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Abstract: The ecological efficiency (EE) of the remanufacturing process occupies an important
position in the whole index system of remanufacturing because it will directly affect the economic and
environmental benefits of remanufacturing. Therefore, in order to study the EE of the remanufacturing
process, a method is proposed to optimize and evaluate the EE of the remanufacturing process. In this
method, firstly, the original remanufacturing sub-schemes of used components are designed according
to the extracted fault characteristics; secondly, a set of optional process schemes are integrated by
using directed graph (DG) to reduce the process schemes; thirdly, the objective function of EE is
established, and then an ant colony algorithm with elite strategy (ES-ACO) is proposed to optimize the
process schemes. After obtaining the optimal value of EE, the quality coefficient of used components
can be calculated, and then numerical simulations (NS) are used to analyze the correlation between
the quality coefficient and the optimized EE, after that, polynomial function fitting (PFF) is applied to
construct the evaluation model of EE oriented to the quality coefficient, then, the evaluation model is
utilized to analyze the range of quality coefficient of used components suitable for remanufacturing
under cost constraints. Finally, the feasibility of this method is verified by the example of the used
lathe spindle remanufacturing; and the case study shows that in the optimization phase, ES-ACO can
not only optimize the process schemes but also has better performance than ACO; in the evaluation
stage, the probability of deviation of the evaluation function established by using PFF is 5%, meeting
the small probability event. (i.e., the occurrence of very low-frequency events), that is, the accuracy of
the evaluation meets the requirements.

Keywords: remanufacturing; ecological efficiency; process optimization; evaluation

1. Introduction

At present, more than 60% of the traditional old machine tools have been used for more than
10 years in China. Eighty percent of the in-service construction machinery has exceeded their shelf life
and about 800 million tons of solid waste are generated every year [1]. Since remanufacturing can
maximize the development and utilization of the value contained in waste resources and reduce the
environmental hazards of plenty of scrapped products, it has aroused widespread concern in academia
and relevant industry.

The traditional remanufacturing process was more concerned about whether the used components
can produce more economic benefits through remanufacturing [2–5]. However, as the ecological
problems become more and more serious in China, simply evaluating the remanufacturing process with
the goal of economic benefits does not meet the requirements of ecological civilization construction.
Although the literature [6–8] achieved the goal of simultaneously optimizing the economic benefits
and environmental benefits of remanufacturing through multi-objective optimization, they used the
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expert scoring method when dealing with multi-objective functions, which undoubtedly had a great
impact on the objectivity of remanufacturing system. So is there a single goal of remanufacturing
that can take into account both economic benefits and environmental impacts? The basic principle of
remanufacturing ecological efficiency (EE) was to balance the economic benefits and environmental
impacts, and effectively integrate the sustainable development goals on the macro scale into the
development planning and management of micro (such as enterprises) and meso (such as industry) [9].
Hence, if remanufacturing EE is set as the research goal, it can not only avoid the subjectivity of
multi-objectives, but also consider remanufacturing economic and environmental benefits at the
same time.

Based on the importance of remanufacturing EE research, many scholars have studied it at
different levels. Literature [10] found that the remanufacturing process was more eco-efficient than the
manufacturing process; Huisman et al. proposed a newly developed concept of EE, which took into
account a series of technical, logistics, economic and policy issues [11]; Quariguasi-Frota-Neto et al.
investigated whether remanufacturing will reduce environmental impact by analyzing the relative EE
of the remanufacturing of personal computers and mobile phones [12]. Deng et al. identified the key
factors affecting the EE of remanufacturing based on the theory of fuzzy DEMATEL (decision making
trial and evaluation laboratory) [13]. Liu et al. established a competition decision model based on EE
and considered that the remanufacturer, with a cost advantage, can enjoy a lower product price and a
higher manufacturing profit [14].

There was no doubt that these scholars have made useful attempts to study the EE of
remanufacturing, such as the fuzzy DEMATEL theory, competitive decision model, etc. But the
literature did not clearly define, quantify and evaluate the remanufacturing EE, nor use it as an
evaluation index to guide the remanufacturing process schemes optimization. In fact, compared with
the previous qualitative analysis of EE, the quantification, evaluation and optimization of EE play a
decisive role in maximizing the EE of enterprises, because it directly affects the reconditioning process
of remanufacturing. Based on this, the EE of the remanufacturing process is studied from two aspects
of optimization and evaluation.

