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Abstract: The origins and effects of the complex vortex structure near the volute outlet of a multi-blade
centrifugal fan are investigated in this paper. Due to the wide blade and short blade channel, the airflow
maintains a large radial velocity during the blade channel. This continuous radial partial velocity
causes vortices to be generated at the region of volute outlet. Then, the secondary flow close to the
impeller generate from the center to the sides in volute. It is obtained that the streamlines are divided
into two parts (backflow and outflow) at volute outlet. Although the vortices near volute outlet
region are complex, the main features of flow behavior caused by the vortex are understandable.
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1. Introduction

The multi-blade centrifugal fans are widely used in heating, ventilation, air conditioning, and other
fields. Kinds of centrifugal fan with small size coefficient and low noise mainly possess a great deal
of outstanding advantages [1,2]. It is of great significance to improve the performance of centrifugal
fan. Ballesteros et al. [3] investigated the unsteady flow conditions of the flow field of the multi-blade
fan inlet flow, the intra-blade flow, and the outlet flow channel, and summarized their respective
characteristics under different working conditions, respectively. Velarde et al. [4] pointed out the
strong non-uniformity of the flow state in the blade channel of the multi-blade fan. The blade channel
has obvious flow separation points and separation areas, the strong pressure pulsation at the volute,
and the pressure distribution in the volute are asymmetric.

Adachi et al. [5–9] studied the influences of blades on the flow field and the performance of
multi-blade centrifugal fans. Wang [10] studied the influence of blade trimming on the performance of
multi-blade centrifugal fan. They argued that the blade trimming with proper trimming parameter
enables the multi-blade fan to get an increasing fan performance. Kind et al. [11] proposed a method
to predict the aerodynamic performance and flow state of the forward multi-blade centrifugal fan.
This method decomposes the whole fan into three parts, namely the inlet part, the blade part, and the
volute part. The main target should be placed on the blade and the gap. However, the vortices
at the outlet extension of the multi-blade centrifugal fan also possess a significant influence on the
aerodynamic performance of fan, so the optimization of the outlet extension should also be paid
attention to. Velarde et al. [12] measured the velocity fluctuation at the outlet of a forward multi-blade
fan by using the hot wire method and found that the outlet of the fan presented a strong asymmetry,
especially at the volute tongue. Wen et al. [13] proposed two volute design methods to overcome
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the space limitation of the volute. The effects of turbulent flow structure on the performance of
a centrifugal fan were studied numerically and experimentally [14,15]. The numerical studies [16–20]
demonstrated that numerical simulations play an increasingly important role in fan performance
design. Wang et al. [21] proposed that the representation technique is capable of effectively getting the
nonuniform circumferential flow conditions at both the outlet and inlet of fan impeller.

The above researches show that the region between the impeller and volute plays an important
role in the fan performance. Complex vortices are also mainly caused by the Coriolis force and unsteady
separated flow. Interestingly, several complex vortex structures are easily formed and captured near
the junction of the volute outlet and the outlet channel extension section, which blocks the pneumatic
conveying of centrifugal fan. This phenomenon greatly suppresses the aerodynamic performance of
multi-blade fan. There are great differences between the actual flow field features and the theoretical
derivation, especially the influence of the vortex structure at the outlet of the volute on the performance
of the fan. The volute plays a key role in effective work of the centrifugal fan and directly affects
the performance of fan. Complex vortex structure near volute outlet is caused by Coriolis force and
the unsteady flow in narrow blade channel. The aim of this paper is to provide some fundamental
understanding of the complex vortex structure on the volute outlet by numerical simulations and to
provide some physical insight into the control of unsteady flow field, rather than the performance of
fan and results for specific applications.

2. Experimental Test of Aerodynamic Performance for Multi-Blade Fan

2.1. Key Parameters of Multi-Blade Fan Model

The several important parameters of multi-blade fan are shown in Figure 1 and Table 1. Figure 1
shows the physical picture of the centrifugal fan, which includes a volute and an impeller. As illustrated
in Table 1, it is seen that the number of the impeller blade is 40, the impeller width (b) is 200 mm,
the impeller diameter (D2) is 150 mm, the angle of blade inlet (β1) is 90◦, the outlet angle of blade (β2)
is 27◦, respectively.
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Table 1. Design dimensions for the multi-blade fan.

