Supplementary File

Figure S1. MALDI-TOF mass spectrum of D-Aib1.
Figure S2. MALDI-TOF mass spectrum of D-Aib2.
Figure S3. MALDI-TOF mass spectrum of D-Aib3.
Figure S4. MALDI-TOF mass spectrum of D-Aib4.
Figure S5. MALDI-TOF mass spectrum of D-Aib5.
Figure S6. MALDI-TOF mass spectrum of L-Aib1.
Figure S7. MALDI-TOF mass spectrum of L-Aib2.
Figure S8. MALDI-TOF mass spectrum of L-Aib3.
Figure S9. MALDI-TOF mass spectrum of L-Aib4.
Figure S10. MALDI-TOF mass spectrum of L-Aib5.
Figure S11. RP-HPLC chart of D-Aib1.
Figure S12. RP-HPLC chart of D-Aib2.
Figure S13. RP-HPLC chart of D-Aib3.
Figure S14. RP-HPLC chart of D-Aib4.
Figure S15. RP-HPLC chart of D-Aib5.
Figure S16. RP-HPLC chart of L-Aib1.
Figure S17. RP-HPLC chart of L-Aib2.
Figure S18. RP-HPLC chart of L-Aib3.
Figure S19. RP-HPLC chart of L-Aib4.
Figure S20. RP-HPLC chart of L-Aib5.
Figure S21. CPL and PL spectra of Aib1-5 in ethanol.
Figure S22. CPL and PL spectra of 1-3 in ethanol.
Figure S23. CD and UV-Vis spectra of Aib1-5 in ethanol.
Figure S24. CD and UV-Vis spectra of 1-3 in ethanol.
Figure S25. CPL and PL spectra of Gly1, Gly3, and Gly5 in ethanol.
Figure S26. CD and UV-Vis spectra of Gly1, Gly3, and Gly5 in ethanol.
Table S1. CPL, PL, CD, and UV-Vis properties of peptide-pyrene luminophores in ethanol

Figure S1. MALDI-TOF mass spectra of D-Aib1. An α-CHCA was used as a matrix. D-Aib1; calcd. $[\mathrm{M}+\mathrm{H}]^{+}=1315.67$, obsd. $[\mathrm{M}+\mathrm{H}]^{+}=1314.66$.

Figure S2. MALDI-TOF mass spectra of D-Aib2. An α-CHCA was used as a matrix. D-Aib2; calcd. $[\mathrm{M}+\mathrm{H}]^{+}=1671.82$, obsd. $[\mathrm{M}+\mathrm{H}]^{+}=1670.99$.

Figure S3. MALDI-TOF mass spectra of D-Aib3. An α-CHCA was used as a matrix. D-Aib3; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2049.97$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2050.13$.

Figure S4. MALDI-TOF mass spectra of D-Aib4. An α-CHCA was used as a matrix. D-Aib4; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2406.12$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2406.14$.

Figure S5. MALDI-TOF mass spectra of D-Aib5. An α-CHCA was used as a matrix. D-Aib5; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2762.28$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2762.00$.

Figure S6. MALDI-TOF mass spectra of L-Aib1. An α-CHCA was used as a matrix. L-Aib1; calcd. $[\mathrm{M}+\mathrm{H}]^{+}=1315.67$, obsd. $[\mathrm{M}+\mathrm{H}]^{+}=1314.61$.

Figure S7. MALDI-TOF mass spectra of l-Aib2. An α-CHCA was used as a matrix. L-Aib2; calcd. $[\mathrm{M}+\mathrm{H}]^{+}=1671.82$, obsd. $[\mathrm{M}+\mathrm{H}]^{+}=1670.95$.

Figure S8. MALDI-TOF mass spectra of l-Aib3. An α-CHCA was used as a matrix. L-Aib3; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2050.97$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2050.11$.

Figure S9. MALDI-TOF mass spectra of l-Aib4. An α-CHCA was used as a matrix. L-Aib4; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2406.12$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2406.44$.

Figure S10. MALDI-TOF mass spectra of l-Aib5. An α-CHCA was used as a matrix. L-Aib5; calcd. $[\mathrm{M}+\mathrm{Na}]^{+}=2762.28$, obsd. $[\mathrm{M}+\mathrm{Na}]^{+}=2760.67$.

Figure S11. RP-HPLC chart of D-Aib1. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $20-100 \%$ for 20 min .

Figure S12. RP-HPLC chart of D-Aib2. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $20-100 \%$ for 20 min .

Figure S13. RP-HPLC chart of D-Aib3. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $50-100 \%$ for 20 min .

Figure S14. RP-HPLC chart of D-Aib4. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $70-100 \%$ for 20 min .

Figure S15. RP-HPLC chart of D-Aib5. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $80-100 \%$ for 20 min .

Figure S16. RP-HPLC chart of L-Aib1. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $20-100 \%$ for 20 min .

