
processes

Article

Using PSO Algorithm to Compensate Power Loss Due
to the Aeroelastic Effect of the Wind Turbine Blade

Ying Zhao 1,2,3, Caicai Liao 1,4,5,*, Zhiwen Qin 1,3,4 and Ke Yang 1,3,4

1 Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
zhaoyingiet@163.com (Y.Z.); qinzhiwen@iet.cn (Z.Q.); yangke@iet.cn (K.Y.)

2 University of Chinese Academy of Sciences, Beijing 100190, China
3 Key Laboratory of Wind Energy Utilization, Chinese Academy of Sciences, Beijing 100190, China
4 National Laboratory of Wind Turbine Blade Research & Development Center, Beijing 100190, China
5 Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian 116023, China
* Correspondence: liaocaicai@iet.cn; Tel.: +86-134-2620-2817

Received: 31 July 2019; Accepted: 12 September 2019; Published: 18 September 2019
����������
�������

Abstract: Power loss due to the aeroelastic effect of the blade is becoming an important problem
of large-scale blade design. Prior work has already employed the pretwisting method to deal with
this problem and obtained some good results at reference wind speed. The aim of this study was to
compensate for the power loss for all of the wind speeds by using the pretwisting method. Therefore,
we developed an aeroelastic coupling optimization model, which takes the pretwist angles along the
blade as free variables, the maximum AEP (annual energy production) as the optimal object, and the
smooth of the twist distribution as one of the constraint conditions. In this optimization model, a PSO
(particle swarm optimization) algorithm is used and combined with the BEM-3DFEM (blade element
momentum—three-dimensional finite element method) model. Then, the optimization model was
compared with an iteration method, which was recently developed by another study and can well
compensate the power loss at reference wind speed. By a design test, we found that the power loss
can be reduced by pretwisting the origin blade, whether using the optimization model or the iteration
method. Moreover, the optimization model has better ability than the iteration method to compensate
the power loss with lower thrust coefficient while keeping the twist distribution smooth.
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1. Introduction

In modern times, in order to reduce environmental contamination and carbon emission,
clean energy such as wind energy are quickly developing. To get more energy from wind energy,
many researchers have done lots of works to improve the power output. These works include
aerodynamic optimization [1,2], adding flow control devices like vortex generators (VGs) and gurney
flaps (GFs) on the blade [3–5], control rules design [6,7] and so on. Besides, some researchers have
even applied intelligent algorithms such as reinforcement learning (RL) [6] and evolutionary strategy
algorithm [7] to increase aerodynamic performance. These studies are very useful for raising the ratio
of wind energy utilization. However, power loss due to the aeroelastic effect is not dedicatedly studied.

Practically, with the increasing unit capacity of wind turbines, blades become longer and softer.
Under the action of the different kinds of loads, especially aerodynamic forces, the flexible blade
generates non-negligible deflections. These deflections, in turn, change the aerodynamic loads on
the blade. Particularly, the induced twist due to the aeroelastic effect has a significant impact on the
load and the power performance of the blade. Many researchers have studied the aeroelastic effect
and found that an induced twist would not only reduce the blade load, but also decrease the power
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output [8–12]. This phenomenon is contrary to design objectives, one of which is to capture as much
wind energy as possible. To deal with this problem, Lobitz et al. [9] suggested compensating the
power loss by pretwisting the blade to adjust for coupling-induced twist. Lee et al. [11] also thought
a pretwisting design of blade geometry could provide power performance superior to that of the
origin blade after they found that the power loss was more than 13% in some wind speeds. Therefore,
understanding how to obtain a suitable pretwist angle distribution along the blade is very important
to output the maximum power. Recently, Stäblein et al. [8] presented an iteration procedure to get
the pretwist angle distribution at specific wind speed. It can efficiently increase the power at the
selected wind speed and make it close to the power without considering the aeroelastic effect. However,
the power performances at many other wind speeds are not taken into account. In fact, the induced
twist distribution changes with the operational state. This pretwist angle distribution calculated at one
wind speed may not suitable for other wind speeds. Hence, it cannot get the maximum annual energy
production (AEP), and it even reduces the AEP. Besides, the smooth of the blade profile, which makes
the blade feasible in practical, has not been considered yet. Generally, the pretwist angle varies from
the blade root to the blade tip. If the pretwist angle distribution is not restrained, after pretwisting the
origin blade using these pretwist angles, the twist distribution of the blade will become out of control,
and the blade may get an irregular aerodynamic profile.