Parameter Dimension

Inlet diameter of impeller (D1) 132 mm
Outlet diameter of impeller (D2) 150 mm

Width of impeller (b) 200 mm
Inlet angle of blade (β1) 90◦

Outlet angle of blade (β2) 27◦

Blade number 40

2.2. Laboratory Testing

The aerodynamics performance of the multi-blade fan was tested in the Zhejiang Yilida
aerodynamics laboratory. The aerodynamics performance of a smulti-blade fan is usually obtained
by total pressure Pt (Pa)-the flow rate of volume Q (m3/h). The total pressure is the sum of dynamic
pressure and static pressure. The total pressure of multi-blade fan is the difference between total
pressure at the inlet and outlet of fan, its expression is followed as:

Pt = Pst + Pd (1)

η =
Pt ×Q
1000N

(2)

where Pst denotes the static pressure, Pd denotes the dynamic pressure, η is the efficiency of total
pressure and N is the power. The aerodynamic performance test consists of negative pressure chamber,
the positive pressure chamber and gas tunnel. Figure 2 illustrates the experimental system, and Figure 3
describes the photograph of the negative pressure chamber in the laboratory schematic. Each air
chamber has four pressure taps which are located on the two side walls, the top surface and the ground
in the chamber. The results of performance test include the total pressure Pt, the total pressure efficiency
η. In this paper, the rated flow of multi-blade fan is 504 m3/h (Q = 504 m3/h), the flow coefficient is
ϕ = 0.79, and n = 1000 r/min.

ψ =
Pt

1
2ρu2

2

(3)

φ =
Q

π
4 D2

2u2

(4)

where Ψ is the total pressure coefficient and ϕ is the flow coefficient, respectively.
As shown in Figure 2, the flow rate was measured by the difference static pressure between the

pressure taps before and after the nozzle the nozzle. All the pressure were measured by FCO332
(pressure transmitter, East Sussex, UK). By measuring the power of multi-blade fan, the total pressure
efficiency of the multi-blade fan was obtained.
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3.1. Dynamic Model of Incompressible Fluid 

The computational fluid dynamics methods are based on the basic governing equations of fluid 
mechanics: continuous equation, momentum equation, and energy equation. The turbulence models 
of incompressible Reynolds-averaged Navier-Stokes (RANS) are solved by the finite volume method. 
The mass and kinetic equations for the internal flow in the multi-blade fan are followed as [22,23]: 

Figure 2. Sketch of the test installation. 1: Testing room, 2: Soundproof room, 3: Reflective wall,
4: Fan installation location, 5: Negative pressure chamber, 6: Positive pressure chamber, 7: Flow return
room, 8: Inlet duct, 9: Outlet duct, 10: Silencer, 11: Muffler spike, 12: Testing fan, 13 Auxiliary fan,
14 Flow adjustment device, 15: Multiple nozzles, 16: Chip muffler, 17: Pressure taps in front of nozzle,
18: Pressure taps position behind the nozzle, 19: Pressure taps, 20: Noise taps, 21: Pressure taps,
22: Noise taps.
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3. Governing Equations and Numerical Method

3.1. Dynamic Model of Incompressible Fluid

The computational fluid dynamics methods are based on the basic governing equations of fluid
mechanics: continuous equation, momentum equation, and energy equation. The turbulence models
of incompressible Reynolds-averaged Navier-Stokes (RANS) are solved by the finite volume method.
The mass and kinetic equations for the internal flow in the multi-blade fan are followed as [22,23]:

∂ρ

∂t
+

∂
∂xi

(ρui) = 0 (5)

∂ρui

∂t
+

∂
∂x j

(
ρuiu j

)
= −

∂P∗

∂xi
+

∂
∂x j

[
µe

(
∂ui
∂x j

+
∂u j

∂xi

)]
+ Si (6)

where ρ denotes the density of fluid, xi and xj are the components x, y, and z in the coordinate system
of Cartesian in corresponding directions, P* is the translation pressure, S is the sum of the volume
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force source terms, and µ is the dynamic viscosity coefficient. The formula of turbulence model
Re-normalization group (RNG) k-ε is given as [22]

∂(ρk)
∂t

+
∂
∂xi

(ρuik) =
∂
∂xi

[(
µ+

µt

σk

)
∂k
∂xi

]
+ Pk − ρε+ Pkb (7)

∂(ρε)

∂t
+

∂
∂xi

(ρuiε) =
∂
∂xi

[(
µ+

µt

σε

)
∂ε
∂xi

]
+
ε
k
(Cε1Pk −Cε2ρε+ Cε1Pεb) (8)

where Cε1 = 1.44, Cε2 = 1.92, σk = 1.0, σε = 1.3, Pεk, Pεb represent the energy terms generated by the
buoyancy, and Pk is used to generate the turbulent kinetic energy caused by viscous forces. The pressure
boundary condition is used for the inlet of multi-blade fan and the mass flow boundary condition is
implemented for the outlet of multi-blade fan. The upwind discretization is implemented in convection
terms and the schemes of central difference are implemented in terms of diffusion [23].

