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Abstract: The complicated coupling of component design together with energy management has
brought a significant challenge to the design, optimization, and control of plug-in hybrid electric
buses (PHEBs). This paper proposes an integrated optimization methodology to ensure the optimum
performance of a PHEB with a view toward designing and applications. First, a novel co-optimization
method is proposed for redesigning the driveline parameters offline, which combines a nondominated
sorting genetic algorithm-II (NSGA-II) with dynamic programming to eliminate the impact of
the coupling between the component design and energy management. Within the new method,
the driveline parameters are optimally designed based on a global optimal energy management
strategy, and fuel consumption and acceleration time can be respectively reduced by 4.71% and 4.59%.
Second, a model-free adaptive control (MFAC) method is employed to realize the online optimal
control of energy management on the basis of Pontryagin’s minimum principle (PMP). Particularly,
an MFAC controller is used to track the predesigned linear state-of-charge (SOC), and its control
variable is regarded as the co-state of the PMP. The main finding is that the co-state generated by
the MFAC controller gradually converges on the optimal one derived according to the prior known
driving cycles. This implies that the MFAC controller can realize a real-time application of the
PMP strategy without acquiring the optimal co-state by offline calculation. Finally, the verification
results demonstrated that the proposed MFAC-based method is applicable to both the typical and
unknown stochastic driving cycles, meanwhile, and can further improve fuel economy compared to a
conventional proportional-integral-differential (PID) controller.

Keywords: optimization; real-time; energy management; NSGA-II; plug-in hybrid electric vehicle;
model-free adaptive control

1. Introduction

In recent years, the deteriorating environmental problems and the shortage of fossil fuels have
greatly promoted the development of plug-in hybrid electric vehicles (PHEVs). It is a promising
solution to reduce the consumption of traditional energy and also to lessen environmental pollution,
due to its multiple driven modes [1,2]. The co-optimization of driveline components and energy
management strategy (EMS) can considerably enhance the fuel economy of PHEVs. It is usually
considered as a complicated multiobjective and multiconstraint coupling optimization problem, thereby
leading to a significant challenge to simultaneously optimize [3,4]. Additionally, optimization-based
EMSes have been attested to be of tremendous potential for the fuel economy improvement of PHEVs.
However, they still have serious technical drawbacks for real-time applications [5,6].

A co-optimization design of the driveline components and energy management control can be
taken as a system-level optimization design problem. It comprises the optimization of the physical
system and the control system [7]. Many researchers have dedicated much valuable work to improving
the driveline efficiency and the fuel economy of multisource drive vehicles. Most of them have focused
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on a single-objective (or multiobjective) optimization problem of driveline matching, component sizing,
topology design, or the EMS [8–11]. For the predefined single-shaft coaxial parallel plug-in hybrid
electric bus (PHEB) in our research, component sizing and the energy management control are extremely
significant to fuel economy. To guarantee the optimality of dynamic performance and fuel economy, the
driveline design and the EMS should be simultaneously considered, as they are strongly coupled [12].
Previous work has disposed of the combined optimization problem in a bilevel manner, where the
outer loop is for the former and the inner loop is for the latter [8,13]. Many optimization algorithms
have also been extensively applied to solve this problem, such as a genetic algorithm (GA) [4,14],
particle swarm optimization (PSO) [11,15], and simulated annealing (SA) [9,16]. Most of them have
been utilized to optimally design the component parameters for an outer loop, while a rule-based
EMS is nested in an inner loop. However, the optimization results were suboptimal and influenced by
the established rules due to the coupling relationship between the component design and EMS [3,7].
To overcome this drawback, another category of methods integrating the evolutionary algorithm with
dynamic programming (DP) was proposed to optimize component sizing and EMS simultaneously,
and it has been certified to be of significance in improving fuel economy [6,15]. Nevertheless, it may not
be suitable for dealing with multimodal optimization problems with many local minima. In addition,
convex optimization has been confirmed to be one of the most acceptable methods for the simultaneous
optimization design of the component parameters and energy management due to its receptivity of the
global optimum and a higher computational efficiency [3,12,17,18]. However, it may have difficulty
formulating an accurate convex model for a multiobjective optimization problem with a larger number
of variables. Hence, a systematic optimization method to deal with the complicated coupling problem
containing multiobjectives and multivariables is necessary.

