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Abstract: The recirculating aquaculture system (RAS) is a land-based water treatment technology,
which allows for farming aquatic organisms, such as fish, by reusing the water in the production
(often less than 5%). This technology is based on the use of filters, either mechanical or biological,
and can, in principle, be used for any species grown in aquaculture. Due to the low recirculation
rate, ammonia accumulates in the system and must be converted into nitrate using nitrification
reactors. Although less toxic for fish, nitrate can also be further reduced into nitrogen gas by the
use of denitrification biofilters which may create several issues, such as incomplete denitrification,
resulting in toxic substances, such as nitrite and nitric oxide, or a waste of carbon source in excess.
Control of the added quantity of carbon source in the denitrification biofilter is then mandatory to
keep nitrate/nitrite concentrations under toxic levels for fish and in accordance with local effluent
regulations, and to reduce costs related to wasted organic carbon sources. This study therefore
investigates the application of different control methodologies to a denitrification reactor in a RAS.
To this end, a numerical simulator is built to predict the RAS behavior and to allow for the comparison
of different control approaches, in the presence of changes in the operating conditions, such as fish
density and biofilter removal efficiency. First, a classical proportional-integral-derivative (PID)
controller was designed, based on an SIMC tuning method depending on the amount of ammonia
excreted by fish. Then, linearizing and cascade controllers were considered as possible alternatives.

Keywords: wastewater treatment; mathematical modeling; process control; denitrification

1. Introduction

Recirculating Aquaculture Systems (RAS) have been increasingly used due to the growth of
the aquaculture industry [1]. They can be defined as systems where less than 10% of the total water
volume is replaced per day and respond to the need of more intensive practices, growing environmental
constraints on water consumption and effluent quality, as well as the possibility to supply fish in places
where it would be otherwise difficult [2,3]. The main drawback of these systems is the accumulation
of some toxic compounds, such as ammonia, when there is no proper treatment. Ammonia can
be introduced into the system by fish excretion, 60–70% of the nitrogen consumption by fish being
excreted as ammonia through the gills, or the degradation of uneaten feed [4]. The nitrogen removal
process reduces the ammonia level using microorganisms that transform it into nitrate (nitrification).
The latter, although much less toxic for fish, also accumulates in the system and needs to be removed to
avoid system sustainability and environmental issues. Thus, another unit is often considered in order
to convert nitrate into nitrogen gas (denitrification). The use of anaerobic denitrification to remove
nitrate is not yet widely applied to commercial RAS due to its level of efficiency, its complexity and
cost [5]. The complexity of RAS, created by its intrinsic closed-loop and the interactions between water
treatment and fish grow-out, implies to build dynamic models to analyze the process behavior and
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to optimize it (configuration, size, fish, feed, flows etc) with respect to cost, robustness and water
quality [6]. Indeed, manual control of denitrifying biofilters may easily lead to an unstable process
performance and high cost [7]. Nitrite, which is toxic for fish, can accumulate in transient phases [8].
It is an intermediate compound in the denitrification process, a set of four reactions converting nitrate
NO−3 to nitrogen N2. Particularly, the lack of carbon source for complete denitrification could make this
problem more severe. The absence of nitrite/nitrate/oxygen, however, if large quantities of organic
matter exist, causes the production of sulfides (such as hydrogen sulfide) which are also extremely
toxic [9]. Although nitrate control has been addressed many times regarding municipal wastewater
treatment, its application in the context of RAS is not widespread [7,10–12]. A multivariable PID
control, manipulating recirculation flowrates and aeration to control nitrate levels is proposed in [12]
while an online control strategy/algorithm optimizing a denitrification biofilter through carbon dosage
and backwash is shown in [7]. In [10], a simple feedback control strategy by methanol addition is used
to minimize nitrite production and [11] proposes an output-feedback control scheme for a wastewater
treatment biofilters in order to regulate nitrate and nitrite concentrations.

In this study, a global assessment of nitrate control using acetic acid (pH is considered regulated
and constant) as manipulated variable is first achieved and two different control methodologies are
considered: a classical PID control whose parameters are estimated by a SIMC tuning method [13],
and a simple model-based linearizing control. PID control is widely used in process industries [14],
and have been extensively used to control WWTPs. Unfortunately, PID controllers may present
robustness limitations when applied to nonlinear systems with modeling uncertainties as well
as measurement noise. They might indeed require tuning each time the operating conditions
significantly vary. Linear controllers, on the other hand, take advantage of the availability of accurate
nonlinear models often based on reaction networks and mass balances. However, as bioprocess models
generally present uncertain kinetic structures, adaptive and/or robust solutions are required [15–18].
Taking advantage of both controller structures, a cascade of PI and linearizing control (accounting for
possible model inaccuracies) is further proposed and compared with an adaptive linearizing strategy.
The controller performances are tested with regard to typical industrial plant variations: changes in
fish density, biofilter nitrate conversion efficiency, effluent guidelines regarding nitrate and water/acid
pump malfunction in the denitrification reactor.