3.2. Grid Independence Verification

The grid independence verification is relatively essential to obtain the high accuracy of numerical
simulation and determining the amount of the calculation grid of the whole calculation area. Figure 4
shows the computational domain. Figure 4a illustrates two inlet domains, one volute domain,
one outlet domain, and a rotating impeller domain. Figure 4b illustrates coordinate and origin of the
impeller rotation. The size of every domain in Figure 4a should be presented here. The inlet boundary
condition is the static pressure boundary condition and the outlet is the flow rate boundary condition.
Different flow coefficients are obtained by varying the flow rate of outlet. A pair of dynamic and static
interfaces are used for data transfer between the rotating part (impeller) and non-rotating part (volute).
The Multiple Reference Frame (MRF) is used to set the rotating part (impeller). The rotating speed and
torque of impeller are implemented to obtain the simulation power of the multi-blade fan.

To verify the grid independence of numerical simulations, four models with different grid
resolutions, including 4.98 × 106, 7.40 × 106, 1.05 × 107, and 1.43 × 107, are implemented at flow rate
condition (Q = 321 m3/h). Figure 5 describes the relation between the total pressure and grid numbers.
It is clearly seen that the total pressure of numerical simulation approaches the experimental results
with the increment of the grids number. When the grid number reaches 1.05× 107, the relative difference
of total pressure between the numerical simulation results and the experimental results is only 1%,
which proves that the grid resolution is fine enough for numerical results. Finally, to consider the
accuracy and cost, a grid division method (topology method and grid node number setting) with a total
grid of 1.05 × 107 (the computational time is about 11.5 h with 20 processes) is implemented instead of
the 1.43 × 107 one (the computational time is about 24 h with 20 processes) in all numerical simulations.

Figure 6 shows the topological block structure and mesh region of the fan. The mesh density
is increased towards the walls. As the inside flow of impeller is the very complicated, the mesh of
impeller blade is refined in Figure 6a. The grid of volute region is refined in Figure 6b.
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4. Numerical Results and Some Discussions

In the following section, the complex internal flow fields of multi-blade fan will be presented and
discussed. The vortex structure between outlet channel and volute will be studied. The origins and
impacts of the complex flow structure on the volute outlet are further investigated.

4.1. Verification of Numerical Results

In order to prove the accuracy of numerical simulations, the reference model is used to study
the total pressure and the efficiency of total pressure at various rate of flow. Figure 7 describes the
comparison of numerical and experimental results about the total pressure and the efficiency of total
pressure. The red solid line denotes the experimental results and the black line represents the numerical
results, respectively. As described in Figure 7, it can be observed that the pressure coefficient gradually
decreases with increasing flow coefficient, the pressure coefficients of numerical simulations are
excellent consistent with that of experiment, and the total pressure efficiency of numerical simulations
well agree with the experimental results in a range of medium and large flow rates. The numerical
efficiency does not match the experimental results well at the low mass flow conditions. This mainly
due to the error of motor efficiency at low power condition. As illustrated in Figure 7, one clearly
observes that the total pressures of numerical simulations are in good agreement with the experimental
results, which demonstrates that the method of numerical simulation is reliable in this paper [24,25].
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The origins and impacts of the complex flow structure on the volute outlet are investigated.
In order to demonstrate the detail of vortex near volute outlet, the streamline diagram with different
flow coefficient will be presented and discussed in the following subsection.

4.2. Effect of Volute Outlet Vortex on Flow

Figure 8 shows the three-dimensional streamline distribution in the volute and the outlet of the
volute. As illustrated in Figure 8a, it is obviously observed that the streamline is equally divided
into two parts (backflow and outflow), where ϕ = 0.435 is a small flow condition, ϕ = 0.609 is a high
efficiency condition, and ϕ = 1.175 is a high-flow condition, respectively. As shown in Figure 8a, it is
clearly obtained that the flow field near the volute side wall of the multi-blade fan near the volute
exit is relatively chaotic, and an obvious vortex can be observed at small flow conditions. A large
area at the exit of the volute has a backflow phenomenon. From Figure 8a, it can be observed that
most of the airflow from the impeller exit does not leave the fan by the volute exit but flows back
to the volute through the volute. At this time, the airflow exits the volute and leaves the fan mainly
through a limited passage near the upper wall of the volute. As shown in Figure 8b, one can see that
a vortex appears in the junction between the volute exit and the fan outlet extension at high-efficiency
conditions. The vortex goes down to the volute and up to the volute. At the half-height position of the
exit, it is close to the volute side in the axial direction. Plotted in Figure 8c, at high flow conditions,
the vortex area at the exit of the volute is slightly smaller than that at higher efficiency conditions.
With increasing flow rate of fan, the volute exit flow rate is bound to increase, and the increasingly
volute exit air velocity compresses the volute exit vortex area. As shown in Figure 8b, one volute exit
vortex can be observed at the left and right side walls of the volute, and the two vortex structures are
similar analysis. At the flow point of high efficiency working condition of fan, a large area of vortex
structure appears in the exit of the volute. The analysis and study of this vortex structure are very
helpful to understand the flow optimization of the multi-blade fan.

