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Abstract: In industrial processes, a semi-cavity area formed by airflow wherein the particles circulate is
called a “raceway”. In a blast furnace, the role of the raceway is particularly important. To understand
and predict the evolution and physical characteristics of the raceway, a three-dimensional transient
Eulerian multiphase flow model in a packed particle bed was developed. In the model, it was assumed
that the gas and solid (particle) phases constitute an interpenetrating continuum. The gas-phase
turbulence was described as a k–ε dispersed model. The gas-phase stress was considered in terms of
the effective viscosity of the gas. The solid-phase constitutive relationship was expressed in terms
of solid stress. It was found that the evolution process of the raceway can be divided into three
stages: (1) rapid expansion, (2) slow contraction, and (3) gradual stabilization. When the blast velocity
was increased from 150 m/s to 300 m/s, the surface area of the raceway increased from 0.194 m2 to
1.644 m2. The depth and height of the raceway increased considerably with velocity, while the width
slightly increased.
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1. Introduction

In a blast furnace (BF), the raceway is formed by airflow wherein the particles circulate.
The combustion of coke and injected fuels in the raceway supplies gas and heat for the critical
endothermic reduction of iron ores and for iron smelting [1]. Therefore, the raceway characteristics
directly affect the primary distribution of gas and heat inside the BF. Some previous studies have
used empirical size characteristics of the raceway to predict the combustion of pulverized coal and
the gas flow distribution, which may considerably differ from those of the actual BF raceway [2–4].
The raceway depth directly affects the burnout rate of pulverized coal and determines the airflow
distribution in the center of the blast furnace. The flow pattern will determine the strength of gas–solid
mixing and the rate of coke consumption, thereby further affecting the smelting efficiency of the blast
furnace. Therefore, it is necessary to understand the evolution process and physical characteristics of
the raceway.

Investigations of the BF raceway phenomenon and its characteristics can be carried out via three
methods: theoretical analysis, experimental testing, and numerical modeling. In theoretical analyses,
some studies analyzed the raceway size on the basis of the force balance of the raceway boundary in
different spatial dimensions [5–8]. The phenomenon of raceway hysteresis was explained, together
with the effects of chemical reactions, blast velocity, material layer porosity, particle diameter, and other
factors. However, this method treats the raceway as a circle or a sphere and disregards the force
between the particles. Thus, it can be considered a relatively inaccurate method.

In experimental testing, the microwave reflection method was used to study the formation and
depth of the BF raceway during production [9]. The effects of tuyere diameter, air volume, and coal
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injection on the depth of the raceway zone were investigated. In contrast, considering that the
complex environment, in terms of high temperature and pressure in the raceway, implies significant
difficulties for direct research, most researchers used cold models to study the formation and physical
characteristics of the raceway [10–16]. However, it was challenging for the researchers to experimentally
obtain dynamic information and accurately measure the raceway characteristics in three-dimensional
(3D) space through experimental testing.

With the advancement of computers, numerical modeling has become a more popular
method. A combined computational fluid dynamics and discrete element method (CFD-DEM) was
developed [17–23]. The effects of different variables on the raceway were investigated. Nonetheless,
previous CFD-DEM-based studies generally used two-dimensional (2D) or pseudo 3D models and small
sizes with certain divergences from actual conditions. Hilton et al. [24] and Lichtenegger et al. [25] used
the CFD-DEM method to investigate the effect of particle properties on the evolution of the raceway in
3D packed beds. However, these previously reported approaches were computationally expensive.
Also, these approaches did not facilitate quantitative analysis of the raceway or the investigation of
raceway physical characteristics.