Therefore, the aim of this study was to compensate for the power loss for all the wind
speeds by using the pretwisting method. Firstly, an aeroelastic coupling optimization model,
combining the PSO (particle swarm optimization) algorithm with the BEM-3DFEM (blade element
momentum—three-dimensional finite element method) model, was built and verified. In this model,
we considered the pretwist angle distribution as free variables, taking the maximum AEP (annual
energy production) as the optimal object and the smooth of the twist distribution as one of the constraint
conditions. Secondly, the optimization model was applied to a 100 kW wind turbine and compared
with an iteration method [8], which was recently developed by another study and can well compensate
the power loss at reference wind speed. Thirdly, we carried out some analysis and discussion about
the results.

2. Aeroelastic Model

In this section, a steady-state aeroelastic coupling model, called the BEM-3DFEM (blade element
momentum—three-dimensional finite element method) model, was developed to calculate the power
output during the normal operating state.

2.1. Aerodynamic Model and Verification

There are many methods for calculating the aerodynamic performance of a wind turbine, such as the
BEM (blade element momentum) method [13,14], the vortex model [14,15], and the CFD (computational
fluid dynamics) model [15,16]. Among them, the BEM method is the most widely used, due to its
superior comprehensive performance on the computation cost and simulation precision. In this
paper, the BEM model, considering the tip loss and hub loss, was used to get the steady aerodynamic
performance of the blade. This aerodynamic model was programmed by using the MATLAB language
(Matlab R2012a, The MathWorks, Inc., Novi, MI, USA, 2012). To certificate this procedure, it was used
to calculate the aerodynamic performance of the NREL (natioanal renewable energy laboratory) phase
VI wind turbine (NREL, Golden, CO, USA) [17,18]. The results of this BEM procedure, compared with
the experiment results and the results using GH Bladed software [19], are shown in Figure 1. As can be
seen, the power coefficients and the powers from the above three methods are close. So, this BEM
procedure can be used to evaluate the aerodynamic performance of the wind turbine blade.
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Figure 1. Aerodynamic performance of the NREL phase VI wind turbine from different methods: (a) 

Power coefficient changing with tip speed ratio; (b) power changing with wind speed. Note: “BEM” 

stands for the results obtained from the BEM procedure; ”experiment” stands for the measurement 

results in ref [8]; “bladed” stands for the results by the use of GH Bladed software. 
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models can be roughly categorized into three groups. They are FEM (finite element method) model, 

the multi-body model, and the 1D (one-dimensional) equivalent beam model [11,15,20]. Compared 

with the other two models, the 3D (three-dimensional) FEM model has higher computational 

precision. This is because it can correctly describe the varieties of the layers in detail. Hence, the 

3DFEM model was applied in this article to ensure the accuracy of structure deform analysis. The 

blade was built by shell elements, which are suitable to characterize composite laminates and 

sandwich structures (see Figure 2). To help the datum transfer between aerodynamics and the 

structure model, the structure model was programmed by APDL (ANSYS Parametric Design 

Language), which includes blade parametric model, deformation calculating, and results processing. 

To get an accurate result, we can see from Figure 2 that the flap-wise and edge-wise direction loads 

were distributed on the nodes of spar caps to avoid stress concentration. Because the root stiffnesses 

Figure 1. Aerodynamic performance of the NREL phase VI wind turbine from different methods:
(a) Power coefficient changing with tip speed ratio; (b) power changing with wind speed. Note: “BEM”
stands for the results obtained from the BEM procedure; “experiment” stands for the measurement
results in ref [8]; “bladed” stands for the results by the use of GH Bladed software.

