Supplementary File

- Figure S1. MALDI-TOF mass spectrum of D-Aib1.
- Figure S2. MALDI-TOF mass spectrum of D-Aib2.
- Figure S3. MALDI-TOF mass spectrum of D-Aib3.
- Figure S4. MALDI-TOF mass spectrum of D-Aib4.
- Figure S5. MALDI-TOF mass spectrum of D-Aib5.
- Figure S6. MALDI-TOF mass spectrum of L-Aib1.
- Figure S7. MALDI-TOF mass spectrum of L-Aib2.
- Figure S8. MALDI-TOF mass spectrum of L-Aib3.
- Figure S9. MALDI-TOF mass spectrum of L-Aib4.
- Figure S10. MALDI-TOF mass spectrum of L-Aib5.
- Figure S11. RP-HPLC chart of D-Aib1.
- Figure S12. RP-HPLC chart of D-Aib2.
- Figure S13. RP-HPLC chart of D-Aib3.
- Figure S14. RP-HPLC chart of D-Aib4.
- Figure S15. RP-HPLC chart of D-Aib5.
- Figure S16. RP-HPLC chart of L-Aib1.
- Figure S17. RP-HPLC chart of L-Aib2.
- Figure S18. RP-HPLC chart of L-Aib3.
- Figure S19. RP-HPLC chart of L-Aib4.
- Figure S20. RP-HPLC chart of L-Aib5.
- Figure S21. CPL and PL spectra of Aib1–5 in ethanol.
- Figure S22. CPL and PL spectra of 1–3 in ethanol.
- Figure S23. CD and UV–Vis spectra of Aib1–5 in ethanol.
- Figure S24. CD and UV–Vis spectra of 1–3 in ethanol.
- Figure S25. CPL and PL spectra of Gly1, Gly3, and Gly5 in ethanol.
- Figure S26. CD and UV–Vis spectra of Gly1, Gly3, and Gly5 in ethanol.
- **Table S1**. CPL, PL, CD, and UV–Vis properties of peptide–pyrene luminophores in ethanol

Figure S1. MALDI-TOF mass spectra of **D-Aib1**. An α -CHCA was used as a matrix. **D-Aib1**; calcd. [M+H]⁺ = 1315.67, obsd. [M+H]⁺ = 1314.66.

Figure S2. MALDI-TOF mass spectra of D-Aib2. An α -CHCA was used as a matrix. D-Aib2; calcd. [M+H]⁺ = 1671.82, obsd. [M+H]⁺ = 1670.99.

Figure S3. MALDI-TOF mass spectra of **D-Aib3**. An α -CHCA was used as a matrix. **D-Aib3**; calcd. [M+Na]⁺ = 2049.97, obsd. [M+Na]⁺ = 2050.13.

Figure S4. MALDI-TOF mass spectra of D-Aib4. An α -CHCA was used as a matrix. D-Aib4; calcd. [M+Na]⁺ = 2406.12, obsd. [M+Na]⁺ = 2406.14.

Figure S5. MALDI-TOF mass spectra of **D-Aib5**. An α -CHCA was used as a matrix. **D-Aib5**; calcd. [M+Na]⁺ = 2762.28, obsd. [M+Na]⁺ = 2762.00.

Figure S6. MALDI-TOF mass spectra of L-Aib1. An α -CHCA was used as a matrix. L-Aib1; calcd. [M+H]⁺ = 1315.67, obsd. [M+H]⁺ = 1314.61.

Figure S7. MALDI-TOF mass spectra of L-Aib2. An α -CHCA was used as a matrix. L-Aib2; calcd. [M+H]⁺ = 1671.82, obsd. [M+H]⁺ = 1670.95.

Figure S8. MALDI-TOF mass spectra of L-Aib3. An α -CHCA was used as a matrix. L-Aib3; calcd. [M+Na]⁺ = 2050.97, obsd. [M+Na]⁺ = 2050.11.

Figure S9. MALDI-TOF mass spectra of L-**Aib4**. An α -CHCA was used as a matrix. L-**Aib4**; calcd. [M+Na]⁺ = 2406.12, obsd. [M+Na]⁺ = 2406.44.

Figure S10. MALDI-TOF mass spectra of L-Aib5. An α -CHCA was used as a matrix. L-Aib5; calcd. [M+Na]⁺ = 2762.28, obsd. [M+Na]⁺ = 2760.67.

Figure S11. RP-HPLC chart of **D-Aib1**. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 20-100% for 20 min.

Figure S12. RP-HPLC chart of **D-Aib2**. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 20-100% for 20 min.

Figure S13. RP-HPLC chart of **D-Aib3**. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 50-100% for 20 min.