However, the gas–solid flow model based on CFD can achieve high efficiency at low computational
cost. The shape and size of the raceway was studied in a 2D state using a transient or steady model based
on CFD [26–28]. Rangarajan et al. [29] extensively studied the influence of the operating conditions
on raceway properties using a two-fluid model. Based on CFD modeling technology, research on
coupling fuel combustion and raceway formation has been carried out, and a lot of information about
combustion and gas distribution has been obtained [30–36]. However, no details on constitutive
relations, the surface area of the raceway, or the evolution of the raceway penetration depth in a short
time interval can be found in these articles.

In this study, we developed an industrial-scale blast furnace 3D slot model based on a transient
Eulerian multiphase flow model (EMFM). The influence of the chemical reaction in the BF on the
raceway characteristics is mainly reflected in the change in gas flow [26]. For simplicity, we did not set
the combustion reaction or heat transfer, but we set the initial bed solid packing fraction to be less
than the maximum volume fraction as an approximate replacement. The evolution process and flow
pattern of the raceway are revealed. The depth, height, width, and surface area of the raceway were
predicted, providing detailed information and theoretical guidance for the process of gas injection into
packed beds in industrial processes.

2. Model Description

The model assumes that the gas phase and the solid (particle) phase constitute an interpenetrating
continuum. The different phases appear in the same calculated cell and are characterized by the
volume fraction, αi, of each phase i (gas, solid). The gas-phase turbulence was described as a k–ε
dispersed model and the gas-phase stress was considered in terms of effective viscosity. An advanced
constitutive relation was adopted to describe solid stress.

2.1. Conservation Equations

In the process of gas–solid flow, both the gas and particle flows satisfy the conservation of mass
and momentum. Given that there is no mass exchange between the solid particles and the gas phase,
they are independent of each other. The mass conservation equation for phase i can be expressed as

∂(αiρi)

∂t
+∇·(αiρiUi) = 0, (1)

Σαi = 1. (2)
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The momentum conservation equation for phase i can be written as

∂(αiρiUi)

∂t
+∇·(αiρiUiUi) = ∇·τi + αiρig + S. (3)

The source term, S, is generated by the momentum transfer between the gas and solid phases and
is expressed as

S = β
(
U j −Ui

)
, j , i. (4)

For αg > 0.8, coefficient β is based on the drag force of the fluid acting on a single particle, and for
αg ≤ 0.8, β is described by Ergun’s equation [37]. Thus, β can be expressed as

β =


3
4 CD

αsαgρg|Us−Ug|

ds
α−2.65

g αg > 0.8

150
α2

sµg

αgd2
s
+ 1.75

Pgαs|Us−Ug|

ds
αg ≤ 0.8

(5)

where ds is the solid (particle) diameter; the drag coefficient, CD, is given by

CD =

 24
αgRe

[
1 + 0.15

(
αgRe

)0.687
]

Re ≤ 1000

0.44 Re > 1000
(6)

where Re is the particle Reynolds number and can be expressed as

Re =
ρgds

∣∣∣Us −Ug
∣∣∣

µg
. (7)

2.2. Constitutive Relations

The gas-phase constitutive equation is characterized by the effective viscosity of the gas.
The solid-phase constitutive relationship is expressed in terms of solid stress. Tables 1 and 2 summarize
a detailed description of the constitutive relations [37–42].

Table 1. Gas constitutive relations.

Item Formula

Gas stress τg = −PgI + µe f f ,g(∇Ug +
(
∇Ug)T

)
−

2
3

(
µe f f ,g

(
∇·Ug

)
I + ρgkg

)
Gas effective viscosity µe f f ,g = µg + µt,g

Gas turbulent viscosity µt,g = ρgCµ
k2

g
εg

(Cµ = 0.09)

Table 2. Solid constitutive relations.