2.2. Structure Model and Verification

There are also lots of structure models for simulating the blade structure properties. These models
can be roughly categorized into three groups. They are FEM (finite element method) model,
the multi-body model, and the 1D (one-dimensional) equivalent beam model [11,15,20]. Compared with
the other two models, the 3D (three-dimensional) FEM model has higher computational precision.
This is because it can correctly describe the varieties of the layers in detail. Hence, the 3DFEM model
was applied in this article to ensure the accuracy of structure deform analysis. The blade was built by
shell elements, which are suitable to characterize composite laminates and sandwich structures (see
Figure 2). To help the datum transfer between aerodynamics and the structure model, the structure
model was programmed by APDL (ANSYS Parametric Design Language), which includes blade
parametric model, deformation calculating, and results processing. To get an accurate result, we can
see from Figure 2 that the flap-wise and edge-wise direction loads were distributed on the nodes of
spar caps to avoid stress concentration. Because the root stiffnesses of the blade are strong enough to
endure the blade loads and moments, the deformations at the root are very small. The six degrees of
freedom at the blade root is fixed to simply the analysis.
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Figure 2. The 3DFEM model of a 100 kW blade: (a) Blade laminates in different colors; (b) meshes and
loading of the blade model.

To verify this FEM procedure, it was also applied to the 100 kW wind turbine blade, which is
subjected to a full-scale static test [21]. The numerical simulation results by using this FEM procedure,
together with the test results, are shown in Table 1. We can see the tip deflections are very close.
It indicates that this 3DFEM model has superior computational accuracy and can be applied to build
the aeroelastic model.

Table 1. Tip deflections of a 100 kW blade.

Experiment (m) FEM (m) Relative Error (%)

1.369 1.330 2.8

2.3. Building the BEM-3DFEM Model

The aeroelastic process is very complicated. To analyze it, many coupling models have been
developed [22–24]. The weak coupling method, due to its advantage of keeping the independence
of the aerodynamic model and structure model and its expansibility, has been widely used in
fluid-structure coupling analysis cases. In this paper, based on the above BEM method and 3DFEM
model, an aeroelastic coupling model, named as BEM-3DFEM, was established by using a weak
coupling method. The calculation process of the BEM-3DFEM is shown in Figure 3. During the
calculating process, the loads were firstly calculated by the BEM method and loaded on the 3DFEM
model of the blade to get the deflections of the blade. Then, the induced twist of every section used
in BEM were gotten by interpolating the information of the nodes nearby. After that, the induced
twist of every section were used in BEM computation to change the loads on the structure model. So,
the deformations of the blade also change by the loads. If the difference of the deformation between
two adjacent iterations, expressed as ∆, is less than the tolerance ∆a, the analysis process ends. At the
same time, the final pretwist angle distribution is obtained. At this point, a steady aeroelastic analysis
has been done.
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Figure 3. Flow chart of the BEM-3DFEM model.

3. An Aeroelastic Coupling Optimization Model

3.1. Objective Function

The power output is one of the most important properties of the wind turbine, so the maximum
AEP considering the aeroelastic effect was selected as the objective function. It is shown as follows:

max{AEP} = max{Nh

∫ vout

vin

P(v) · f (v)dv}

where vin and vout are cut-in and cut-out wind speed, respectively; Nh is the number of hours in a year;
P(v) is the power of the wind turbine at the wind speed of v, taking the aeroelastic effect into account;
and f (v) is the probability of the wind speed of v in a year.

In this article, the Rayleigh distribution with the average wind speed of 8 m/s in a year was used
to calculate the f (v).

3.2. Free Variables

The twist plays an important role in the aerodynamic design of a blade. Its change can reflect the
aeroelastic effect. Hence, in this optimization model, pretwist angles at different cross-sections of the
blade were selected as free variables, which are named as xi(i = 1, 2, 3 · · · n), where xi is the pretwist
angle at section i and n is the number of the sections used to compute the power.