2. Problem Description

2.1. Industrial Plant

The industrial-scale RAS under consideration was composed of fish tanks, a physical filtration
system and two biofilters (one for nitrification and another for denitrification). The reactor sizes and
flowrates are presented in Figure 1.

The fish were reared in the tanks from where water flowed into a physical filtration system in order
to remove particles. This water flow was then bypassed by a denitrification system where a carbon
source, acetic acid, was injected. The nitrification filter was composed of 6 compartments, each one
filled with fixed plastic support. Oxygen was added to the nitrification filter up to its saturation point
and fresh water could also have been introduced in the system at a rate Ff resh.

In the following analyses, the RAS system is assumed to operate at a specific setpoint and
model-based control strategies are designed to allow the user to choose specific operating conditions
(i.e., to keep the current setpoint in steady-state or to chose another setpoint) and the closed-loop
system to compensate possible disturbances. Regarding the simulated industrial plant, the nominal
steady-state corresponds to a 6.4 L/h acetic acid flow rate (FAcid) added to keep a constant nitrate
concentration in the denitrification biofilter of 26.6 gN/m3. Water leaves the fish basins (and enters
the denitrification biofilter) with oxygen, ammonium and nitrate concentrations of, respectively,
6.8 gCOD/m3, 0.5 gN/m3 and 98 gN/m3.
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Figure 1. industrial scale RAS.

2.2. Model Description

Each block of the industrial RAS are described by the following models whose components and
nomenclature are related to the Activated Sludge Models (ASM) from [19].

• Fish Tanks:

The fish excretion rate is considered with assumed constant fish size and population. It can be95

translated into ASM variables using the waste matrix reported in [6]. The fish respiration is
calculated based on the values reported in [20] and [21] (see Table 1).

The Fish basins are modeled as perfectly mixed tank reactors where no biological reaction occurs,
applying mass balances as in:

dξ
dt

= −D(ξinlet − ξ) +
ϑwaste

V
(1)

where variable ξ may be used to represent both soluble (S) and particulate (X) waste compounds100

and V is the fish tank volume. The corresponding waste production rates ϑwaste, all quantified
in Table 1, are estimated for an assumed constant fish density of 12kg/m3 and body weight of
8.5kg. These rates can also be translated into ASM variables using the waste matrix reported
in [6] while the fish respiration is calculated based on the values reported in [20] and [21] (see
Table 1). The fish basin may therefore be modeled by the replication of the generic equation (1)105

for each waste component of Table 1.
• Physical particle filter:

90% of the particulate components in the inlet are filtered, leading to:

Xk,outlet = 0.1Xk,inlet (2)

where Xk,outlet and Xk,inlet represent respectively the outlet and inlet concentrations of particulate
component k.110

• Denitrification filter:

The denitrification filter consists of a moving bed perfectly mixed tank reactor. Solubles that
exist in the reactor bulk (index b) dissolve into the biofilm (index c) where the main part of the
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2.2. Model Description

Each block of the industrial RAS is described by the following models whose components and
nomenclature are related to the Activated Sludge Models (ASM) from [19].

• Fish Tanks:

The fish excretion rate is considered with assumed constant fish size and population. It can be
translated into ASM variables using the waste matrix reported in [6]. The fish respiration is
calculated based on the values reported in [20,21] (see Table 1).

The Fish basins are modeled as perfectly mixed tank reactors where no biological reaction occurs,
applying mass balances as in:

dξ
dt

= −D(ξinlet − ξ) +
ϑwaste

V
(1)

where variable ξ may be used to represent both soluble (S) and particulate (X) waste compounds
and V is the fish tank volume. The corresponding waste production rates ϑwaste, all quantified
in Table 1, are estimated for an assumed constant fish density of 12 kg/m3 and body weight of
8.5 kg. These rates can also be translated into ASM variables using the waste matrix reported
in [6] while the fish respiration is calculated based on the values reported in [20,21] (see Table 1).
The fish basin may therefore be modeled by the replication of the generic Equation (1) for each
waste component of Table 1.