In the optimization stage, the EE of remanufacturing is defined and quantified firstly; secondly, the
optional process schemes are designed by fault characteristics analysis and directed graph (DG), and
then the process scheme with the optimal EE is obtained by using a suitable algorithm. At present, ant
colony algorithm (ACO) is widely used in the remanufacturing process scheme optimization. Compared
with other optimization algorithms, ACO has the advantages of self-organization, positive feedback
and robustness. For example, in literature [15], two ACOs were used to solve the displacement
flow shop scheduling problem with the goal of minimizing the completion time. Su et al. used
ACO to optimize the assembly model for the remanufacturing of construction machinery [16]. Ma
et al. used ACO to solve the problem of remanufacturing mixed economic batches with limited
inventory capabilities [17]. Undoubtedly, these studies have made valuable attempts to apply ACO to
single-objective optimization, but as a global optimization algorithm, ACO also has some shortcomings,
such as long search time, being trapped in a local optimum and the stagnation phenomenon. In order
to overcome these shortcomings, elite ant strategy is introduced to form a new algorithm (ES-ACO).
ES-ACO introduces elite ant strategy in the update pheromone phase of ACO. This strategy can
adjust the pheromone concentration of the algorithm to enhance the global search ability of the
algorithm, which makes the algorithm more advantageous in solving quality and iteration speed, such
as shortening the search time, effectively avoiding the occurrence of local optimum and stagnation.
In view of these theoretical merits of ES-ACO, ES-ACO is applied as the algorithm for the process
scheme optimization. At the same time, in order to demonstrate the advantages of ES-ACO, ACO is
set as a comparison algorithm to detect the performance of ES-ACO.

In the evaluation stage, the quality coefficient of the used components is calculated based on the
fault characteristics information, and then the evaluation model of the optimized EE oriented to the
quality coefficient is constructed by numerical simulations (NS) and polynomial function fitting (PFF).
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At the same time, the cost factor is considered to obtain the quality range of the used components that
can be remanufactured.

From the previous studies, it can be found that one of the difficulties in the study of the EE of
the remanufacturing process is the lack of a reasonable method, which can optimize and evaluate
EE. There are four following innovations in this paper: (1) Designing alternative process schemes.
The initial process sub-schemes are generated based on the fault characteristics, and then a set of
process schemes are integrated by DG. (2) Using ES-ACO to optimize single objective function. The
objective function of EE is established, and then ES-ACO is used to find the process scheme with the
optimal EE. (3) Correlation analysis. The correlation between quality coefficient and the optimized
EE is analyzed by using NS. (4) Polynomial function fitting. The functional relationship between the
quality coefficient and the optimized EE is established, and then the quality range of used components
suitable for remanufacturing under cost constraints is determined.

2. Theoretical Framework for Research on Remanufacturing Process EE

The purpose of the research on the EE of the remanufacturing process is to optimize and evaluate
the EE of the remanufacturing process. The theoretical framework is shown in Figure 1 below.
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Figure 1. The theoretical framework for the study of the remanufacturing process for ecological
efficiency (EE).

According to Figure 1, the research on the EE of the remanufacturing process can be divided into
two parts: (1) Optimization of EE for the remanufacturing reconditioning process. (2) Constructing an
evaluation model of the optimized EE.

2.1. Remanufacturing EE Optimization Study Oriented to the Remanufacturing Reconditioning Process

This section is divided into four parts: (1) Generation of initial process sub-schemes; (2) design
of optional remanufacturing process schemes; (3) establishment of optimization objective function
and constraint function; and (4) obtaining the process scheme with the optimal EE by optimizing the
process schemes.

2.1.1. Generation of Initial Process Sub-Schemes Based on Fault Characteristics

After the used components have been cleaned, engineers and technicians can use relevant
instruments to obtain the fault characteristics of the used components. After obtaining the fault
characteristic information of the used components, the evaluation information shown in Table 1
below can be used to determine the initial reconditioning process sub-plans of the used components.
For example, if the used component has the following three fault characteristics (wear λ = 0.8 mm,
corrosion δ = 0.05 mm, deformation ω = 0.015 mm), then the initial process sub-plans of the
used component are grinding→cold welding→electroplating, slotting→grinding→mending and heat
treatment→straightening→annealing.
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Table 1. Failure characteristics evaluation information of used components [18].

Damage Forms Damage Conditions Damage Degree
Evaluation Reconditioning Process Schemes

Abrasion
0 < λ < 0.6 mm Slight Grinding→electroplating

0.6 mm ≤ λ < 2.0 mm Medium Grinding→cold welding→electroplating
λ ≥ 2.0 mm Serious Direct replacement

Corrosion
0 < δ < 0.1 mm Slight Slotting→grinding→mending

0.1 mm ≤ δ < 0.2 mm Medium Slotting→accurate grinding→cold welding
δ ≥ 0.2 mm Serious Direct replacement

Crack
0 < θ < 0.6 mm Slight Cold welding→electroplating

0.6 mm ≤ θ < 1.2 mm Medium Cold welding→mending→electroplating
θ ≥ 1.2 mm Serious Direct replacement

Deformation
0 < ω < 0.01 mm Slight Grinding→straightening

0.01 mm ≤ ω < 0.02 mm Medium Heat treatment→straightening→annealing
ω ≥ 0.02 mm Serious Direct replacement

Note: λ, δ,θ,ω respectively indicates the amount of wear, corrosion depth, crack length and amount of bending.