The PHEV has been widely accepted by the markets due to its long electric mileage and
energy-saving potential, both of which are affected by energy management [19]. Presently, energy
management mainly concentrates on two categories: One is a rule-based strategy for practical
application [20], and the other one is an optimization-based strategy for theoretical research. Since
the latter has enormous potential to improve fuel economy, it has been extensively investigated by
many researchers [21,22]. Among them, DP is the most acceptable method for global optimization
with prior known driving conditions. However, it is not applicable for online applications, as future
driving conditions are unknown. Therefore, it is usually deployed as a benchmark or is integrated with
other methods to realize systematic optimization [23,24]. Moreover, many real-time control strategies
have also been given more attention, such as adaptive Pontryagin’s minimum principle (A-PMP) [25],
adaptive equivalent consumption minimization strategy (A-ECMS) [26], model predictive control
(MPC) [27,28], stochastic dynamic programming (SDP) [29], and reinforcement learning-based real-time
energy management [30]. Since the PMP can transform the global energy management problem into
an instantaneous optimization problem by minimizing the Hamilton function, the PMP-based EMS
has been one of the most promising methods for a real-time energy management application, where
the determination of the co-state (or the equivalence factor) is one of the key issues [31–33].

Currently, various methodologies have been proposed to determine the optimal co-state (or the
equivalence factor), aiming at implementing the PMP-based EMS online while decreasing fuel
consumption. In Reference [34], the optimal co-state was considered as a constant value, under
the assumption that battery characteristics are almost unchangeable with respect to the changing
state-of-charge (SOC). To overcome this deficiency, the shooting method was employed in iterative
computations to identify the optimal co-state trajectory. However, the acceptable initial co-state
value should be provided in advance [31]. In Reference [35], an approach based on preformulated
look-up tables was proposed to search for the optimal initial co-state value using the shooting method.
Although these methods can make the PMP-based EMS applicable, it still requires plenty of driving
information for a corresponding offline calculation. Hence, an adaptive control method was proposed
in Reference [25], where the co-state was adaptively updated with variational driving conditions.
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Its main advantage is that the PMP-based EMS can be realized in real time, with minimal driving
information needing to be known beforehand.

Considering the strong dependence of the co-state on future driving conditions, some
prediction-based methods have also been presented to identify the co-state online, such as methodologies
based on historical driving information and vehicle telemetry technology [36,37]. However, they still
need to be further improved in terms of accuracy and reliability. Inspired by References [25] and [38],
the identification of a co-state could be transformed into an SOC trajectory tracking problem, where
the requirement for future driving information was dramatically decreased. When a predetermined
linear reference SOC trajectory is known for a given bus route, a control parameter can be obtained
as the co-state by adjusting the feedback SOC error with a proportional-integral-differential (PID)
controller [6]. However, the predefined linear reference SOC trajectory has a distinct difference
in contrast to the desired optimal SOC trajectory, and the actual co-state has a continuously large
fluctuation around the optimal co-state trajectory. Therefore, a valid self-adaptive controller is essential
to smooth the fluctuation quickly so as to approximately approach the optimal co-state trajectory during
online driving. This will be of great significance to the online implementation of the PMP-based EMS.