In order to investigate the flow characteristics of the vortex at the outlet of the volute, the velocity
distribution of the impeller outlet is studied. Figure 9 illustrates the Line B-Outlet of the impeller.
Plotted in Figure 9, the ‘B-Outlet-Z25’ means “the line near blade trailing at the cross-section Z = 25 mm”
(where Z = 0 mm is located at the impeller center). The distribution position of 0◦ to 360◦ is illustrated
in Figure 9.

From Figures 10–17, all the simulation results are obtained at the high efficiency condition and
the flow coefficient (ϕ) is 0.609. Figure 10 illustrates the absolute velocity distribution of the line
‘B-Outlet-Z’. As illustrated in Figure 10, one can see that the fluctuation of velocity due to multiple
blades is very obvious at the area of 90◦ to 360◦. As described in Figure 10d, one can observe that the
absolute velocity at Z50 and Z75 is smaller than that of Z25, while the velocity at Z50 increases from 60◦

to 90◦. It is further demonstrated that the airflow near the center of the impeller is almost not affected
by the volute outlet vortex, but the flow from the Z50 to the side of the volute is greatly affected by the
volute outlet vortex. The flow is blocked in the area from Z50 to the side of the volute due to the big
volute outlet vortex. It is further obtained that the absolute velocity distribution with the increase of
line B-Outlet-Z, which reveals that the flow obstruction appears in the region from Z25 to the side of
the impeller. With the increase of Z, one can see that the flow obstruction is increasingly formed in
a range of Z25 to Z75, which indicates that the performance of multi-blade fan is increasingly affected.
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back-flow in of the volute. However, the air flow with a large axial velocity in the blade passage due 
to the pressure gradient, secondary flows are formed. Moreover, the back-flow is caused by the high 
static pressure in region II, which directly cause the appearance of the vortex between the impeller 
outlet and volute outlet. A stepped structure is generated and captured at the blade passage outlet 
due to the regional back flows. Then the volute outlet vortex in region III is generated due to the flow 
stepped structure and the mechanism is similar to the stepped vortex. However, the volute outlet 
vortex is more slender and inclined than the stepped vortex. 

Figure 10. Absolute velocity distribution on-line B-Outlet-Z: (a) B-Outlet-Z25; (b) B-Outlet-Z50;
(c) B-Outlet-Z75; (d) B-Outlet-(0◦–90◦).
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Interestingly, the flow turns 90 degrees from the volute inlet to the impeller outlet in multi-blade fan.
The blade parameters of the multi-blade fan have little change along the axial direction, which shows
that a large axial velocity before and after the airflow enters the blade flow channel (the velocity
direction is from the volute inlet to the impeller center). Figure 11 shows the streamline of section S
in multi-blade fan. As shown in Figure 11, some obvious secondary flows (region I) and back-flows
(region II) obviously occur in the volute inlet. The restriction of the volute walls prevent back-flow in
of the volute. However, the air flow with a large axial velocity in the blade passage due to the pressure
gradient, secondary flows are formed. Moreover, the back-flow is caused by the high static pressure in
region II, which directly cause the appearance of the vortex between the impeller outlet and volute
outlet. A stepped structure is generated and captured at the blade passage outlet due to the regional
back flows. Then the volute outlet vortex in region III is generated due to the flow stepped structure
and the mechanism is similar to the stepped vortex. However, the volute outlet vortex is more slender
and inclined than the stepped vortex.Processes 2019, 19, x FOR PEER REVIEW  17 of 21 
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Figure 12 displays the distribution of u and w of at blade passage inlet and outlet, where minus
w means that the velocity direction is from the volute inlet to the impeller center and c2 means the
linear velocity of impeller outlet, respectively. It can be seen that back-flow is at the outlet of blade
passage from 20◦ to 50◦ region (B-Outlet-Z75). As illustrated in Figure 12c,d, the axial velocity of the
airflow does not change much along the blade passage. The main reason for this phenomenon is that
the blade passage of the forward multi-blade fan is very short, the airflow passes through the blade
passage rapidly. It is further found that the large axial velocity appears when the air flow goes by
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the blade flow channel. Interestingly, the airflow is far away from the lobes near the inlet side of the
volute, and a significant backflow and step-like barrier structure appear in this area, which leads to the
appearance of the vortex at the volute outlet. The vortex at the volute outlet causes the airflow of the
impeller close to the volute to return to the blade channel. The secondary flow close to the impeller
flows from the central to the sides of the volute.Processes 2019, 19, x FOR PEER REVIEW  18 of 21 
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4.3. Flow in the Volute