2.1.2. Optional Process Schemes Design Based on Directed Graph

Once the initial remanufacturing sub-schemes are obtained, then the DG can be used to design
the optional process schemes. DG is a two-dimensional metadata structure consisting of two vertices
(see Figure 2). Through the structure of DG, the priority relationship of each process can be clearly
described [19]. Therefore, in order to design a set of suitable remanufacturing process schemes quickly,
a DG with process scheme constraints is established. The simplified process schemes are obtained by
removing the process schemes that do not satisfy the process constraints through full-topology sorting
and sub-topology sorting. The simplified process schemes are shown in Figure 2 below.
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Figure 2 contains seven remanufacturing process schemes, for example, process scheme 1→2→3→5.
Process operations (e.g., surfacing, cold-welding) are represented by numbers (e.g., 1, 2), and the arrow
connections between numbers indicate the processing sequence of different process operations.

2.1.3. Establishment of Object Function and Constraint Function

After obtaining the optional process schemes, the objective function and constraint function of
ES-ACO can be constructed. Before establishing the objective function and constraint function, some
research hypotheses are introduced as follows:

(1) The conversion time of the two adjacent mechanical equipment is not considered.
(2) The idle energy consumption of mechanical equipment is ignored.
(3) The machining capacity of the equipment for used products is constant.
(4) The cost of manpower is determined by the machining time of equipment.
(5) The environmental impact of engineers and technicians is ignored.
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Establishment of Objective Function

Literature [20] pointed out that EE not only needed to provide products or services that met human
demands but can also gradually reduce the environmental impact (EI) and resource consumption of
products or services, and then defined EE as follows: The value of products or services per unit EI.
By combining the features of remanufacturing, this paper defines the EE of remanufacturing as the
remanufacturing’s manufacturing value of unit EI. From this definition, before constructing the EE
function, the manufacturing value function and the EI function needed to be constructed first. After
that, the corresponding constraint function is established according to the constraint condition of the
objective function.

(1) Manufacturing Value Function Construction

The manufacturing value of remanufacturing can be expressed in terms of profit [21], and it
can be expressed in terms of the price of remanufactured products minus the price of returned used
components and the cost of reconditioning processes. In addition, the cost of reconditioning processes
can be made up of machine processing cost and manpower cost [22]. Therefore, the manufacturing
value of remanufacturing can be calculated by Formula (1) below.

V = S−
n∑

i=1

Ki · ti −Cm · t−R (1)

t =
m∑

i=1

ti (2)

where V, S, Cm and R respectively represent the manufacturing value of remanufacturing, the price of
remanufactured products, the manpower cost and the returned price of used components; Ki indicates
the i-th process procedure cost per unit time; t and ti indicate the total time to complete all process
procedures and the operation time of the i-th process procedure respectively.

(2) EI Function Construction

EI can be expressed by many indicators, among which carbon emissions are commonly recognized
indicators, and have been widely used in the EI evaluation of various engineering problems [23–26].
Therefore, the EI of reconditioning process of used components can be expressed by carbon emissions.
Remanufacturing carbon emissions can be expressed as the product of the energy consumption of the
reconditioning process and the carbon emission factor. The energy consumption of remanufacturing is
caused by processing equipment and auxiliary equipment (e.g., pillars and fixtures). So as to simplify
the calculation procedure, the energy consumption of auxiliary equipment is ignored. Hence, the EI of
remanufacturing can be calculated by Formula (3) below.

EI =
n∑

i=1

Pi · ti · λ (3)

where EI and λ represent the environmental impact and carbon emission factor respectively, Pi indicates
the processing power of the i-th process procedure.

(3) EE Objective Function Establishment
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Based on previously established manufacturing value function, EI function and the definition of
EE, the EE objective function can be established as follows.

EE =
V
EI

=

S−
n∑

i=1
Ki · ti −Cp · t−R

n∑
i=1

Pi · ti · λ
(4)

Establishment of the Constraint Function

Under normal circumstances, if the remanufacturing reconditioning process is carried out normally,
then the processing equipment must be in a reliable operation state, and the operation of the equipment
can be reflected by the processing power of the equipment. So the constraint function can be
shown below.

Pimin ≤ Pi ≤ Pimax (5)

where Pimax denotes the maximum power of equipment of the i-th processing procedure in a reliable
state, and Pimin denotes the corresponding minimum power.