• Physical particle filter:

90% of the particulate components in the inlet are filtered, leading to:

Xk,outlet = 0.1Xk,inlet (2)

where Xk,outlet and Xk,inlet represent, respectively, the outlet and inlet concentrations of particulate
component k.

• Denitrification filter:

The denitrification filter consists of a moving bed perfectly-mixed tank reactor. Solubles that
exist in the reactor bulk (index b) dissolve into the biofilm (index c) where the main part of the
biological reactions occurs. The same ASM model, which is applied for nitrification, is used with
the exception that ammonia is not considered as substrate for heterotrophic growth ( SNH

(KNHH+SNH)
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is not considered in ρ1, ρ2 and ρ3). Acetic acid is added to this bioreactor (4) as a carbon source for
denitrification, which can therefore be modeled as:

dSi,b

dt
= D(Si,inlet − Si,b) +

ṁi,Added

Vb
−

kdi f f (Si,b − Si,c)

Vb
+ φSi,b (3)

ṁSS,Added = FAcid ϕ (4)

dXk,b

dt
= D(Xk,inlet − Xk,b) +

Kd
Vb

Xk,c + φXk,b (5)

dSi,c

dt
=

kdi f f

Vb f
(Si,b − Si,c) + φSi,c (6)

dXk,c

dt
= − Kd

Vb f
Xk,c + φXk,c (7)

where FAcid is the acetic acid flow rate in L/h, ϕ is the coefficient of conversion of acid into
easily biodegradable organic matter in gCOD/L and φξ is the production/consumption rate of
component ξ, which can be calculated using stoichiometry—that is, the corresponding coefficient
υξ,w (provided in Table S1, in Supplementary Materials) and rate ρw (provided in Table S2,
in Supplementary Materials), as in:

φξ =
11

∑
w=1

υξ,w × ρw (8)

where w is an index denoting the process referenced in Tables S1 and S2 in
Supplementary Materials.

• Nitrification filter:

The nitrification filter is hydraulically modeled assuming six sequential perfectly mixed tank
reactors filled with solid media. Biologically, a modified ASM1 model with the inclusion of
two-step nitrification/denitrification is used (provided in Tables S1 and S2, in Supplementary
Materials). This model has been validated using the data from the COST Simulation Benchmark
in [22]. It has to be noticed that oxygen is also added to this bioreactor. Particles present in the
inlet remain in the outlet. However, the particles already existing in each compartment (rs) do not
move to others. The resulting mass balances lead to:

dSi,rs

dt
=

F
Vb

(Si,rs−1 − Si,rs) +
ṁO2,Added

Vb
± φSi,rs

Vbio f ilm

Vb
(9)

dXk,rs

dt
= φXk,rs (10)

ṁO2,Added = kLa(SO,sat − SO) (11)

Si,rs−1 = Si,inlet , at rs = 1 (12)

where D represents the dilution rate, kdi f f is the diffusion coefficient in m3/h, Vb is the empty
volume of the reactor in m3, φSi,rs and φXk,rs are the consumption/production rates of solubles
i and particulates k, calculated from (8), F is the volumetric flowrate in m3/h, ṁ is the mass
flowrate in g/h, Kd is the detachment coefficient in h−1·m3 and kLa is the oxygen mass transfer
coefficient in h−1.
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Table 1. Fish waste production rates.

Corresponding Description ϑwaste Units

component ξ

SI Inert soluble organic material 994 gCOD/h
SS Readily biodegradable organic material 0 gCOD/h
XI Inert particulate organic material 994 gCOD/h
XS Slowly biodegradable substrate 1.2× 104 gCOD/h

XBH Active heterotrophic biomass 0 gCOD/h
XNS Active ammonia oxidizing bacteria 0 gCOD/h
XNB Active nitrite oxidizing bacteria 0 gCOD/h
XP Part. products from biomass decay 4.0× 103 gCOD/h
S0 Dissolved oxygen −6.1× 103 a gCOD/h

SNO3 Nitrate nitrogen 0 gN/h
SNH Ammonium and ammonia nitrogen 1.5×103 gN/h
SND Soluble biodegradable organic nitrogen 355 gN/h
XND Particulate biodegradable organic nitrogen 355 gN/h
SAlk Alkalinity (as HCO –

3 equivalents) 0 gCOD/h
SCO2 Dissolved carbon dioxide 8.4×103 gCO2/h

SP Phosphorus 497 gP/h
SNO2 Nitrite concentration 0 gN/h

a Negative since fish consume oxygen rather than expel it.