Despite the availability of various optimization methods for driveline design and energy
management control, there has been little research in consideration of the coupling between them.
The optimized driveline based on a certain energy management control strategy (EMS) will not
be optimal for another, especially when applying offline optimization results to online control.
Therefore, the practicability and robustness of the optimization results need to be further considered.
In practice, it is of great urgency to develop an integrated optimization methodology involving
the design and application of PHEBs. Two contributions are added to supplement the previous
literature. First, to eliminate the coupling between the component design and energy management
during the PHEB optimization process, a nondominated sorting genetic algorithm-II (NSGA-II) and
dynamic programming (DP) are combined, aiming at capturing the optimal driveline parameters
based on a global optimal energy management strategy (EMS). The NSGA-II is employed to solve
the multiobjective optimization problem, including fuel economy and acceleration time, while DP
is utilized as the global optimal EMS. Second, an EMS based on Pontryagin’s minimum principle
(PMP) is proposed to realize online optimal control of a PHEB, due to the inapplicability of DP to
online optimization. Meanwhile, a novel model-free adaptive control (MFAC) method is employed to
overcome the drawback that the co-state of the PMP needs to be optimized offline according to known
driving cycles. The MFAC controller is designed to track the predefined linear state-of-charge (SOC)
trajectory, and its control variable is treated as the co-state of the PMP. The proposed methodologies
take advantage of the fact that the distance of the realistic bus route is known, and the SOC being
predefined as linearity is reasonable and acceptable for unknown driving conditions.

The remainder of the paper is organized as follows. Section 2 introduces the framework of
the integrated optimization process as well as a brief explanation for the formulation of the driving
cycle. The detailed models of the studied PHEB are shown in Section 3. The co-optimization designs
of the driveline component sizing and EMS are provided and discussed in Section 4. A real-time
application of a PMP-based EMS employing a novel MFAC controller is proposed and verified in
Section 5, followed by conclusions in Section 6.

2. Preparing for Integrated Optimization

To ensure the optimal performance of a PHEB in a real-time application, two key problems need
to be solved (i.e., optimal component design and optimal real-time control). The first is to optimally
design the driveline parameters whilst eliminating the impact of energy management, and the main
objective is to simultaneously improve the dynamic and economic performance. The second is to
realize the online application of optimization-based energy management, aiming at further decreasing
fuel consumption. The two problems are integrated as one with a view toward vehicle design and
application, and then the integrated optimization is conducted based on a real-world bus route.
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2.1. Architecture of Integrated Optimization

A diagram illustrating the architecture of the integrated optimization process is shown in Figure 1.
It contains the key technology and approaches for solving the integrated optimization design problem.
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Figure 1. Process of integrated optimization.

Overall, the integrated optimization is deployed as two layers containing both the offline and
online optimizations. The offline layer captures the optimal driveline parameters, i.e., the speed ratios
of the auto mechanical transmission (AMT) and final drive, through a co-optimization method that is a
combination of a nondominated sorting genetic algorithm-II (NSGA-II) and a dynamic programming
(DP) algorithm. Within co-optimization design, multiobjective optimization problems, including fuel
consumption and acceleration time, are disposed by NSGA-II, while DP is employed as an energy
management strategy (EMS). Since DP is the most acceptable global optimization method based on the
Bellman principle [39,40], the impact of an EMS on the component design can be eliminated, and the
driveline optimization solution is based on the optimal EMS. For the online layer, the optimization
results of the offline layer are applied to the PHEB. The Pontryagin’s minimum principle (PMP)
algorithm is employed as the instantaneous optimal EMS in the real-time application, due to its higher
computational efficiency [41]. In particular, the co-state of the PMP is adjusted online by the model-free
adaptive control (MFAC) method in accordance with the predefined linear reference state-of-charge
(SOC), in which no driving cycle is required to calculate the optimal co-state offline.