2.1.4. Optimization of the Remanufacturing Process Scheme Based on ES-ACO

Once the optional remanufacturing process schemes and objective function are obtained, ES-ACO
can be used to optimize the process schemes. The specific process of using ES-ACO to optimize
remanufacturing process schemes is shown in Figure 3 below.
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Figure 3. Optimization framework with an ant colony algorithm with elite strategy (ES-ACO). Figure 3. Optimization framework with an ant colony algorithm with elite strategy (ES-ACO).

(1) Process coding: The reconditioning process operations are coded with binary-coded digits, such
as grinding number: 0001, cold welding number: 0010.
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(2) Population Initialization: A population composed of m ants is generated randomly, and ant
k(k = 1, 2, · · · , m) decides the direction of transfer according to the amount of information on
each process scheme during its movement. The population size represents the optimal range of
the remanufacturing process schemes. At the initial time, the information on each process scheme
is equal, namely τi j(0) = C(Const).

(3) Traversal of process operation: Ant colony completes the traversal of process operation from initial
process operation i by probability pk

i j(n). pk
i j(n) represents the probability of ant k transferring

from process operation i to process operation j (e.g., grinding→cold welding) during the n-th
(n = 0, 1, 2, · · · ) iteration, among

pk
i j =


ταi j(n)η

β
i j(n)∑

s∈allowedk

ταis(n)η
β
is(n)

, j ∈ allowedk,

0, otherwise.

(6)

where allowedk = {0, 1, · · · , n− 1} − tabuk represents the next process operation which ant k can
choose. Different from the actual ant colony, the artificial ant colony system has a dynamic
memory function, so tabuk (k = 1, 2, · · · , m) will adjust dynamically with the evolution process.
ηi j represents the expected degree of transferring from process operation i to process operation j;
α and β represent the weights of the influence of τi j(n) and ηi j(n) on the transfer probability of
process operation, respectively.

(4) Update pheromone: In each iteration, the ant colony traverses all the process operations of each
process scheme and updates the pheromones of all process schemes, namely:

τi j(n + 1) = ρ · τi j(n) (7)

where ρ represents the volatilization coefficient of pheromone.
(5) Introducing elite ant strategy: In each iteration, the ant with the optimal objective function value

(i.e., EE value) obtains additional pheromone, namely:

τi j(n + 1) = ρ · τi j(n) + ∆τi j (8)

∆τi j =
m∑

k=1

∆τk
i j (9)

∆τk
i j =

 Q
Lk

, i f the kth ant passes i j in this cycle,
0, else.

(10)

where ∆τk
i j represents the amount of information that the k-th ant stays between process operations

i j in this cycle; ∆τi j represents the amount of information increment on the process path i j in this
cycle, Lk represents the objective function value of the k-th ant.

(6) Determine whether the specified number of cycles has been reached: If so, stop the cycle and
output the optimal objective function value, or else return to the third step.

While ES-ACO is applied to optimize the process schemes, the ACO is set as a comparison
algorithm to verify the effectiveness of the proposed algorithm. Apart from the step of introducing an
elite ant strategy, other specific implementation processes of ACO are the same as those of ES-ACO. As
a comparative experiment, the parameters setting and operating environment of ACO are set as the
same as the proposed ES-ACO.
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2.2. EE Evaluation Study of Remanufacturing Oriented to Quality Uncertainty

After obtaining the optimized EE in the last section, the functional relationship between the quality
coefficient of used components and the optimized EE can be constructed. This section is divided into
three parts:

(1) The calculation of the quality coefficient of used components. In this step, firstly, the probability
distributions of fault characteristics of used components are obtained by using the method found
in Section 2.1.1; secondly, the relative processing difficulty of different fault characteristics of a
certain type of the used component is determined by the analytic hierarchy process (AHP). Then,
the quality coefficient of used components is calculated based on the probability distribution of
fault characteristics and the relative processing difficulty.

(2) Correlation analysis. The law of large numbers is used to verify that running lots of stochastic data
can make the quality coefficient and the optimized EE form a one-to-one mapping relationship,
and then NS is utilized to run lots of stochastic data to obtain the numerical simulation curve of
the quality coefficient and the optimized EE.

(3) Polynomial function fitting. PFF is applied to fit the numerical simulation curve of quality
coefficient and the optimized EE, after that, the fitting accuracy is checked; then, the range of
quality coefficient of used components suitable for remanufacturing is obtained by considering
the cost factor.

2.2.1. Calculation of the Quality Coefficient

Once the failure features of the used components have been determined in Section 2.1.1, the
quality coefficient of the used components can be calculated. It can be seen from Table 1 that in a
used component, there may be multiple damaged parts with the same failure form and failure degree.
Therefore, the total number of failure locations of used components is set as Q, and the number of
failure locations of wear, corrosion, crack and deformation is set as Q1, Q2, Q3 and Q4, respectively.
Q11, Q12 and Q13 respectively denote the number of failure locations of slight wear, moderate wear and
severe wear. Similarly, Q21, Q22, Q23; Q31, Q32, Q33; and Q41, Q42, Q43 denote the number for failure
locations of other three failure forms. In order to better describe the number for failure locations of
used components. Matrix Q is used to express the distribution of the number for failure locations of
used components.

