

Supplementary Information for

Article

Synthesis of Peptide-Immobilized Magnetic Beads, and Peptide Reactivity Assay for Assessing Skin Sensitization Utilizing Chromophore

Hiroshi Miyazaki ¹, Hikaru Takaishi ², Hidefumi Ikeda ³, Hideto Ariumi ⁴, Yoshio Hamada ², Kunihiko Yamashita ^{1,*} and Kenji Usui ^{2,*}

- ¹ Medical Device Division, Innovation and Business Development Headquarters, Daicel Corporation, Minato-ku, Tokyo 108-8230, Japan; hs_miyazaki@jp.daicel.com (H.M.); ku_yamashita@jp.daicel.com (K.Y.)
- ² Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe 650-0047, Japan; s1691023@a.konan-u.ac.jp (H.T.); pynden@gmail.com (Y.H.)
- ³ Product Assurance Division, Mandom Corporation, Chuo-ku, Osaka 540-8530, Japan; hidefumi.ikeda@mandom.com
- ⁴ Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan; ariumih@rs.socu.ac.jp
- * Correspondence: ku_yamashita@jp.daicel.com (K.Y.); kusui@konan-u.ac.jp (K.U.)

Table of Contents

Page 1: Contents

Page 2: Figure S1 for the structures of Fmoc-Lys(Mtt)-npp-beads and Ac-Lys(Flu)-npp-beads Page 3: Figure S2 for the synthesis of Fmoc-Lys(Mtt)-npp-beads and Ac-Lys(Flu)-npp-beads Page 4: Table S1 Reactivity of 7 test chemicals to Ac-Lys-beads determined by percent

depletion

Page 5: References

Figures and Legends

Figure S1. Structures of Fmoc-Lys(Mtt)-npp-beads and fluorescein tagged Ac-Lys(Flu)-npp-beads

Figure S2. Synthesis of Fmoc-Lys(Mtt)-npp-beads and Ac-Lys(Flu)-npp-beads.

Test Chemicals	log	LLNA Datanay	Mechanism	DPRA ^{a,b}		ADRA ^d		C-SPRA-MB	
	Ko	category		depletio n ratio	Results ^c	Depletio n	Results ^e	Depletio n	Results ^f
	W			(%)		ratio (%)		ratio (%)	
<i>p</i> -Benzoquinone (BQ)	0.25	Extreme	Michael acceptor	95.0ª	Р	98.2 ^d	Р	92.5	Р
Fluorescein-5-isothiocyanate	1.60							84.6	
(FITC)	4.69	Strong	Acyl-transfer	80.6ª	Р	100.0 ^d	Р		Р
Benzylidene acetone (BA)	2.04	Moderat e	Michael acceptor	48.1ª	Р	55.1 ^d	Р	75.0	Р
5-Methyl-2-phenyl-2-hexenal			Michael					46.2	
(MPH)	3.77	Moderat e	acceptor /Schiff base	-	-	-	-		Р
Undec-10-enal (UE)	4.12	Moderat e	Schiff base	0.00 ^b	N g	-	N ^g	67.5	Р
-Amyl cinnamic aldehyde	1.00		Michael					40.0	
(ACA)	4.33	Weak	acceptor /Schiff base	2.25ª	N g	4.1 ^d	N^{g}		Р
Dibutyl phthalate (DP)	4.61	Non- sensitizer	Non-binding	0.00 ^b	Ν	-	Ν	9.7	Ν

Table **S**1.Reactivity of test chemicals to Ac-Lys-beads determined by percent depletion

^aData from Ref. 1. ^bData from Ref. 2. ^cThreshold of 6.38% average peptide depletion was used to discriminate between 'P' (positive) and 'N' (negative). ^dData from Ref. 3. ^eThreshold of 4.9 % mean peptide depletion was used to discriminate between 'P' (positive) and 'N' (negative). ^f Threshold of 20 % mean peptide depletion was used to discriminate between 'P' (positive). ^gAlthough they are sensitizers, they showed "false negatives" in DPRA and ADRA.

References

- 1. Natsch, A., Ryan, C. A., Foertsch, L., Emter, R., Jaworska, J., Gerberick, F. and Kern, P.: A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation, J. Appl. Toxicol., **2013**, 33, 1337–1352.
- 2. Otsubo, Y., Nishijo, T., Miyazawa, M., Saito, K., Mizumachi, H. and Sakaguchi, H.: Binary test battery with KeratinoSens[™] and h-CLAT as part of a bottom-up approach for skin sensitization hazard prediction, Regul. Toxicol. Pharmacol., **2017**, 88, 118–124.
- 3. Fujita, M., Yamamoto, Y., Tahara, H., Kasahara, T., Jimbo, Y. and Hioki, T.: Development of a prediction method for skin sensitisation using novel cysteine and lysinederivatives, J. Pharmacol. Toxicol. Methods, **2014**, 70, 94–105.