2.3. Plant Dynamics: A Preliminary Study

A first hydraulic study of the plant is achieved in order to assess the RAS inherent dynamics.
To this end, a simulation of the concentration variation of an inert soluble component in the
denitrification reactor following a production rate unitary step increase (in gCOD/(m3· h)) is shown
in Figure 2 where, obviously, the plant takes up to 4000 h to reach the new steady state. Indeed,
the step response can be approximated using a first order transfer function G1 with time constant
τC = 744 h—i.e., 5τC ≈ 4000 h. As already mentioned, the plant is a semi closed system with 1%
of regenerated water flowrate. This small inlet of water, along with the high considered volume,
causes the very slow drift towards the new steady-state. This preliminary numerical analysis aims at
demonstrating that the current RAS is very delicate to control due to the recirculating loop dynamics.
In the upcoming sections, dedicated to control design, these slow dynamics are taken into account
using adapted controller settings.
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Figure 2. Simulated response of the industrial scale RAS to a step increase in an inert soluble component
production rate by 1 gCOD/(m3·h). First order model presented for comparison purpose.
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3. Control Implementation: Classical Approach

This section aims at first designing a classical PID controller to regulate the nitrate level in the
denitrification reactor. From the corresponding model of differential Equations (3) and (4), acetic acid
is obviously the sole manipulated variable and the following control law is proposed:

FAcid(t) = FAcid + KC

[
e(t) +

1
τI

∫ t

0
e(t∗)dt∗ + τD

de(t)
dt

]
(13)

e(t) = S∗NO3 − SNO3(t) (14)

where FAcid represents the initial acetic acid flowrate ensuring the industrial plant nominal steady-state
(FAcid = 6.4 L/h), e(t) represents the measurement error, KC is the proportional gain, τI and τD,
respectively, are the integral and derivative time constants, S∗NO3 is the desired nitrate concentration
setpoint and SNO3(t) is the measured nitrate concentration. Expression (13) therefore aims at
compensating any deviation from the chosen nominal steady-state trajectory which is assumed to be
a priori knowledge from heuristics. Although (13) only presents three parameters, finding optimal
settings without resorting to a systematic procedure may be complex. One way to design the gains
is to first focus on the Proportional-Integral (PI) (i.e., τD = 0) part in order to set a satisfactory
steady-state response (no steady-state error) and then consider the derivative part to improve the
transient response [13,23].

In this study, the SIMC design method, as presented in [13], is chosen since it involves the transfer
function of the system which can be easily computed considering a specific operating point and the
corresponding step response, for instance, using the MATLAB model identification toolbox.

As shown in Figure 3, a one pole model already provides a very good approximation, and reads:

G(s) =
ke−θs

τ1s + 1
=

−32
8.9× 102s + 1

(15)

The numerator of (15) shows that the system presents a steady-state gain (G(0)) equal to −32 and
no delay (θ = 0) while the denominator provides the system time constant (τ1) which, as expected,
is particularly large (890 h). Such slow systems, according to [13], may be approximated by a
simple integrator:

ke−θs

τ1s + 1
≈ k′e−θs

s
(16)

using the ratio between the gain G(0) and the time constant τ1, denominated k′, to determine PI-settings
in a much shorter time frame (see Figure 4). k′ is therefore calculated as follows:

k′ =
∆y

∆t∆u
=

22.09− 25.59
(240− 24)(6.762− 6.44)

= −0.05 (17)

where ∆y represents the variation in nitrate concentration during ∆t hours, for a variation in acid
flowrate ∆u.

The SIMC method then proposes, for a general first-order process with delay, the PID tuning rules
presented in Table 2, where τC represents the time constant of the desired first-order response of the
system. The second row shows how this method is applied to the considered industrial-scale plant.

Table 2. PI parameter calculation using the SIMC method.