Q = (Q1, Q2, Q3, Q4)
T =


Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

Q41 Q42 Q43

. (11)

Once the Q of the used components is determined, the probability distribution of the failure
locations of the used components can be obtained, which is represented by matrix P. The failure
locations distribution condition of used components is shown in Figure 4.

P = (P1, P2, P3, P4)
T =


p11 p12 p13

p21 p22 p23

p31 p32 p33

p41 p42 p43

⇔ P =

(
Q1

Q
,

Q2

Q
,

Q3

Q
,

Q4

Q

)T

=


Q11
Q1

Q12
Q1

Q13
Q1

Q21
Q2

Q22
Q2

Q23
Q2

Q31
Q3

Q32
Q3

Q33
Q3

Q41
Q4

Q42
Q4

Q43
Q4

. (12)
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Once the probability distribution of the failure locations is determined, it is necessary to analyze
the relative processing difficulty of each failure feature. Here, the relative processing difficulties W1;
W2; W3 and W4 of the four failure forms of used components (namely, wear, corrosion, crack and
deformation) are obtained by the analytic hierarchy process (AHP). Similarly, the relative processing
difficulties of different failure degrees of wear failure are represented by w11, w12, w13; w21, w22, w23;
w31, w32, w33 and w41, w42, w43 respectively indicate the relative processing difficulty of different
failure degrees of the other three failure forms (i.e., corrosion failure, crack failure and deformation
failure). The matrix W is used to indicate the relative processing difficulties of the failure features of
the used component.

W = (W1, W2, W3, W4)
T =


w11 w12 w13

w21 w22 w23

w31 w32 w33

w41 w42 w43

. (13)

Therefore, the quality coefficient of used components can be expressed by the following
Formula (14):

q = 1−
4∑

i=1

3∑
j=1

Pi · pi j ·Wi ·wi j. (14)

2.2.2. Correlation Analysis

Once the quality coefficient of used components and the optimized EE are obtained, the correlation
between them needs to be analyzed. From Formula (14), q is determined by P, namely, if the structure
of P is determined, then q will be uniquely determined; on the contrary, a certain q may correspond to
different P. Therefore, the law of large numbers is introduced to solve this problem.

It can be known from the law of large numbers that if the test is repeated several times under the
condition of constant testing, then the frequency of the random event approximates its probability [27],
that is, when the number of trials N is close to infinity, the structure of P corresponding to the q
becomes uniquely determined. So, when the sample size is large enough, the structure of the matrix P
and the corresponding EE will be determined. Therefore, in order to establish a one-to-one mapping
relationship between q and P, more than 1000 arbitrary data points are run by MATLAB R2016b
software (The MathWorks, Natick, MA, US) to get the uniform distribution of the optimized EE with q,
namely, P = P1+P2+P3···PN

N N > 1000. Then, the numerical simulation curve model of the optimized EE
varying with q is obtained by using P approximation as P.

2.2.3. Polynomial Function Fitting

Once the numerical simulation curve model of the optimized EE changing with q is obtained,
a reasonable mathematical function is needed to express this correspondence, that is, if a q value is
given, then the corresponding EE value can be obtained by this mathematical function. Polynomial
function fitting, also known as polynomial curve fitting, is a representation of the existing data into a
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mathematical equation through mathematical methods [28]. The purpose of the fitting is to obtain a
continuous function that matches the known data. Namely:

→

λ = (λ0,λ1 . . . λn),
→
q =

(
q0, q1 . . . qn

)
(15)

EE(q) =
→

λ ·
→
q = λ0 + λ1q + λ2 · q2 + λ3 · q3

· · ·+ λn · qn, (16)

where n denotes the highest number of fitting,
→

λ represents the constant portion, and EE(q) represents
the EE evaluation function. The evaluation accuracy is automatically generated by MATLAB software
according to different numerical simulation models and fitting times. At the same time, because of the
particularity of remanufactured products, in general, only when the cost of remanufactured products
is less than 50% of the corresponding new products can enterprises make a profit [29]. Therefore, it is
necessary to screen out the quality range of used components that meet the cost constraints.

3. Case Study

A lathe spindle refers to the spindle that drives the workpiece or tool to rotate on the lathe.
However, due to the heavy load and fast wear of the lathe spindle, the lathe spindle is prone to fatigue
corrosion, plastic deformation and other failures. The price of the new lathe spindle is generally higher,
so in order to reduce losses, enterprises will choose to remanufacture the used lathe spindle in most
cases. So, the effectiveness of the proposed method is verified by taking the remanufacturing of a
factory’s commonly used lathe spindle as an example.