Figure S17. RP-HPLC chart of L-Aib2. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $20-100 \%$ for 20 min .

Figure S18. RP-HPLC chart of L-Aib3. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $50-100 \%$ for 20 min .

Figure S19. RP-HPLC chart of L-Aib4. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $70-100 \%$ for 20 min .

Figure S20. RP-HPLC chart of L-Aib5. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of $80-100 \%$ for 20 min .

Figure S21. CPL (upper panel) and PL (lower panel) spectra of (a) D-Aib1/L-Aib1; (b) D-Aib2/L-Aib2; (c) D-Aib3/L-Aib3; (d) D-Aib4/L-Aib4; and (e) D-Aib5/L-Aib5 in ethanol $\left(1.0 \times 10^{-4} \mathrm{M}\right) . \lambda_{\mathrm{ex}}=300 \mathrm{~nm}$ D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length $=2 \mathrm{~mm}$.

Figure S22. CPL (upper panel) and PL (lower panel) spectra of (a) D-1/L-1; (b) D$2 / \mathrm{L}-2$; and (c) D-3 / L-3 in ethanol ($1.0 \times 10^{-4} \mathrm{M}$). $\lambda_{\mathrm{ex}}=300 \mathrm{~nm}$ D-isomer and Lisomer spectra are shown in red and blue, respectively. Path length $=2 \mathrm{~mm}$.

Figure S23. CD (upper panel) and UV-Vis (lower panel) spectra of (a) D-Aib1/LAib1; (b) D-Aib2/L-Aib2; (c) D-Aib3/L-Aib3; (d) D-Aib4/L-Aib4; and (e) D-Aib5/L-Aib5 in ethanol ($1.0 \times 10^{-4} \mathrm{M}$). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length $=2 \mathrm{~mm}$.

Figure S24. CD (upper panel) and UV-Vis (lower panel) spectra of (a) D-1 / L-1; (b) D-2 / L-2; and (c) D-3 / L-3 in ethanol ($1.0 \times 10^{-4} \mathrm{M}$). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length $=2 \mathrm{~mm}$.

Figure S25. CPL (upper panel) and PL (lower panel) spectra of (a) D-Gly1/L-Gly1; (b) D-Gly3/L-Gly3; (c) D-Gly5/L-Gly5 in ethanol $\left(1.0 \times 10^{-4} \mathrm{M}\right) . \lambda_{\text {ex }}=300 \mathrm{~nm}$ Disomer and L-isomer spectra are shown in red and blue, respectively. Path length $=1 \mathrm{~mm}$.

Figure S26. CD (upper panel) and UV-Vis (lower panel) spectra of (a) D-Gly1/LGly1; (b) D-Gly3/L-Gly3; (c) D-Gly5/L-Gly5 in ethanol ($1.0 \times 10^{-4} \mathrm{M}$). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length $=1 \mathrm{~mm}$.

Table S1. CPL, PL, CD, and UV-Vis properties of peptide-pyrene luminophores in ethanol.

Name	Monomer PL (nm)	Excimer PL (nm)	$\Phi_{\text {F }}$	$\begin{gathered} \mathrm{g} \text { CPL } \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{aligned} & \lambda_{\mathrm{CD}} \\ & (\mathrm{~nm}) \end{aligned}$	$\underset{\left(\times 10^{-4}\right)}{\mathrm{g}_{\mathrm{CD}}}$	Note
D-Aib1	378	468.5	0.06	+5.7	343	+1.7	
L-Aib1	378	453.5		-5.0		-1.9	
D-Aib2	394	465.5	0.10	+4.7	338	+0.51	
L-Aib2	378	458.5		-4.7		-4.9	
D-Aib3	394	456.5	0.13	+5.5	343	-2.2	
L-Aib3	394.5	457		-6.0		+2.1	
D-Aib4	394	456.5	0.16	+6.3	343	-4.8	
L-Aib4	395	458.5		-7.2		+4.8	
D-Aib5	395	456.5	0.18	+2.3	343	-6.2	
L-Aib5	395	456.5		-2.9		+6.1	
D-Gly1	379	469	0.09	+2.7	341	+0.95	
L-Gly1	379	466		-2.9		-1.1	
D-Gly3	ND	ND	0.05	ND	362	+13	Aggregated
L-Gly3	ND	ND		ND		-16	Aggregated
D-Gly5	ND	ND	0.9	ND	361	+3.1	Aggregated
L-Gly5	ND	ND		ND		-5.5	Aggregated
D-1	378	479	0.06	+7.3	348	-1.2	
L-1	378	462.5		-7.8		+0.48	
D-2	394	461.5	0.13	ND	361	-6.4	
L-2	394	462		ND		+2.3	
D-3	406.5	ND	0.10	ND	355	+18	Aggregated
L-3	406	ND		ND		-19	Aggregated

