 3.
Then, the residuals between the optimal trajectories and the practical output are calculated to obtain
monitoring statistics. Thus, the monitoring results of the normal batch for each sub-model are obtained
and shown in Figure 4.
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Figure 4. Monitoring results of the normal batch in numerical example.

For the existing methods without the ensemble step, individual models are usually established
to implement local monitoring tasks. When the ensemble strategy is introduced, the voting-based
strategy is widely used to integrate the monitoring results of each individual model. Therefore, to
demonstrate the advantages of the proposed method, comparisons of these conditions are considered
in this case. The first contrast is implemented by using individual monitoring results of each sub-model
directly without the ensemble learning strategy. Another one is executed by the use of a voting-based
strategy as the ensemble step. These two comparisons are made to illustrate the advantages of the
Bayesian fusion strategy based on stochastic programming.

In this case, the cutoff value of violation time for the voting-based strategy is set as 3, where most
sub-models indicate abnormal conditions in such an ensemble strategy. As a result, the false alarm rate
(FAR) of individual sub-models, voting-based strategy, and Bayesian fusion strategy can be calculated
based on the testing normal batch.

Next, the two abnormal batches are introduced as the testing faulty batches. The corresponding
monitoring results of these two faulty batches based on different sub-models are shown in Figures 5 and 6.

Therefore, false alarm rate (FAR) and fault detection rate (FDR) can be calculated according to
different ensemble strategies. The overall monitoring results of the normal batch and two faulty batches
are listed in Table 3.
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Table 3. FAR and FDR under different ensemble strategies in numerical example.

Batch
Type Result Sub-Model

1
Sub-Model

2
Sub-Model

3
Sub-Model

4
Voting-Based

Strategy

BF with
Optimal

Trajectory

BF with
Average

Trajectory

Normal FAR 0.020 0.015 0.030 0.005 0.005 0.005 0.007

Fault 1
FDR 0.800 0.800 0.680 0.740 0.740 0.800 0.720
FAR 0.020 0.013 0.033 0.007 0.007 0.007 0.013

Fault 2
FDR 1.000 1.000 0.720 0.980 0.980 1.000 0.960
FAR 0.007 0.013 0.033 0.007 0.007 0.007 0.020

It can be inferred that both results are acceptable due to the use of stochastic programming and
the solution of optimal trajectory. Among these results, the results of individual sub-models are not
reliable enough since the FDR varies from one sub-model to another and the FAR is much higher than
the ensemble strategies. The FAR of voting-based strategy and Bayesian fusion strategy is close, while
the FDR of BF is obviously higher than voting-based strategy. Besides, the monitoring results by using
the average trajectory of different output modes are offered as well, which presents higher FAR and
lower FDR with the same BF strategy.
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According to the monitoring results of the numerical example, after the implementation of
stochastic programming and the solution of the optimal quality trajectory, Bayesian fusion is a relatively
better ensemble learning strategy to provide significant monitoring performance for batch processes
with limited batches, missing elements, and multiple output modes.

4.2. Penicillin Fermentation Process

In this subsection, a simulation based on a fed-batch penicillin benchmark process is introduced to
demonstrate the effectiveness of the proposed method. The benchmark software named PenSim v2.0
was developed by the Illinois Institute of Technology and can be found online [36]. The flowsheet of
the penicillin process is shown in Figure 7. The process can be divided into two phases: a pre-culture
phase for 40 hours for biomass growth, and a fed-batch phase for penicillin production. During the first
stage, glucose is consumed and biomass grows for the preparation of penicillin production, followed
by the second stage, where substrate is fed continuously and penicillin is produced until the end of
the batch.
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In this case study, 10 normal batches are generated by PenSim with 11 process variables, which are
listed in Table 4. Similar to the numerical example presented in Section 4.1, the scale of historical data
are small and insufficient. In each batch, 400 samples are generated and the sampling interval is set as
one hour.

Table 4. Variables selected for monitoring in penicillin fermentation case.

Number Variables

1 Aeration rate (l/h)
2 Agitator power (W)
3 Substrate feed rate (l/h)
4 Substrate feed temperature (K)
5 pH
6 Generated heat (kcal)
7 Substrate concentration (g/L)
8 Dissolved oxygen concentration (g/L)
9 Biomass concentration (g/L)
10 Culture volume (L)
11 Carbon dioxide concentration (g/L)
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To estimate penicillin concentration for stochastic programming, the relationship between penicillin
concentration and quality-relevant variables are calculated with different methods. The model equations
used for calculation are given by:

dP
dt = µppX −KP− P

V
dV
dt

µpp = µp
S

(Kp + S+S2/KI)

Cp
L

(KopX + Cp
L)

(17)

where P is penicillin concentration, X is biomass concentration, S is substrate concentration, V is culture
volume. The model parameters include K, which is the penicillin hydrolysis rate constant, µp, which is
the specific rate of penicillin production, Kp, which is the inhibition constant, KI, which is the inhibition
constant for product formation with the mean value, Kop, which is the oxygen limitation constant, CL,
which is the dissolved oxygen concentration, and p, which is the exponent of CL.