3.1. Optimization of the Remanufacturing Process for a Used Lathe Spindle

3.1.1. Design of Optional Process Schemes

After cleaning and testing, the failure features of the used lathe spindle were extracted as follows:
Free surface wear 0.7 mm, surface electrochemical corrosion 0.12 mm and free surface crack 0.6 mm.
According to the process sub-schemes information in Table 1, The first three process sub-schemes
are: p1: Grinding→cold welding→electroplating, p2: Slotting→accurate grinding→cold welding, p3:
Cold welding→mending→electroplating. To facilitate description, repetitive process operations in the
three sub-process schemes are eliminated and all remaining process operations are represented by the
numbers in the Table 2 below.

Table 2. Numbering information for reconditioning process operations.

Process
Operations Grinding Cold

Welding Electroplating Slotting Accurate
Grinding Mending

No. 01 02 03 04 05 06

A total of 720 (6 factorial) integrated process schemes will be generated without considering
constraints after the initial process sub-schemes are obtained. According to typical process constraints
and sequence constraints, these process schemes can be reduced to eight, which can be represented by
DG as shown in Figure 5 below. The eight process schemes in Figure 5 are shown in Table 3 below.
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Figure 5. Integration of remanufacturing process schemes based on DG.

Table 3. Remanufacturing process schemes information in Figure 5.

No. Process Schemes No. Process Schemes

P1 01→04→03→02→06→05 P5 03→02→01→04→06→05
P2 01→03→04→02→06→05 P6 03→02→04→01→06→05
P3 02→03→04→01→06→05 P7 03→02→04→06→01→05
P4 02→03→01→04→06→05 P8 04→03→02→06→01→05

Once the optional remanufacturing process schemes of the used lathe spindle are obtained,
ES-ACO can be utilized to select a process scheme with the best EE. λ = 875 gco2/kWh can be known
from literature [30]. The parameters of ES-ACO are set as follows: m = 60, α = 1, β = 4, ρ = 0.5.
Where S = 492 RMB, R = 50 RMB, Cm = 38 RMB/h and the machine information for remanufacturing
are provided by a remanufacturing factory. The machine information is shown in Table 4 below. At the
same time, for adapting to the running of ES-ACO, the processing operations mentioned above are
binary coded as shown in Table 5 below.

Table 4. Machine information related to a used lathe spindle remanufacturing.

Machine
Number Machine Name Machine Type Manufacturer Power

(Kw)
Cost

(RMB/h)

M1 Precision water grinder RT-4080 Dongguan Rongtian Precision
Machinery Co., LTD 14 12

M2 Intelligent precision welding
machine CS-1200 Shanghai Chengsen Mechanical &

Electrical Co., LTD 4.6 2.8

M3 High precision electroplating
polishing machine GP55 Wuxi Yuling Photoelectric

Equipment Co., LTD 3.5 3.5

M4 Automatic slotting machine K3836 Xingtai Changyuan Machinery
Manufacturing Factory 4.9 3.8

Table 5. Binary coded information for process operations.

Operations Grinding Cold Welding Electroplating Slotting Accurate Grinding Mending

No. 01 02 03 04 05 06
Code 0001 0010 0011 0100 0101 0110

3.1.2. Results and Discussion of Process Optimization Stage

According to the parameter settings of ES-ACO and the optimization model of remanufacturing
process schemes mentioned above, ES-ACO is run to get the optimal process scheme, whose specific
information is shown in Tables 6 and 7. The pictures of the used lathe spindle before and after
reconditioning are shown in Figure 6 below.
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Table 6. The remanufacturing process scheme with the optimal EE of the used lathe spindle by ES-ACO.

No. Machine
Number

Processing
No.

Processing
Code

Processing
Operation

Processing
Time (min)

Processing Energy
(KWh)

1 M2 02 0010 cold welding 50 3.83
2 M1 03 0011 electroplating 40.5 9.45
3 M4 04 0100 slotting 51 4.17
4 M3 01 0001 grinding 46 2.68
5 M2 06 0110 mending 49 3.76

6 M3 05 0101 accurate
grinding 40 2.33

Table 7. The relevant parameters values corresponding to the optimal process scheme.