After getting the xi, the origin twist at the section i is pretwisted by xi.

3.3. Constraints

In this optimization model, to achieve the excellent aerodynamic performance of the blade,
some constraints about the xi are given.

Firstly, on the one hand, xi should not be too big. This is because a big xi makes the attack angle of
the section i exceed the stall attack angle. On the other hand, xi should not be too small. This leads to
the aerodynamic twist becoming bigger than the allowed value, which is limited by the production
and transportation. So, it is expressed as follows:

Lbi − c ≤ xi ≤ Ubi + c
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where Lbi is the minimum induced twist from computing the twist change at the different wind
speed, considering the aeroelastic effect for the origin blade; Ubi is the maximum induced twist from
computing the twist change at the different wind speed, considering the aeroelastic effect for the origin
blade; and c is a constant value, which is used to expand the searching range of xi. In this article, it was
decided by the difference of the Ubi to the stall attack angle at section i.

Secondly, to keep the smoothness of the aerodynamic shape of the blade, the twist distribution
along the blade after pretwisting should meet a curve of nine times polynomial. It is written as:

xi0 − xi = a0 + a1ri + a2ri
2 + a3ri

3 + a4ri
4 + a5ri

5 + a6ri
6 + a7ri

7 + a8ri
8 + a9ri

9

where xi0 is the twist at the section i of the origin blade; ri corresponds to the location of the section i
span-wise from root to tip; and ai(i = 0, 1, · · · , 9) is the coefficient, which is gotten by fitting the twist
at different sections after pretwisting.

3.4. Optimization Process

The flow chart of the aeroelastic coupling optimization model to get the maximum AEP, as well as
the optimal pretwist angle-distribution, is given in Figure 4.
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During the optimization, we generated the initial pretwist angle distribution using the PSO
algorithm at first. After checking the constraints about the pretwist angle, we obtained a series of
smooth twist distributions for different blades. Then, we used the BEM-3DFEM to evaluate the power
performance at different wind speeds by considering the aeroelastic effect. The maximum AEP was
gotten at the same probability distribution of annual wind speed. With the increase of iteration
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number, more suitable pretwist angle distributions were generated using the PSO algorithm [25–28].
Besides, the AEP was calculated again to find better results. While the iteration number was equal to
the maximum iteration number M, the optimum AEP, as well as the corresponding pretwist angle
distribution, were output.

Therefore, the pretwist angle distribution changed in every iteration by using a linear change
inertia weight PSO algorithm. In this way, the attack angle of the section increased in most wind
speeds. The power loss due to the aeroelastic influence was made up.

4. Results & Discussion

In this paper, a 100 kW wind turbine blade was analyzed using the above aeroelastic coupling
optimization model to compensate the power loss due to the aeroelastic effect. It is a field test wind
turbine operated by National Energy Wind Turbine Blade R&D Center and located in Zhangbei County,
China. It is also a VSVP (variable speed variable pitch) wind turbine, like the large scale wind turbines.
So, the power under the rated wind speed is mainly studied. Besides, the induced twists of the blade
are small due to the relatively large stiffness of the blade. A high precision model, especially the
structure model, is needed to simulate the deflection of the blade. Fortunately, the BEM-3DFEM
model can efficiently reflect the aeroelastic influence of this blade because it simulates the blade layers
in detail.

4.1. Pre-Assigned Variables

During the computing process, some of the parameters were fixed. They are as follows:

1. PSO algorithm, such as inertial weight, accelerating factors;
2. Aerodynamic profile, such as chord distribution, twist distribution, relative thickness distribution;
3. Structure layers, such as the number, size, location, materials; and
4. Some other parameters about the wind turbine, such as the hub height, hub radius, cut-in wind

speed, cut-out wind speed, rated wind speed.