As discussed in Section 2.1, these parameters are not pure constants, and some of them show
stochastic variations under different conditions. The parameter estimation results can vary, depending
on which identification method is used. For this case study, µp, Kp, KI and K are chosen as the stochastic
parameters, since they may influence penicillin concentration more than other parameters. Hence, these
model parameters are set to different values according to NPM, PSO, GSA and PenSim, respectively.
The values of the parameters are listed in Table 5, which represents four output modes.

Table 5. Values of model parameters in penicillin fermentation case.

Parameter NPM PSO GSA PenSim

µp 0.0043 0.0048 0.0064 0.0050
Kp 0.0002 0.0002 0.0002 0.0002
KI 0.1002 0.1041 0.1090 0.1000
K 0.0416 0.0445 0.0599 0.0400

Similar to the numerical case presented earlier, all weight parameters are set as 1, and four
sub-models are constructed based on stochastic programming for subsequent online monitoring.
Although different output modes exist, constraints according to Equation (2) should be defined firstly,
to make sure that the critical variables are varying within reasonable ranges. The corresponding
constraints are listed in Table 6. Then, 40 random missing samples are considered in each historical
batch data during the offline modeling step, and the corresponding missing sample rate for each batch
is 10%. Thus, the optimal quality trajectory is calculated as shown in Figure 8.
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Table 6. Constraints of the critical variables.

Variables Constraints

Aeration rate (x1) 8.5 L/h < x1 < 8.7 L/h
Agitator power (x2) 29 W < x2 < 31 W

Substrate feed temperature (x3) 295 K < x3 < 300 K
pH (x4) 4.7 < x4 < 5.5

Culture volume (x5) 95 L < x5 < 110 L
Penicillin concentration (y) 0 < y < 1.5 g/L

Different from average trajectory, the optimal trajectory provides a better reference to process
output with multiple output modes, limited batches, and missing elements in process data, which helps
the construction of a more accurate monitoring model. Besides, the optimal solution has great
significance for quality-relevant optimization and control of batch processes further.

For performance evaluation, one normal batch and three output-relevant faulty batches are
generated as online data to test the performance of the proposed method. These faults are a step
decrease of the substrate feed rate introduced from the 61st sample to the end of one batch as fault 1,
a temperature controller failure from the beginning to the end as fault 2, and a pH controller failure
from the beginning to the end as fault 3, respectively.

The monitoring results under normal conditions are shown in Figure 9. For the proposed method,
the results are satisfactory and demonstrate that the process is operating under normal conditions
during the run time. Furthermore, all sub-models provide consistently correct results since the control
limits are tight and accurate.
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Figure 9. Monitoring results of the normal batch in penicillin fermentation case.

Then the process monitoring results for fault 1, fault 2, and fault 3 are shown in Figures 10–12,
respectively. It can be seen that the proposed method is able to detect quality-relevant abnormal
conditions after these faults occur.

The monitoring results of each sub-model are able to detect faults individually. However,
the detailed monitoring performance varies from one sub-model to another. Similar to the first case, three
kinds of decision-making strategies are implemented for performance evaluation. The corresponding
FAR and FDR can be calculated according to each strategy and presented in Table 7. The FAR of fault 2
and fault 3 is not listed in the table because these faults occur at the beginning of one batch and exist
throughout the process. Besides, the monitoring results by using the average trajectory of different
output modes are provided as well with the similar BF ensemble strategy.
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Table 7. FAR and FDR under different ensemble strategies in penicillin fermentation case.

Batch
Type Result Sub-Model

1
Sub-Model

2
Sub-Model

3
Sub-Model

4
Voting-Based

Strategy

BF with
Optimal

Trajectory

BF with
Average

Trajectory

Normal FAR 0 0 0 0 0 0 0

Fault 1
FDR 0.9353 0.9382 0.9441 0.9353 0.9265 0.9441 0.9323
FAR 0 0 0 0 0 0 0

Fault 2 FDR 0.8250 0.8250 0.8350 0.8250 0.8250 0.8275 0.8225

Fault 3 FDR 0.9225 0.9150 0.8900 0.9225 0.9150 0.9200 0.9000

As illustrated in Table 7, no false alarm occurs for both methods under the framework of batch
process monitoring based on stochastic programming. According to the comparison of FDR in faulty
conditions, the BF strategy is proved to offer the most reliable monitoring performance among all of
these decision-making strategies due to the highest overall FDR.

5. Discussions and Conclusions

In this paper, a robust monitoring method based on stochastic programming and ensemble
learning was developed, to handle quality-relevant monitoring for batch processes with missing data
and insufficient historical data. The focus of the developed method was on process quality, taking the
stochastic nature of the process into account. For batch processes with multiple output modes and
specific difficulties for monitoring listed above, the proposed method is able to deal with the problem
effectively. However, for simple cases, where the batch trajectory is steady and without complicated
process characteristics, the traditional methods may perform better compared to the proposed method
with less computation load.

The effectiveness of the proposed method was demonstrated in two case studies. Future work
will focus on the application of the proposed method on a practical case, which is an aluminum foil
annealing batch process.
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