V/RMB
Total

EI/gCO2

Total EEMachine
Processing Cost

Manpower
Cost

Returned
Cost

Selling
Price

Machine Processing
Carbon Emission

20.97 175.12 50 492 246 22,942.5 22,942.5 0.01072
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According to the definition of remanufacturing EE, the EE is determined by V and EI of
remanufacturing. If remanufacturers want to achieve better EE, the usual way is to improve V and
reduce EI. Among the four factors affecting V, recycling costs and selling prices are constants depending
on the market, so only the machine processing cost and manpower cost are needed to be discussed.
Table 7 shows that the manpower cost (175.12 RMB) is much higher than the machine processing cost
(20.97 RMB). For this type of used lathe spindles, engineers and technicians need to spend a lot of time
to select the optimal remanufacturing process scheme, which leads to higher manpower cost. Using
the method proposed in this paper can quickly and automatically generate the optimal process scheme,
which effectively reduces the manpower cost of remanufacturing, thereby improving V. In terms of EI,
as shown in Tables 4, 6 and 7, EI depends on the processing time of the machine. The optimal process
scheme generated by the proposed method can effectively reduce the machine processing time, thereby
reducing EI. In addition, it can be seen from Figure 6 that the performance of the used lathe spindle
can be effectively restored by the optimal process scheme generated in this paper.

3.1.3. Comparative Analysis of Optimization Results

So as to give prominence to the merits of ES-ACO in solving speed and quality, the ACO is set as
the comparative algorithm. The experimental results of these two algorithms are shown in Table 8, and
the iterative optimization process is shown in Figure 7a,b. The two algorithms are run on the same
PC (Hewlett-Packard (Chongqing) Co., LTD, Shapingba district, Chongqing, China) with MATLAB
R2016b. The operating parameters of ACO are set according to the proposed ES-ACO. As shown
in Figure 7a,b, both ACO and ES-ACO can achieve better convergence results. However, the global
optimal value of ACO is significantly lower than that of ES-ACO. In addition, the average global
optimal value of ACO fluctuates uncertainly, while ES-ACO remains relatively stable, and the solution
set of the optimal solution is better than that of ACO.
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Table 8. The optimization results of ACO and ES-ACO.

Algorithms Process Schemes Maximum Iterations Optimal EE Values

ACO 03→02→04→06→01→05 66 0.00965
ES-ACO 02→03→04→01→06→05 41 0.01072
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So, it can be seen that compared with ACO, ES-ACO solves faster and the fluctuation of the optimal
solution is more stable. But, in order to better demonstrate the effectiveness of the experiment, the
experiment is repeated eight times. Generally, the quality and speed of the algorithm can be measured
by the optimal global extremum, the worst global extremum and the average global extremum [31,32],
so the three kinds of data obtained in these eight groups of experimentation are extracted and listed
in Table 9. By comparing the optimal global extremum and the worst global extremum in Table 9,
ACO and ES-ACO maintain the stability of the solution, but the average global extremum of ACO
tends to decline, while ES-ACO keeps constant, and both the optimal and the worst solution sets are
better than ACO. This is because elite ant strategy adds additional pheromones to elite ants in the
process of ant colony iteration to improve the global search ability of ACO. This strategy improves the
convergence speed and stability of ES-ACO. Therefore, the optimization results show that ES-ACO is a
more suitable algorithm of remanufacturing process schemes optimization.

Table 9. Experimental results of repeated experiments.

Algorithm ACO ES-ACO

Experiment
No.

Optimal
Global

Extremum

Worst
Global

Extremum

Average
Global

Extremum

Optimal
Global

Extremum

Worst
Global

Extremum

Average
Global

Extremum

1 0.00965 −0.0028 0.00895 0.01072 −0.0026 0.01071
2 0.00965 −0.0028 0.00874 0.01072 −0.0026 0.01071
3 0.00965 −0.0028 0.00862 0.01072 −0.0026 0.01071
4 0.00965 −0.0028 0.00857 0.01072 −0.0026 0.01071
5 0.00965 −0.0028 0.00854 0.01072 −0.0026 0.01071
6 0.00965 −0.0028 0.00851 0.01072 −0.0026 0.01071
7 0.00965 −0.0028 0.00849 0.01072 −0.0026 0.01071
8 0.00965 −0.0028 0.00848 0.01072 −0.0026 0.01071
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3.2. EE Evaluation of the Used Lathe Spindle Remanufacturing

3.2.1. EE Evaluation Results

After obtaining the optimized EE of the used spindle, the quality coefficient of the used lathe
spindle can be calculated by the method shown in Section 2.2.1. Once the optimized EE and quality
coefficient of the used lathe spindles are obtained, the numerical simulation model of them can be
obtained by using the method in Section 2.2.2.

Here, in order to avoid extreme cases, the effective range of q of all data points is set to [0.1, 0.9].
Figure 8 shows the numerical simulation curve and its corresponding polynomial function fitting curve,
which are obtained by running MATLAB R2016b software on the same PC. The fitting parameters
and fitting function (i.e., evaluation functions) are shown in the following Formulas (17) and (18),
respectively. The accuracy of evaluation (confidence interval) of fitting function reaches 95%, and the
optimized EE of remanufacturing can be evaluated by using q as the input of Formula (18).