Some typical parameters among them are given in Table 2. In Table 2, the first six parameters
were used in the PSO algorithm. The inertial weights and accelerating factors were selected according
to the Ref. [26–28]. The maximum number of iterations and number of individuals were relatively
small to reduce the calculating time due to the high computing cost of FEM analysis. The 7th to
10th parameters in this table were used to describe the 100 kW wind turbine. So, their values were
fixed. The last parameter was used for evaluating the convergence of the steady aeroelastic analysis.
Its value was small enough for 100 kW wind turbine to get the correct blade deflection. However,
we should be concerned; this value cannot be too small as this would lead to the non-convergence of
the FEM-3DFEM analysis. In addition, this value changes for different wind turbines.

Table 2. Some typical parameters used in this optimization model.

Parameter Names Values

Maximum inertial weight 1
Minimum inertial weight 0

accelerating factors c1 1
accelerating factors c2 1

Maximum number of iterations M 25
Number of individuals 22

Number of the blade sections 16
Radius of the rotor (m) 10.292

Hub height (m) 26.2
Number of blades 3

∆a 1.00 × 10−6
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4.2. Results and Analysis

To analyze the benefits of the aeroelastic coupling optimization model, we applied the optimization
model and the iteration method in Ref. [8] to the origin blade. Two new blades were gotten, and named
as the PSO blade and the iteration blade. The AEP under four different cases was computed. The cases
are as follows:

1. The origin blade without considering the aeroelastic coupling effect, which is represented as ucpl.;
2. The origin blade considering the aeroelastic coupling effect, which is represented as cpl.;
3. The PSO blade considering the aeroelastic effect, which is represented as PSO + cpl.; and
4. The iteration blade considering the aeroelastic effect, which is represented as pret. + cpl.

When the AEP was calculated, wind speeds from 4 to 25 m/s with an interval of 1 m/s, as well as
the rated wind speed of 10.6 m/s, were used. However, only wind speeds from 4 to 10.6 m/s consider
the aeroelastic effect, because the blade was used on a VSVP wind turbine. Besides, for the different
reference wind speeds, different pretwisting angle distributions were gotten using the iteration method.
This led to different AEP. In this article, lots of AEP using the iteration method were calculated by
varying the reference wind speed from 4 to 10.6 m/s. Then, the maximum value of them, with reference
wind speed of 10 m/s, was selected as the result of the iteration blade.

The twist distribution along the blade for the origin blade, the PSO blade, and the iteration blade
are given in Figure 5. The relative difference in AEP for different cases compared to the ucpl. case
is shown in Figure 6. We can see that the AEP of the origin blade decreases due to the aeroelastic
effect. This feature is the same as the result of other researches [8–11]. In addition, the AEP of the PSO
blade and the iteration blade are higher than that of the origin blade considering the aeroelastic effect.
It indicates that the optimization model and the iteration method can both compensate the power
loss and make the AEP close to that of the ucpl. case. Based on the varieties of the twist distribution
in Figure 5, we can conclude that reducing the twists of the blade, especially that of the outboard
part of the blade, leads to the increase of AEP to some extent. By comparing the twist distribution
of the PSO blade with that of the iteration blade, it indicates that the AEP does not continuously
rise while the twist keeps going down. This is because the ratio of the lift to drag, as well as the lift
coefficient, cannot continue to increase while the attack angle gets bigger. So, there exists an optimal
twist distribution to get the maximum AEP under the consideration of the aeroelastic influence.
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Figure 6. The relative difference in annual energy production (AEP) compared to the ucpl. Case.

From Figures 5 and 6, we can see that by using the optimization model, the PSO blade gets the
maximum AEP and its twist distribution is very smooth. It shows that the optimization model is more
efficient to compensate for power loss than the iteration method. Therefore, it gives us a good choice
to improve the power output of the blade, while the aeroelastic effect cannot be negligible.