2.2. Synthesis of the Representative Driving Cycle

The optimization results of the driveline and EMS are susceptible to driving conditions [42].
Therefore, a representative driving cycle needs to be synthesized to reflect real-road driving conditions
for the purpose of optimizing the PHEB. As shown in Figure 2, abundant historical driving data were
collected via the onboard measurement method from a real-world bus route. The trip distance from
the starting station to the final station was approximately 20.5 km, and each measurement data point
was obtained from both a global positioning system (GPS) and Virtualbox (VBOX). More than 285,652
velocity data points were collected for the synthesis of the driving cycle, traveling for approximately
1435 km.Processes 2019, 7, x FOR PEER REVIEW 5 of 23 
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The driving segment is partitioned by a microtrip method from the historical driving data,
and a principal component analysis (PCA) together with a k-means clustering method is employed to
synthesize a driving cycle [43]. As shown in Figure 3, the main process of the driving cycle synthesis can
be summarized as three steps. First, the measured driving data are divided into some driving segments,
where the starting and the ending velocities for each segment need to be zero. Second, the statistical
properties of each segment are analyzed with the PCA method to decrease the dimensionality of the
selected characteristic parameters, and the driving segments that have similar properties are clustered
into the same category by the k-means clustering method. Finally, the transition probability between
two clusters is calculated according to the clustering results, and the driving segments belonging
to the different clusters are randomly chosen to generate a candidate driving cycle through Monte
Carlo methodology [44]. Then, the most acceptable driving cycle reflecting the real-road conditions is
selected according to the comparison results of the statistical properties between the candidates and
measured data. Moreover, the road slope is neglected in the synthesis process of the driving cycle, due
to the road slope of the researched bus route being within ±0.01◦. The detailed process of synthesizing
a typical driving cycle with the PCA and k-means clustering method can be found in Reference [43].
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3. PHEB Models

3.1. Configuration and Parameters

As shown in Figure 4, a PHEB with single-shaft parallel configuration was investigated.
The driveline is mainly composed of a diesel engine, electric motor, auto mechanical transmission
(AMT), final drive, and power battery pack. The main parameters are given in Table 1.Processes 2019, 7, x FOR PEER REVIEW 6 of 23 
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Table 1. Main parameters of the PHEB.

Items Description

Vehicle Curb mass: 12,500 kg, gross mass: 16,500 kg
Engine Max torque: 850 Nm, max power: 162 kW
Motor Max torque: 850 Nm, max power: 130 kW
AMT Four-speed, speed ratio: 3.64/2.29/1.32/0.75

Final drive Speed ratio: 5.785
Battery Capacity: 50 Ah, voltage: 384 V

3.2. Engine Model

The engine model is simplified as a steady-state fuel consumption model neglecting the impact of
temperature and dynamic performance. The fuel consumption per unit time of the diesel engine can
be calculated by the following equation: L f uel =

Pe·be(Te,ωe)
367.1·ρ·g

Pe = Te ·ωe
, (1)

where Lfuel denotes the fuel consumption per unit time, Pe denotes the output power of the engine,
Te and ωe respectively denote the torque and the rotational speed of the engine, be (Te, ωe) is the
fuel consumption rate (which can be derived through the interpolation method from a brake-specific
fuel consumption (BSFC) map (as shown in Figure 5)), ρ is the density of diesel oil, and g is the
gravitational acceleration.
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3.3. Motor Model

The motor adopted in the researched PHEB driveline can work as a traction motor or generator in
the driving or generating mode. Therefore, the motor power consumption can be described as

Pm = Tm ·ωm · ηm
−sgn(Tm)

sgn(Tm) =

{
1
−1

Tm ≥ 0
Tm < 0

driving mode
generating mode

, (2)

where Pm is the output power of the motor; Tm and ωm denote the motor torque and the motor
rotational speed, respectively; and ηm is the efficiency of the motor, which can be interpolated by the
motor efficiency map (Figure 6).
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Moreover, according to the configuration of the studied PHEB, the rotational speed of the wheel
will be governed by the engine and motor, as well as the AMT and final drive. The relationship between
them is described as [24]

ωw =
ωe

iAMT · i f
=

ωm

iAMT · i f
, (3)

where ωw is the rotational speed of the wheel, and iAMT and if are the speed ratio of the AMT and final
drive, respectively.

3.4. Battery Model

A lithium-ion battery is equipped on the PHEB for its higher stability and longer operating
distance. The battery model is simplified as an internal resistance battery model where the basic
physical model can be derived from a static equivalent circuit, as shown in Figure 7 [6]. The battery
load power can be expressed as Equation (4) when ignoring the thermal temperature effects and
transients of the battery:

Pbat = Voc · Ibat − I2
batRbat, (4)

where Pbat denotes the battery load power, Ibat denotes the battery current, and Voc and Rbat denote the
open-circuit voltage and the internal resistance of the battery, respectively.Processes 2019, 7, x FOR PEER REVIEW 8 of 23 
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Figure 7. The simplified internal resistance battery model.