Process G(s) KC τI τD

SIMC PID settings First-order k′ e
−θs

s
1
k′

1
τC+θ min{4(τC + θ)} -

Industrial-scale plant model First-order k′ = −0.05 τ1 = 8.9× 102 θ = 0 1
0.05

1
τC

min{4τC} -
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Considering y, the current nitrate concentration in the denitrification filter, yS the desired setpoint,
and θ the time delay, Equation (18) shows the relation between these variables and τC:

(
Y(s)
Ys(s)

)

desired
=

1
τCs + 1

e−θs (18)

The rate at which nitrate is produced/consumed in the system depends on either the quantity of
ammonia released by fish (and consequent quantity converted into nitrate) or the amount of nitrate
the denitrification biofilter is able to convert into nitrogen (gas). Regarding nitrate consumption,
an increase in available carbon source induces biomass growth and nitrate consumption increases
(assuming that the biofilter size is properly designed). However, nitrate production is entirely driven
by the quantity of ammonia produced in the system. τC is then limited by the “maximum” production
rate of nitrate and can be estimated using the quantity of ammonia produced by the fish. This can be
further explained by Equation (18), considering θ = 0, represented in Figure 5. It has to be noticed that

τC should always be greater than
d
(

y
ys

)

dt max, that is, τC ≥ τC,min as shown in Figure 5, depending on the
amount of ammonia excreted by fish.

C,min C

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
/y

S

System

d(y/ys)dt
max

Figure 5. Variation of ( y
ys
) as a function of the time constant.

The controller parameter calculation conditions, related to the case-study, are presented in Table 3.
All the ammonia introduced in the system is considered as completely converted into nitrate.

Table 3. Parameter values for the industrial case-study controller.

Parameter Value Parameter Value

rNH4 1.5× 103 gNH4−N/h τC
0.63
0.36 = 1.8 h

Vcase−study 4.2× 103 m3 KC,max − 1
0.05

1
1.8 = −11 L.m3/(h·gNO3−N)

rNO3increase 0.36 gNO3−N/h/m3 τI min{0.3, 4τC} = min{8.9× 102, 7.2} = 7.2 h
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As shown in Figure 6, where setpoint changes of +15/−15 gN/m3 are simulated, an anti-windup
configuration (using Equation (19)) is recommended to avoid detrimental effects due to input saturation
and the control law reads:

FAcid(t) = FAcid + KC

[
e(t) +

1
τI

∫ t

0
(e(t∗)− eaw)dt∗

]
(19)

e(t) = S∗NO3 − SNO3(t)

with eaw being the anti-windup term calculated by the following equation:

eaw =





Kaw(Facid,t − Facid,max) i f Facid,t > Facid,max

Kaw(Facid,t − Facid,min) i f Facid,t < Facid,min

0 Facid,min < Facid,t < Facid,max

(20)

eaw is only greater than 0 when the controller output is greater than the allowed maximum value
(Facid,max = 200 L/h) or lower than its minimum value (Facid,min = 0 L/h). When this happens,
the control action is limited and eaw is calculated accordingly (Kaw is the anti-windup gain). Figure 6
shows the effect of the anti-windup when a Kaw value of −1 is used. When the nitrate setpoint is
increased, the controller decreases the acid flowrate accordingly. However, nitrate concentration will
continue to increase due to the ammonia conversion reaction which causes the integral term of the
PI controller to go on increasing. When the nitrate concentration finally reaches the desired setpoint,
the accumulated integral action entails overshoot. Kaw values chosen between −0.1 and −10 are
sufficient to solve the issue. Nevertheless, using a high Kaw value tends to slow down setpoint tracking.
A Kaw value of −1 is ideally chosen and used in future simulations.
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Figure 6. Application of the PI controller with and without anti-windup following a nitrate setpoint
variation. A Kaw value of −1 is used.
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The design of the derivative gain is achieved following the analysis of the controller response to
setpoint changes. Comparative results using different derivative gain values (driven by the choice of
τD) can be found in Figure 7. The input calculated by the PID therefore reads:

FAcid = FAcid + KC

[
e(t) +

1
τI

∫ t

0
(e(t∗)− eaw)dt∗ + τD(e(t)− η)

]
(21)

η̇ = (e(t)− η)τD (22)

where the derivative term is approximated by a continuous high-pass filter using η as intermediate
variable. Including the derivative action leads to the new results of Figure 7, where oscillations are
attenuated and the tracking is improved. A τD value of 1 provides the most satisfactory result and is
therefore selected.
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Figure 7. Selection of the PID derivative gain τD.

The resulting PID performance is assessed in Figure 8 where, following several setpoint changes
and step disturbances in waste production (ϑSNH ), robust and fast tracking is achieved. Values of
−11.6 L·m3/(g·h), 6.9 h, 1 h and −1 are, respectively, used for KC, τI ,τD and Kaw. Robustness analysis
with respect to other operating condition disturbances is also presented in Figure 9. Variations in
the available biomass concentration XBH and the bypass flowrate Fdenitri are identified as severe
system disturbances. A sudden increase in biomass decay rate (bH term in Table S2 is increased 3
fold, from 2.6× 102 to 7.8× 10−2 h−1) is therefore simulated and indeed causes response oscillations,
as shown in Figure 9, while step variations on the bypass flowrate are compensated very fast.