Figure S14. RP-HPLC chart of **D-Aib4**. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 70-100% for 20 min.

Figure S15. RP-HPLC chart of **D-Aib5**. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 80-100% for 20 min.

Figure S16. RP-HPLC chart of L-Aib1. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 20-100% for 20 min.

Figure S17. RP-HPLC chart of L-Aib2. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 20-100% for 20 min.

Figure S18. RP-HPLC chart of L-Aib3. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 50-100% for 20 min.

Figure S19. RP-HPLC chart of L-Aib4. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 70-100% for 20 min.

Figure S20. RP-HPLC chart of L-Aib5. Buffer A, 0.1% TFA in water; buffer B, acetonitrile, and monitoring at 340 nm with a gradient of 80-100% for 20 min.

Figure S21. CPL (upper panel) and PL (lower panel) spectra of (**a**) D-Aib1/L-Aib1; (**b**) D-Aib2/L-Aib2; (**c**) D-Aib3/L-Aib3; (**d**) D-Aib4/L-Aib4; and (**e**) D-Aib5/L-Aib5 in ethanol (1.0×10^{-4} M). λ_{ex} = 300 nm D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length = 2 mm.

Figure S22. CPL (upper panel) and PL (lower panel) spectra of (a) D-1/L-1; (b) D-2/L-2; and (c) D-3/L-3 in ethanol (1.0×10^{-4} M). λ_{ex} = 300 nm D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length = 2 mm.

Figure S23. CD (upper panel) and UV–Vis (lower panel) spectra of (a) D-Aib1/L-Aib1; (b) D-Aib2/L-Aib2; (c) D-Aib3/L-Aib3; (d) D-Aib4/L-Aib4; and (e) D-Aib5/L-Aib5 in ethanol (1.0×10^{-4} M). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length = 2 mm.

Figure S24. CD (upper panel) and UV–Vis (lower panel) spectra of (a) D-1 / L-1; (b) D-2 / L-2; and (c) D-3 / L-3 in ethanol (1.0×10^{-4} M). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length = 2 mm.

Figure S25. CPL (upper panel) and PL (lower panel) spectra of (**a**) D-Gly1/L-Gly1; (**b**) D-Gly3/L-Gly3; (**c**) D-Gly5/L-Gly5 in ethanol (1.0×10^{-4} M). λ_{ex} = 300 nm Disomer and L-isomer spectra are shown in red and blue, respectively. Path length = 1 mm.

Figure S26. CD (upper panel) and UV–Vis (lower panel) spectra of (**a**) D-Gly1/L-Gly1; (**b**) D-Gly3/L-Gly3; (**c**) D-Gly5/L-Gly5 in ethanol (1.0 × 10⁻⁴ M). D-isomer and L-isomer spectra are shown in red and blue, respectively. Path length = 1 mm.

	Monomer	Excimer		g CPL	λ CD	g CD	
Name	PL (nm)	PL (nm)	$\mathbf{\Phi}_{\mathrm{F}}$	(×10-3)	(nm)	(×10-4)	Note
D-Aib1	378	468.5	0.06	+5.7	343	+1.7	
L-Aib1	378	453.5		-5.0		-1.9	
D-Aib2	394	465.5	0.10	+4.7	338	+0.51	
L-Aib2	378	458.5		-4.7		-4.9	
D-Aib3	394	456.5	0.13	+5.5	343	-2.2	
L-Aib3	394.5	457		-6.0		+2.1	
D-Aib4	394	456.5	0.16	+6.3	343	-4.8	
L-Aib4	395	458.5	0.16	-7.2		+4.8	
D-Aib5	395	456.5	0.18	+2.3	343	-6.2	
L-Aib5	395	456.5		-2.9		+6.1	
D-Gly1	379	469	0.09	+2.7	341	+0.95	
L-Gly1	379	466		-2.9		-1.1	
D-Gly3	ND	ND	0.05	ND	362	+13	Aggregated
L-Gly3	ND	ND		ND		-16	Aggregated
D-Gly5	ND	ND	0.9	ND	361	+3.1	Aggregated
L-Gly5	ND	ND		ND		-5.5	Aggregated
D-1	378	479	0.06	+7.3	348	-1.2	
L-1	378	462.5		-7.8		+0.48	
D-2	394	461.5	0.13	ND	361	-6.4	
L-2	394	462		ND		+2.3	
D-3	406.5	ND	0.10	ND	355	+18	Aggregated
L-3	406	ND		ND		-19	Aggregated

Table S1. CPL, PL, CD, and UV–Vis properties of peptide–pyrene luminophores in ethanol.