Item Formula

Solid stress τs = (−Ps + ξs∇·Us)I + µs
{(
∇Us +∇UT

s

)
−

2
3∇UsI

}
Solid pressure Ps = αsρsΘ + 2ρs(1 + e)α2

s g0Θ

Diffusion coefficient ks =
150ρsds

√
Θπ

384(1+e)g0
[1 + 6

5 g0αs(1 + e)]
2
+ 2α2

sρsdsg0(1 + e)(Θ
π )

1/2

Particle collisional dissipation of energy γs = 3
(
1− e2

)
g0ρsα2

s Θ( 4
ds
(Θ
π )

1/2
−∇·Us)

Solid radial distribution function g0 = 3
5 [1−[ αs

αs, max
]1/3]−1

Solid bulk viscosity ξs =
4
3α

2
sρsdsg0(1 + e)(Θ

π )
1/2

Solids shear viscosity µs = µs,kin + µs,col + µs, f r

Solid kinetic viscosity µs,kin =
10ρsds

√
Θπ

96(1+e)g0
[1 + 4

5 g0αs(1 + e)]
2

Solid collisional viscosity µs,col =
4
5α

2
sρsdsg0(1 + e)(Θ

π )
1/2

Solid frictional viscosity µs, f r =
P f riction sin φ

2
√

I2D

Frictional pressure P f riction =

 Fr (αs−αs,min)
2

(αs,max−αs)
5 , Fr = 0.1αs, αs ≥ 0.5

0 αs < 0.5
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2.3. Turbulence Equations

Turbulence predictions were obtained from a k–ε dispersed model. The transport equations were
expressed as follows:

∂
∂t

(
αgρgkg

)
+∇·

(
αgρgUgkg

)
= ∇·

(
αg
µt,g

σk
∇kg

)
+ αgGk,g − αgρgεg + αgρgΠkg (8)

∂
∂t

(
αgρgεg

)
+∇·

(
αgρgUgεg

)
= ∇·

(
αg
µt,g

σε
∇εg

)
+ αg

εg

kg

(
C1εGk,g −C2ερgεg

)
+ αgρgΠεg (9)

where Πkg and Πεg are source terms that can be included to model the influence of the dispersed
phases on the continuous phase. The constants for the k–εmodel were taken as σk = 1.00, σε = 1.30,
C1ε = 1.44, and C2ε = 1.92 [26].

2.4. Geometry and Operating Conditions

To save computing resources, a slot model of the lower part of the BF was derived. Figure 1
depicts the computational domain. The geometric model covers the iron slag surface to the furnace
bosh, with the deadman removed. Its size is based on a small steel plant BF. The EMFM equations
were calculated using ANSYS–FLUENT 17.2. The phase-coupled SIMPLE (PC-SIMPLE) algorithm was
used for the coupling between pressure and velocity. The second-order upwind style was used in the
discretization scheme.
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Figure 1. Blast furnace (BF) schematic and geometry model of the calculation domain.

Tables 3 and 4 list the simulation parameters and computational conditions, respectively. Injection
angles of 5◦ were associated with the negative direction of the y axis. The chemical reaction,
the polydispersity of the particles, and the liquid phase were not considered during the flow process.
Therefore, to replace the effects of the above factors, and in combination with the actual charge void
distribution in the lower part of the BF, the solid volume fraction was set to 0.6, which is less than the
maximum limiting volume fraction (αs,max). Considering the pressure of the upper layer of the BF,
the outlet pressure was set to 303,000 Pa.
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Table 3. Simulation parameters.

Parameters Value

Number of calculation units 109,516
Time Step 0.0001 s

Particle density 1000 kg/m3

Angle of internal friction 30◦

Tuyere equivalent diameter 0.113 m
Initial solid volume fraction 0.6

Solid packing limit 0.7
Friction packing limit 0.61

Initial bed particle height 4 m
Outlet pressure 303,000 Pa

Table 4. Computational conditions.

Case Blast Velocity (m/s) Injection Angle Particle Diameter (m)

1 150 5◦ 0.01
2 200 5◦ 0.01
3 250 5◦ 0.01
4 300 5◦ 0.01

2.5. Grid and Time Step Independence

Table 5 shows the raceway size after stabilization under different grids and time steps. Further
refinement of the grid in either direction did not change the raceway size by more than 2%, which verifies
the independence of the computational domain grid. The simulation result did not change by more
than 1% by further reducing the time step. This demonstrates the reliability of the numerical model.