For the exact same perturbation in the biomass decay rate as in the previous test, the situation
gets worse when adding measurement noise, as shown in Figure 10, where a Gaussian noise with zero
mean and 10% relative standard deviation is added to the measured variable (SNO3). A sampling time
of 0.01h is also used to match the probe measurement sampling process. The controller obviously faces
tracking problems, sometimes reaching unacceptable nitrate concentration values even when trying
to retune the controller proportional gain (Figure 10 shows the results for two values of the gain).
To avoid this undesired effect, two solutions could be considered—they are, (a) low-pass filtering of the
output signal or (b) replacing the PID by a PI, which is, in essence, less sensitive to measurement noise.
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Figure 9. Closed-loop system input/output evolutions following (left) an increase in biomass decay
rate from 2.6 × 102 to 7.8 × 10−2 h−1 and (right) 5 to 10% step variations applied to the bypass
flowrate (FDenitri).
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Figure 10. Nitrate concentration and acid flowrate evolutions for an increase in biomass decay rate
from 2.6× 102 to 7.8× 10−2 h−1 while using two PID controllers with different proportional gains
(KC)—Gaussian noise with zero mean and 10% relative standard deviation is added to the measured
variable (SNO3).

4. Linearizing Control

A linearizing control strategy, as illustrated in Figure 11, may also be proposed as an
alternative solution.

Figure 11. Linearizing control scheme.

The control law is established based on a simplified ASM1 model [19] (in order to limit the
quantity of measured variables) and the following assumptions:

• Only the denitrification reactor is considered;
• This reactor only contains heterotrophic bacteria;
• Since the oxygen concentration is low, no nitrification can occur;
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• Biomass is retained in the tank (XBH,out = 0);
• Only three other components besides biomass are considered: oxygen (SO), easily biodegradable

organic matter (SS) and nitrate (SNO3);
• Only two reactions are assumed to occur:

1. Aerobic growth of heterotrophs:
SS + SO → XBH ; (23)

2. Anoxic growth of heterotrophs on nitrate:

SS + SNO3 → XBH ; (24)

• Acid is added as a carbon source and ϕ represents the conversion of acid flowrate (Facid, L/h) into
easily biodegradable carbon source flowrate (gCOD/h)).

Applying mass balances to (23) and (24), the following simplified differential equation system
is obtained:

dSS
dt

=
FDenitri
VDenitri

SS,in −
(FDenitri + Facid)

VDenitri
SS + φSS +

Facid ϕ

VDenitri
(25)

dSNO3

dt
=

FDenitri
VDenitri

SNO3,in −
(FDenitri + Facid)

VDenitri
SNO3 + φNO3 (26)

where φSS and φNO3 are the easily biodegradable organic matter and nitrate reaction rates given by:

φSS = υSS,aerobρ1 + υSS,anoxρ2 (27)

φNO3 = υNO3ρ2 (28)

where υSS,aerob, υSS,anox and υNO3 are stoichiometric coefficients depending on biomass yield YH as in:

υSS,aerob = υSS,anox = υSS = − 1
YH

(29)

υNO3 = −1−YH
2.86YH

(30)

and ρ1 and ρ2 are the aerobic and anoxic growth rates of heterotrophs:

ρ1 = µH
SO

SO + KOH

SS
SS + KS

XBH (31)

ρ2 = ηgµH
SS

SS + KS

KOH
SO + KOH

SNO3

SNO3 + KNO
XBH (32)

Considering a first-order linear reference as in (33):

dSNO3

dt
= λlin(S∗NO3 − SNO3) (33)

where S∗NO3 is the desired nitrate concentration setpoint. Replacing Equation (33) in Equation (26):

ρ2 =
2.86YH
1−YH

[
FDenitri
VDenitri

(SNO3,in − SNO3)−
Facid

VDenitri
SNO3 − λlin(S∗NO3 − SNO3)

]
(34)

In steady-state, SS variation tends to zero:

dSS
dt
≈ 0 (35)
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and injecting (34) into (25), assuming (35), yields:

Facid
VDenitri

SS −
Facid

VDenitri
ϕ =

FDenitri
VDenitri

(SS,in − SS)−
1

YH
ρ1 −

2.86
1−YH

[
FDenitri
VDenitri

(SNO3,in − SNO3) (36)