Figures 7 and 8 illustrate the relative difference in power and thrust coefficient compared to the
cpl. Case, respectively. From Figure 7, we can see, in the case of considering the aeroelastic effect,
the powers of the PSO blade and the iteration blade are higher than that of the origin blade at high
wind speed. However, the comparison results about the power are converse at low wind speed. It can
be concluded that the enhancements of the powers at high wind speed play the leading role in raising
the AEP of the PSO blade and the iteration blade. This may be caused by the stronger aeroelastic
coupling at high wind speed.
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Figure 8 shows the increase of the thrust coefficients of the PSO blade and the iteration blade at
every wind speed. This is mainly due to the increase of the attack angle by pretwisting the origin blade.
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In the future design, this should be a constraint condition for getting the maximum AEP. By comparing
the PSO blade with the iteration blade, we can find that the thrust coefficients of the PSO blade are less
than that of the iteration blade, while the powers of the PSO blade are larger than that of the iteration
blade, at most of the wind speeds. This is mainly because the attack angles and the inflow angles of
different sections change at the same time after pretwisting. However, the optimization model can help
us to find out the more suitable values for them. This is a good advantage of the optimization model.

Certainly, the above result are based on the steady aeroelastic analysis. This is because we just
applied the steady BEM model in the BEM-3DFEM. For the evaluation of AEP, this steady model is
suitable. However, the wind turbine always operates in unsteady wind conditions. This needs an
unsteady aerodynamic model to simulate the aerodynamic force. Hence, to calculate the aeroelastic
loads in unsteady conditions, the steady BEM model needs to be corrected by using the dynamic stall
model, or even replaced by the vortex method or unsteady CFD model. The BEM-3DFEM model will
be improved in the future to compute the effect of the PSO blade under turbulence wind.
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5. Conclusions

In this article, to get the maximum AEP and the optimal pretwist angle distribution, an aeroelastic
coupling optimization model, combining the PSO algorithm with the BEM-3DFEM model, was built to
compensate power loss due to the aeroelastic effect.

Then, this aeroelastic coupling optimization model was applied to a 100 kW wind turbine blade
to reduce the power loss. The iteration method developed to solve this problem from Ref. [8] was also
used for the same blade. Two new blades with different aerodynamic profiles were gotten, respectively.
After that, different aerodynamic properties for these two new blades, as well as the origin blade,
were calculated and compared.

It is shown that the AEP of the origin blade reduces due to the aeroelastic effect. This feature is
the same as the result of other researches [8–11]. In addition, the AEP of the origin blade with the
aeroelastic effect can be improved by pretwisting the origin blade, whether using the aeroelastic coupling
optimization model or the iteration method. Compared with the iteration method, the optimization
model is more efficient to compensate for the power loss, with a lower thrust coefficient while keeping
the twist distribution smooth. Therefore, it gives us a good choice to improve the power output of the
origin blade, while the aeroelastic effect cannot be negligible.

According to the results, the enhancements of the powers at high wind speed play the leading role
in raising the AEP for both the PSO blade and the iteration blade. This may be caused by the stronger
aeroelastic process at high wind speed. So, we can conclude that the improvement of the AEP is more
obvious when the wind turbine is used in a better wind resource area. However, the thrust coefficients
increase after pretwisting the origin blade, since the attack angles enlarge. Hence, to avoid the thrust of
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the blade exceeding the allowable value, the thrust coefficient should be taken as a constraint condition
while getting the maximum AEP in the future.

Besides, the results of compensating for the power loss on the 100 kW wind turbine blade are
relatively small. This may be because the aeroelastic effect of the 100 kW wind turbine blade is weak.
To further certify this optimization model, it will be used on some large-scale wind turbines such
as the NREL 5MW reference wind turbine and the DTU (Danmarks Tekniske Universitet) 10MW
reference wind turbine. Certainly, this article focuses on steady aeroelastic analysis. This is because
we just applied the steady BEM model in the BEM-3DFEM. To simulate aeroelastic loads in unsteady
conditions, the steady BEM model needs to be corrected by using the dynamic stall model, or replaced
by the vortex method or even the unsteady CFD model. This BEM-3DFEM model will be improved in
the future to compute the effect of the PSO blade under turbulence wind.
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