The flow in the volute is obstructed by the volute outlet vortex. Figure 13 illustrates the staggered
flow in the volute. As illustrated in Figure 13, it is obviously observed that the airflow near the upper
wall of the volute (solid line) flows from the center to both sides of the volute, while the flow near the
impeller (dashed line) shows the opposite trend. This phenomenon is due to the large axial velocity of
the flow in blade passage and the low velocity in volute outlet vortex.
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As shown in Figure 14a, the flow in the volute is divided into four parts by three curves. The curves
are located in the volute between the volute and the impeller. The axial position of the curves are
shown in Figure 14b.

Figure 15 describes the distribution of w along the line in volute. Chart Count means that the
line segment is divided into 100 equal parts, where 0 is near the exit of the volute and 100 is near the
tongue. The velocity w at the Z25 section is smaller than that at the Z75, and there is no great difference
in the velocity direction. This shows that the vortex near volute outlet region keeps the axial velocity
direction of the flow near the volute tongue consistent.Processes 2019, 19, x FOR PEER REVIEW  19 of 21 
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4.4. Outlet Extension Flow Structure

Figure 16 shows the velocity vector from volute outlet to the outlet extension of fan. There are
three sections in the outlet extension where X = 100 (X100) means the section is 100 mm away from the
volute outlet. As described in Figure 16c, one can see that a number of backflows occur from X = 0 to
X = 50 at 10% to 40% height, and the flow from top to bottom can be seen at X = 0 to X100. It is also
found that the flow with velocity component in the Y-axis direction (v) is blocked by the volute outlet
vortex in Figure 16c. However, it is observed that not all positions have a large v-component velocity
at the X = 0 in Figure 16d. It is obviously observed that the air flow converges towards the center of the
passage below 50% height in Figure 16e. This mainly indicates that the effect of axial velocity has been
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continuous from impeller to the volute, which causes the shear friction. It is further obtained that the
backflow decreases gradually with increasing x near the volute outlet.

Figure 17 displays the velocity distribution on the line of X = 50 and X = 100. As illustrated
in Figure 17, it is obviously observed that the back-flow below occurs at X = 0 50% of the volute
outlet height, however, the back-flow disappears at the X = 100. It can be observed that the velocity
distribution at 90% height is relatively uniform, but from 70% height all the way to the bottom of the
outlet extension section, the air flow is uneven. The velocity at both ends of the line are well consistent
with the higher speed zone in the middle of the line segment, which indicates that the volute outlet
vortexes are not close to the wall of the extended section. The flow is not the farther away from the
volute outlet the better, but the entire area where the vortex outlet vortex exists, the air flow is very
chaotic due to the existence of the vortex outlet vortex.

5. Conclusions

In this paper, the complex vortex structure at the volute outlet of a multi-blade fan is investigated
by numerical simulation. It is clearly observed that the vortex structure between outlet channel and
volute. The effect of channel on the internal flow and performance of multi-blade fan cannot be ignored.
The main conclusions are as follows:

First of all, it can be clearly obtained that the streamlines are divided into two parts (backflow and
outflow) at the volute outlet. The air flow has a large axial velocity before and after entering the blade
flow channel. The airflow is far away from the lobes near the inlet side of volute, and an obvious
backflow and step-like barrier structure mainly occur in this area, which leads to the appearance of the
vortex at the outlet of the volute.

In addition, the flow vortex at the outlet of the volute causes the airflow of the impeller close to
the volute to return to the blade channel. The secondary flow close to the impeller flows from the
center to the sides of the volute.

What’s more, it can be observed that the air flow converges towards the center of the passage
below 50% height. This mainly indicates that the effect of axial velocity is continuous from impeller to
the volute and causes the shear friction. It is further obtained that the backflow gradually decreases
with increasing x near the volute outlet.

Finally, the origins and effects of the complex flow structure on the volute outlet are mainly
investigated in this work. To benefit more from the vortex structure on the volute outlet, the volute
and tongue can be further studied to achieve better flow quality and higher aerodynamic performance
of multi-blade centrifugal fan.
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