− Facid
VDenitri

SNO3 − λlin(S∗NO3 − SNO3)

]

⇔ Facid

[
SS − 2.86

1−YH
SNO3 − ϕ

VDenitri

]
=

FDenitri
VDenitri

[
SS,in − SS −

2.86
1−YH

(SNO3,in − SNO3)

]

− 1
YH

ρ1 +
2.86

1−YH
λlin(S∗NO3 − SNO3) (37)

⇔ Facid =

FDenitri
VDenitri

[
SS,in − SS − 2.86

1−YH
(SNO3,in − SNO3)

]

SS− 2.86
1−YH

SNO3−ϕ

VDenitri

− 1
YH

ρ1 +
2.86

1−YH
λlin(S∗NO3 − SNO3)

SS− 2.86
1−YH

SNO3−ϕ

VDenitri

(38)

As previously mentioned, an anti-windup term should be added to cancel input saturation effects:

Facid =
FDenitri(SNO3,in − SNO3 +

1
2.86 SO,in)− 1

YH
ρ1 + λlin(S∗NO3 − SNO3)

1−YH
2.86 ϕ + SNO3

−

λlin,I
∫
(S∗NO3 − SNO3 + eaw,lin)

1−YH
2.86 ϕ + SNO3

(39)

eaw,lin =





Kaw,lin(Facid − Facid,max) i f Facid > Facid,max

Kaw,lin(Facid − Facid,min) i f Facid < Facid,min

0 Facid,min < Facid < Facid,max

(40)

As shown in Figure 12, the linearizing controller provides good performances even in the presence
of measurement noise with zero mean and 10% relative standard deviation, and biomass concentration
decrease. However, in an attempt to decrease the undesired oscillations, two additional strategies,
which aim at being more robust to model uncertainties, are proposed in the following section, one
combining both control structures in cascade and another estimating the biomass unknown dynamics.
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Figure 12. Simulation results obtained for the linearizing, adaptive and cascade controllers when
the biomass death rate is increased and a 10% measurement noise on all measured variables (SNO3,
SS, SO and XBH) is added. SetPtCascade represents the corrected setpoint curve and Setpoint the
desired setpoint.

4.1. Cascade Control

The cascade control methodology takes advantage of linearizing control to impose a first-order
closed-loop dynamic in the inner loop, and a PI controller is used in the outer loop (see Figure 13).
This cascade structure provides robustification, for instance, to model uncertainties, as follows:

Facid =
FDenitri(SNO3,in − SNO3 +

1
2.86 SO,in)− 1

YH
ρLin + λlin(S∗NO3 − SNO3)

1−YH
2.86 ϕ + SNO3

(41)

ρ1 = µH
SO,b

SO + KOH

SS
SS + KS

XBH (42)

where

S∗NO3(t) = S∗NO3 + KC,cascade

[
e(t) +

1
τI,cascade

∫ t

0
e(t∗)dt∗

]
(43)

e(t) = S∗NO3(t)− SNO3(t) (44)
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4.2. Adaptive Linearizing Control

Lumping the kinetic uncertainties into one single parameter θ̂, Equation (38) can be re-written:

Facid =
FDenitri(SNO3,in − SNO3 +

1
2.86 SO,in) + θ̂ + λlin(S∗NO3 − SNO3)

1−YH
2.86 ϕ + SNO3

(45)

with

θ = − 1
YH

ρ1 (46)

θ̃ = θ − θ̂ (47)

where θ̃ represents parameter mismatch θ̃ = θ − θ̂. An adaptive scheme, as described in [16,24], can be
designed to develop an asymptotically stable control law, considering the following positive Lyapunov
candidate function:

VL(t) =
1
2

(
S̃2

NO3 +
θ̃2

γ

)
(48)

and its time derivative:

V̇L =
dS̃NO3

dt
S̃NO3 + θ̃

dθ̃

dt
1
γ

(49)

where S̃NO3 = S∗NO3 − SNO3, θ̃ = θ − θ̂ and γ is a striclty positive parameter. All the terms in ρLin are
assumed to be slowly varying so that dθ

dt = 0 and we get:

dθ̃

dt
= −dθ̂

dt
(50)

Considering possible parameter mismatch, the error dynamics may be written:

dS̃NO3

dt
= −λS̃NO3 − θ̃ (51)

Replacing Equations (50) and (51) in (49), we obtain:

V̇L = −λS̃2
NO3 − θ̃S̃NO3 − θ̃

dθ̂

dt
1
γ

(52)

Considering Lyapunov stability theory, V̇L should be negative and since the first term of (52) is,
as long as the second and third terms cancel each other, the stability of the closed-loop is verified, as in:

−θ̃S̃NO3 − θ̃
dθ̂

dt
1
γ
= 0 (53)

dθ̂

dt
= −S̃NO3γ (54)
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The adaptive control law reads:

Facid =
FDenitri(SNO3,in − SNO3 +

1
2.86 SO,in) + θ̂ + λlin(S∗NO3 − SNO3)

1−YH
2.86 ϕ + SNO3

(55)

with
dθ̂

dt
= −S̃NO3γ (56)

It should be noticed that the adaptive linearizing controller is equivalent to (38) where an integral
action is added.

4.3. Numerical Results

Simulation results aim at assessing the controller performance following an increase in biomass
(death rate) considering measurement white noise with zero mean and 10% standard deviation on all
measured variables (SNO3, SS, SO and XBH), as shown in Figure 12. A sampling time of 0.01 h is used
to simulate the corresponding probe behavior. Regarding the linearizing controller, the parameters
0.5 h−1, 6 L/h2m3 and −10 are, respectively, used for λlin, λlin,I and Kaw,lin. The PI used in cascade is
parameterized with KC,cascade = 0.001 and τI,cascade = 0.5 h (keeping λlin = 0.5 h−1) and the adaptive
controller uses γ = 5 (keeping λlin = 0.5 h−1). All the controllers perform reasonably well when
noise is added and both the adaptive and cascade controllers are capable of attenuating the previously
described oscillations.

In addition, comparative results between the linearizing controller with the cascade and the
adaptive controller for several system disturbances are shown in Figures 14–17.
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Figure 14. Nitrate concentration and acid flowrate evolutions for a setpoint step variation
using different controllers: cascade (Cascade), classical linearizing (Lin) and adaptive linearizing
controllers (Adaptive).
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Figure 15. Nitrate concentration and acid flowrate evolutions for 5 to 10% variations in ammonia
(waste) production (ϑSNH ) using different controllers: cascade (Cascade), classical linearizing (Lin) and
adaptative linearizing controllers (Adaptive).
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Figure 16. Nitrate concentration and acid flowrate evolutions for 5 to 10% variations in bypass flowrate
(FDenitri) using different controllers: cascade (Cascade), classical linearizing (Lin) and adaptative
linearizing controllers (Adaptive).
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Figure 17. Nitrate concentration and acid flowrate evolutions for 5 to 10% variations in fresh water
flowrate (Ff resh) using different controllers: cascade (Cascade), classical linearizing (Lin) and adaptative
linearizing controllers (Adaptive).

It is noticeable from Figures 9 (left) and 12 that all controllers oscillate following a perturbation
in the biomass concentration. This is related to the operating point of the RAS and, by setting a new
higher nitrate setpoint, it is possible to obtain a smoother response, as shown in Figure 18.
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Figure 18. Simulation results obtained for the linearizing, adaptive and cascade controllers when the
biomass death rate is increased and a 10% measurement noise on all measured variables (SNO3, SS, SO

and XBH) is added and when a higher steady-state nitrate concentration and setpoint are considered.
SetPtCascade represents the corrected setpoint curve and Setpoint is the desired setpoint.
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5. Conclusions and Perspectives

In this study, a control study of a recirculation aquaculture system is undertaken. Different control
methodologies are tested in simulations for an industrial scale system. Both PID and linearizing
controllers are capable of keeping the system stable when used with an anti-windup action. The PID
controller gains can be calculated based on fish waste production (ammonia). The addition of
a derivative action leads to a noticeable decrease in controller output oscillations. Nonetheless,
the PID presents robustness issues when considering measurement noise. The linearizing controller
is, however, able to overcome this problem and can also be further improved by adding an adaptive
law to face possible model uncertainties. A cascade control strategy (combining PI and linearizing
controllers) may also improve the control robustness to model uncertainties, compromising the tracking
performance. The system has an operational region around which all the considered feedback strategies
present oscillating responses. Operational conditions should then be changed to accommodate this
phenomenon. The controllers show good robustness with respect to disturbances, such as the increase
in ammonia production due to variations in the fish population. The control strategies discussed
in this article are versatile and could be applied to other RAS configurations at different scales.
Future perspectives could include the analysis of nitrite accumulation and the possibility to limit
its concentration.
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