Table 5. Raceway size of different numbers of grid cells and time steps.

Number of Grid Cells Time Step (s) Depth (mm) Height (mm) Width (mm) Deviation

109,516 0.0001 631 458 264 -
300,672 0.0001 640 461 267 <2%
109,516 0.00005 637 462 266 <1%

3. Results and Discussion

3.1. Raceway Evolution Characteristics

Raceway evolution is an important phenomenon, particularly reblowing, which occurs after a
temporary wind break in an ironmaking BF. To accurately analyze the evolution process and physical
characteristics of the raceway, the boundary of the raceway was previously defined by the values of
isostatic stress and solid or gas volume fractions [24–27]. In this study, when the solid volume fraction
was less than 0.5, the frictional pressure was 0, and the solid motion was mainly affected by collision.
Therefore, the boundary of the raceway was defined as a solid volume fraction of 0.5.

As depicted in Figure 2, at an injection velocity of 150 m/s, the penetration depth of the raceway
reached a peak at 1 s, at a value of 0.783 m, and it stabilized at 9 s, at a value of 0.386 m. At an injection
velocity of 200 m/s, the penetration depth reached 0.982 m at 1.1 s and then decreased to 0.460 m at 25 s.
At 250 m/s, the penetration depth increased to a peak of 1.143 m at 1.5 s and achieved a stable value of
0.631 m at 40 s. At 300 m/s, the penetration depth reached a peak of 1.327 m at 1.7 s and stabilized
at 1.109 m at 47.5 s. The evolution process of the raceway can be divided into three stages: (1) rapid
expansion, (2) slow contraction, and (3) gradual stabilization. In Stage 1, the penetration depth of the
raceway increases rapidly in the early stages of gas injection. The higher the injection velocity, the faster
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the increase in the penetration depth. Then, in Stage 2, as the particles descend and congregate,
the penetration depth decreases slowly after reaching the peak. In Stage 3, the raceway stabilizes.
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Figure 2. Evolution of penetration depth in the raceway: (a) 0–2 s and (b) 2–50 s.

A typical blast velocity is close to 250 m/s in a small BF tuyere. Figure 3 depicts the evolution of
the raceway. When air was injected through the tuyere, the expansion of the depth of the raceway was
more obvious. When the peak was reached, the height changes of the raceway were more obvious.
Finally, the raceway stabilized at 40 s. This trend was due to the fact that when the solid phase
interacted with the gas phase, the initial solid volume fraction changed toward the maximum limiting
volume fraction and eventually stabilized. This created a particle circulation zone attributed to the
balance between the drag of the blast and the gravity and pressure of the particles.
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3.2. Raceway Size Characteristics

Different BF operating conditions led to different raceway physical characteristics, which were
mainly reflected by their size. Figure 4 shows that the shape of the raceway after it stabilizes is an
upturned bag at high blast velocity. In an actual BF, this provides enough space for the combustion of
pulverized coal and coke, thereby improving production efficiency.
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Figure 4. Raceway shapes after they stabilize at different blast velocities: (a) 150 m/s; (b) 200 m/s;
(c) 250 m/s; (d) 300 m/s.

The blast velocity increase was obviously beneficial for increasing the depth, height, and surface
area of the raceway, while the width was slightly increased, as depicted in Figure 5. The size of the
raceway was not linearly related to the blast velocity. When the blast velocity was increased from
150 m/s to 300 m/s, the surface area of the raceway increased from 0.194 m2 to 1.644 m2, and the
depth increased from 0.386 m to 1.109 m. This was due to the increased gas kinetic energy because of
the increased blast volume and velocity. Therefore, increasing the blast velocity is very effective for
increasing the depth of the raceway in order to develop the central gas flow in an actual BF.
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Figure 5. Effect of blast velocity on the raceway size.