As shown in Figure 8, Voc and Rbat are usually described as a function of the SOC, and the
relationship between them can be acquired from a battery performance bench test. According to
Equation (4), battery system dynamics are expressed as [20,31]

dSOC
dt

= −
Voc −

√
V2

oc − 4RbatPbat

2RbatQbat
, (5)
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where Qbat denotes the nominal capacity of the battery. In addition, Equation (5) can be transformed
into a discrete form [20].

SOCk+1= SOCk −

Voc_k+1 −
√

V2
oc_k+1 − 4Rbat_k+1Pbat_k+1

2Rbat_k+1Qbat
(6)
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3.5. Vehicle Longitudinal Dynamics

Longitudinal dynamics have great influence on the performance of an automobile. When ignoring
other dynamic models, the PHEB is considered to be a point mass model. The power requirement of
the automobile can be derived from Equation (7):

Preq = (Pe + Pm)/ηT(
Mrg fr cosα+ Mrg sinα+ 1

2 CdAρdu2
a +

δMr·dua
dt

)
·

ua
3600ηT

(7)

where Mr is the gross mass of the automobile, g is the acceleration of gravity, fr is the rolling resistance
coefficient, α is the road slope, Cd is the aerodynamic drag coefficient, A is the windward area, ρd is
the air density, ua is the velocity of the automobile, δ is the correction coefficient of the rotation mass,
and ηT is the efficiency of the driveline.

4. Co-Optimization Framework

To solve the complicated coupled optimization problem between the driveline components
and energy management, a co-optimization framework was established for the PHEB based on a
synthesized real-road driving cycle. As shown in Figure 9, the co-optimization framework contains
two modules, a driveline parameters optimization module and an energy management optimization
module. The former is for finding the preferable speed ratios of the driveline considering the economic
and dynamic performance comprehensively, while the latter is for designing a global optimal EMS
corresponding to the speed ratios provided by the former. As NSGA-II has the advantage of fast
convergence toward the optimal Pareto front while guaranteeing the diversity of a solution [45], it was
employed to deal with the multiobjective optimization problems of the driveline, while DP algorithm
was used to avoid the impact of the EMS on the optimality.
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During the co-optimization process, the speed ratios of the driveline are optimized based on the
fast nondominant sorting algorithm and elitism of the NSGA-II. Then, the optimal power distribution
together with the minimum fuel consumption is calculated through DP, returning to the driveline
parameters optimization module. Finally, the most acceptable speed ratios are determined according
to the minimum evaluation index. Therefore, the optimization results have higher fitness with the
optimal EMS, benefitting the optimization design of the online EMS.

4.1. Problem Formulation

To comprehensively improve the performance of the PHEB, fuel consumption and dynamic
performance are simultaneously considered as the overall optimization objectives, and the dynamic
performance is also treated as a constraint, for which the acceleration time of 0–50 km/h in the motor
drive mode needs to be less than 20 s. In addition, some physical constrictions also need to be
considered to guarantee the reasonability of the optimization results. The optimization model can be
described as 

f (x) = min[ f uel(x); Acc_time(x)];

x =

[
gear(i); i = 1, 2, 3, 4
f inal_drive

]

S.t.


Acc_time(x) − 20 < 0
gear(i)low < gear(i) < gear(i)high
f inal_drivelow < f inal_drive < f inal_drivehigh

(8)

where fuel(x) denotes the fuel consumption function; Acc_time(x) denotes the acceleration time from 0
to 50 km/h for the PHEB (when the road slope is ignored); gear(i) denotes the designed speed ratios of
the AMT, whose lower and higher boundaries are restricted by gear(i)low and gear(i)high, respectively;
and final_drive denotes the designed speed ratio of the final drive, with its lower and upper limits being
final_drivelow and final_drivehigh, respectively.