→

λ =
(
−0.2086 · 10−3, 3.876e−5, 1.364 · 10−3,−1.889 · 10−3, 1.452 · 10−3, 13.25 · 10−3

)
→
q =

(
q5, q4, q3, q2, q1, q0

) (17)

EE(q) =
→

λ ·
→
q = −0.2086 · 10−3

· q5 + 3.87e−5
· q4 + 1.364 · 10−3

· q3

−1.889 · 10−3
· q2 + 1.452 · 10−3

· q + 13.25 · 10−3
(18)

Processes 2019, 7, x 15 of 17 

 

 
3323

334553

1025.1310452.110889.1

10364.187.3102086.0









qq

qqeqqqEE



 (18) 

 

Figure 8. Numerical simulations (NS) and polynomial function fitting (PFF) curves of EE and q  for 

the used lathe spindles. 

3.2.2. Discussion of Evaluation Stage 

From the previous section, it can be seen that the evaluation accuracy of the evaluation function 

is 95%, which means that the probability of the evaluation error is 5%, which belongs to the small 

probability event , so the generated evaluation function is reasonable. 

At the same time, the cost of this kind of new lathe spindle manufactured by the factory is 600 

RMB; so according to the previous theory, only when the remanufacturing cost of this type of used 

Lathe spindle is less than 300 RMB, this type of used lathe spindle remanufacturing will be 

worthwhile. Therefore, according to the optimization theory in Section 2.1 and Formula (18), the 

critical q  can be calculated and the solution is 0.26. So, when q  is less than 0.26, due to the serious 

damage, no remanufacturing is made for cost reasons. 

4. Conclusion 

A research method of remanufacturing process EE considering optimization and evaluation is 

proposed. In this method, firstly, a process scheme with the optimal EE is obtained by failure 

characteristics analysis, DG and ES-ACO. After that, the evaluation model of the optimized EE is 

obtained by calculating the quality coefficient, correlation analysis and PFF. Meanwhile, the quality 

range of used components suitable for remanufacturing is calculated under cost constraints. Finally, 

the validity of the proposed method is validated by the example of the remanufacturing of commonly 

used lathe spindles. 

Generally, studying the remanufacturing EE can better reflect the production demands of 

enterprises than other indicators (such as cost and time). For the used components to be 

remanufactured, the evaluation method proposed in this paper can be used to evaluate the optimal 

remanufacturing EE value; based on this value, the company can theoretically make decisions on 

whether or not to remanufacture these used components. Then, once the used components for 

Figure 8. Numerical simulations (NS) and polynomial function fitting (PFF) curves of EE and q for the
used lathe spindles.

3.2.2. Discussion of Evaluation Stage

From the previous section, it can be seen that the evaluation accuracy of the evaluation function
is 95%, which means that the probability of the evaluation error is 5%, which belongs to the small
probability event, so the generated evaluation function is reasonable.

At the same time, the cost of this kind of new lathe spindle manufactured by the factory is
600 RMB; so according to the previous theory, only when the remanufacturing cost of this type of used
Lathe spindle is less than 300 RMB, this type of used lathe spindle remanufacturing will be worthwhile.
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Therefore, according to the optimization theory in Section 2.1 and Formula (18), the critical q can
be calculated and the solution is 0.26. So, when q is less than 0.26, due to the serious damage, no
remanufacturing is made for cost reasons.

4. Conclusions

A research method of remanufacturing process EE considering optimization and evaluation
is proposed. In this method, firstly, a process scheme with the optimal EE is obtained by failure
characteristics analysis, DG and ES-ACO. After that, the evaluation model of the optimized EE is
obtained by calculating the quality coefficient, correlation analysis and PFF. Meanwhile, the quality
range of used components suitable for remanufacturing is calculated under cost constraints. Finally,
the validity of the proposed method is validated by the example of the remanufacturing of commonly
used lathe spindles.

Generally, studying the remanufacturing EE can better reflect the production demands of
enterprises than other indicators (such as cost and time). For the used components to be remanufactured,
the evaluation method proposed in this paper can be used to evaluate the optimal remanufacturing
EE value; based on this value, the company can theoretically make decisions on whether or not to
remanufacture these used components. Then, once the used components for remanufacturing have
been identified, the optimization method proposed in this paper can be applied to optimize the
remanufacturing process to achieve the best EE. At the same time, in order to avoid excessive pursuit
of EE and neglect the profit of remanufacturing, the quality range of used components suitable for
remanufacturing is theoretically screened from the perspective of cost constraints. However, other
process attributes of used components (except for failure characteristics), such as material features and
surface hardness, will also affect EE of remanufacturing process. How to comprehensively consider
these process attributes to analyze EE should be the attention of future research.
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