3.3. Pressure Distribution

Figure 6a shows that the gas pressure was high in the raceway and decreased as it approached the
outlet of the particle bed. In contrast, the solid granular pressure was considerably low in the raceway
and at the boundary of the raceway. It is noteworthy that the solid granular pressure reached a local
peak at the boundary of the raceway, where gas injection resistance was the highest, as depicted in
Figure 6b.

As demonstrated in Figure 7, the gas pressure remained relatively stable up to 0.4 m from the
front end of the tuyere because there were fewer particles and low resistance. At a distance equal to
or greater than 0.4 m, the air pressure rapidly increased because the gas was subjected to increased
particle resistance after deep penetration into the particle bed, and the pressure decreased because
the gas velocity decreased and there was further particle resistance. The solid granular pressure in
the raceway is close to 0. Near the boundary of the raceway, due to the interaction gas and solid,
the solid granular pressure changes drastically, increasing first and then decreasing. However, it slowly
increases in the end because the solid were constricted by the wall.
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Figure 7. Gas pressure and solid granular pressure for Case 3 on the axis of the tuyere at 40 s.

3.4. Flow Pattern

As depicted in Figures 8a and 9a, the gas in the raceway can be divided into a jet zone and an
anti-clockwise flow zone. However, the gas flowed into the particle bed from the boundary of the
raceway and did not form a large circulation area. This was due to the injection of high-speed gas into
the tuyere, which limited gas circulation in the jet zone. Additionally, the gas had a weak anti-clockwise
circulation flow at the edge of the tuyere. This is inconsistent with previous results in which the gas
studied according to the CFD-DEM model was divided into anti-clockwise or clockwise circulation or
a plume-like flow [21].
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The particles were clearly circulating anti-clockwise in the raceway, as depicted in Figure 8b.
This was mainly due to the higher resistance of the solid particles along the axis of the tuyere and
the lower pressure on the upper part of the particle bed. Below the tuyere, two clockwise particle
circulation zones were formed, but the movement speed was considerably low. This was because the
gas was affected by the solid resistance and the forces on the bottom and the wall. This reduced the gas
flow velocity in the lower part of the packed bed, resulting in lower resistance. The source of particles
in the solid jet area mainly derived from the upper part of the raceway particles, which also caused the
upper particles in the particle bed to move downwards. In the horizontal direction, although there
were also two anti-clockwise circulating flows to provide particles for the raceway, as depicted in
Figure 9b, their velocities were extremely low. Therefore, the BF raceway was not a single-cycle flow
as previously reported [21], but an extremely complex multi-cycle flow with gas–solid interaction.
The circulation pattern near the tuyere may have a negative impact on the life of the tuyere.

The gas was injected from the tuyere along the axial direction of the tuyere. Owing to the resistance
of the solid particles, the gas velocity rapidly decreased until it reached a value of 0.443 m/s at the
wall surface, as depicted in Figure 10. The drag of the gas affected the particles. The particle velocity
increased rapidly and maintained a relatively stable value in the middle part of the raceway. However,
near the boundary of the raceway (αs → 0.5 ), the particle collision viscosity increased because of the
increased particle volume fraction, which considerably reduced the particle velocity. External to the
raceway boundary and with an increase in the particle friction viscosity and a decrease in the gas drag,
the particle velocity was reduced to a value close to 0.

Processes 2020, 8, x FOR PEER REVIEW 9 of 12 

 

gas flow velocity in the lower part of the packed bed, resulting in lower resistance. The source of 

particles in the solid jet area mainly derived from the upper part of the raceway particles, which also 

caused the upper particles in the particle bed to move downwards. In the horizontal direction, 

although there were also two anti-clockwise circulating flows to provide particles for the raceway, as 

depicted in Figure 9b, their velocities were extremely low. Therefore, the BF raceway was not a single-

cycle flow as previously reported [21], but an extremely complex multi-cycle flow with gas–solid 

interaction. The circulation pattern near the tuyere may have a negative impact on the life of the 

tuyere. 

  

(a) (b) 

Figure 9. The tuyere level plane of Case 3 at 40 s: (a) gas velocity streamline; (b) solid velocity 

streamline. 

The gas was injected from the tuyere along the axial direction of the tuyere. Owing to the 

resistance of the solid particles, the gas velocity rapidly decreased until it reached a value of 0.443 

m/s at the wall surface, as depicted in Figure 10. The drag of the gas affected the particles. The particle 

velocity increased rapidly and maintained a relatively stable value in the middle part of the raceway. 

However, near the boundary of the raceway (𝛼𝑠 → 0.5), the particle collision viscosity increased 

because of the increased particle volume fraction, which considerably reduced the particle velocity. 

External to the raceway boundary and with an increase in the particle friction viscosity and a decrease 

in the gas drag, the particle velocity was reduced to a value close to 0. 

 

Figure 10. Gas and solid velocity along the axis of the tuyere for Case 3 at 40 s. 

4. Conclusions 

A 3D transient EMFM was developed to study the evolution and physical characteristics of the 

raceway in the packed particle bed of an ironmaking BF. The constitutive relation of the gas and solid 

phases was comprehensively considered in the model. The main conclusions of this study are as 

follows: 

Figure 10. Gas and solid velocity along the axis of the tuyere for Case 3 at 40 s.

4. Conclusions

A 3D transient EMFM was developed to study the evolution and physical characteristics of the
raceway in the packed particle bed of an ironmaking BF. The constitutive relation of the gas and
solid phases was comprehensively considered in the model. The main conclusions of this study are
as follows:
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(1) The evolution process of the raceway can be divided into three stages: rapid expansion,
slow contraction, and gradual stabilization. The shape of the raceway was that of an upturned
bag at high blast velocity.

(2) The blast velocity had a significant effect on the size of the raceway. As the velocity increased,
the depth, height, and surface area of the raceway considerably increased, while the width
slightly increased.

(3) The gas pressure in the raceway was higher than that of the particle bed, while the solid granular
pressure was lower. The raceway did not exhibit a single-cycle flow pattern, but exhibited a
complex multiphase and multi-cycle flow pattern.
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Notation

Symbol Meaning
αi i phase volume fraction
ρi i phase density, kg/m3

Ui i phase velocity, m/s
τi i phase stress–strain tensor, Pa
Pi i phase pressure, Pa
g Gravity acceleration, m/s2

S Source term
β Momentum exchange coefficient
CD Drag coefficient
ds Solid-phase diameter, m
µg Gas-phase viscosity, Pa·s
Re Reynolds number
I Unit stress tensor
µe f f ,g Gas effective viscosity, Pa·s
kg Gas turbulent kinetic energy, Pa·s
µt,g Gas turbulent viscosity, Pa·s
εg Gas turbulent dissipation rate
g0 Solid radial distribution function
e Coefficient of restitution for particle collisions
Θ Granular pseudo-temperature
ks Diffusion coefficient
γs Particle collisional dissipation of energy
αs,min Friction packing limit
αs, max Packing limit
ξs Solid bulk viscosity, Pa·s
µs Solids shear viscosity, Pa·s
µs,kin Solid kinetic viscosity, Pa·s
µs,col Solid collisional viscosity, Pa·s
µs, f r Solid frictional viscosity, Pa·s
P f riction Frictional pressure, Pa
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φ Angle of internal friction
I2D Second invariant of the deviatoric stress tensor
Fr Froude number
Gk,g Gas-phase turbulent kinetic energy
Πkg Turbulent kinetic energy source term
Πεg Turbulent dissipation rate source term
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