The speed ratios optimized by the driveline optimization module are synchronously applied to
EMS optimization at each iteration. Then, the control strategy, including the power distribution and
gear shifting, is redesigned through the DP algorithm. Meanwhile, the corresponding fuel consumption
is calculated and provided to the NSGA-II. The system state space equation of the DP-based EMS is
expressed as 

x(k + 1) = f [x(k), u(k)] , k = 0 , 1 , · · · · · · , N − 1
x(k) = [SOC(k), gx(k)]
u(k) = [throt(k), shi f t(k)]

, (9)

where f denotes the state function of the discrete system; x(k) is the state vector (i.e., the optimization
variables of the DP), where SOC(k) and gx(k) represent the state vector of the battery and AMT,
respectively; and u(k) denotes the control vector, for which throt(k) and shift(k) represent the control vector
of the engine (throttle percentage) and the AMT (gear shifting command), respectively. Furthermore,
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the control vector of the AMT is defined as −1, 0, and 1 to represent downshift, hold, and upshift,
respectively. In combination with Equation (6), the state vector can be rewritten as the following
equation when the sampling time for the control problem is designed as 1 s:

SOC(k + 1) = SOC(k) − Voc(k)−
√

V2
oc(k)−4Rbat(k)Pbat(k)

2Rbat(k)·Qbat(k)

gx(k + 1) =


1 gx(k) + shi f t(k) < 1
4 gx(k) + shi f t(k) > 4
gx(k) + shi f t(k) otherwise

. (10)

Moreover, the objective of the DP-based EMS is to find the optimal control input u(k) to minimize
the cost function, which can be described as

J =
N−1∑
k=0

L(x(k), u(k))

=
N−1∑
k=0

[
L f uel(k) + β

∣∣∣shi f t(k)
∣∣∣] , (11)

where N is the duration of the driving cycle, and L denotes the instantaneous cost at the k-th
step. The cost function J is composed of the fuel consumption Lfuel(k) and the penalty of the gear
shifting operation β|shift(k)|, where the weight factor β can coordinate the contradiction between fuel
consumption and frequent gear shifting when given a suitable value. Moreover, the optimization
problem should also be restricted by

S.t.



ωe_min(k) ≤ ωe(k) ≤ ωe_max(k)
ωm_min(k) ≤ ωm(k) ≤ ωm_max(k)
Pe_min(ωe(k)) ≤ Pe(k) ≤ Pe_max(ωe(k))
Pm_min(ωm(k)) ≤ Pm(k) ≤ Pm_max(ωm(k))
0.35 ≤ SOC f ≤ 0.4

, (12)

where ωe(k) and ωm(k) denote the rotational speed of the engine and the motor at the kth step, whose
lower and higher boundaries are respectively limited by ωe_min(k), ωe_max(k), ωm_min(k), and ωm_max(k);
Pe(k) and Pm(k) denote the output power of the engine and the motor at the kth step, where the lower
and higher boundaries are restricted by Pe_min(k), Pe_max(k), Pm_min(k), and Pm_max(k) respectively; and
SOCf is the terminal desired SOC of the battery, whose constraint is designed as a scope from 0.35 to 0.4.

4.2. Boundaries

To analyze the impact of the driveline parameters on vehicle performance, a design of experiment
(DOE) methodology was employed while using the optimal Latin hypercube (OLH) algorithm to
randomly generate 500 samples in a five-dimensional vector space [46], where each row vector
can represent a combination of the speed ratios of the AMT and final drive. The responses of
fuel consumption and acceleration time with respect to the speed ratios are respectively shown in
Figures 10 and 11. It can be seen that gear 4 had the most positive influence on both fuel consumption
and acceleration time, while other factors also inordinately impacted vehicle performance. Gear 1
had an insignificant influence on fuel economy, while it had an advantage in improving acceleration
performance, and gear 2 was just to the contrary. Moreover, the increase of the speed ratios for the
final drive and gear 3 had a negative impact on fuel economy, but was beneficial to the improvement
of dynamic performance. The analysis results from our research indicated that all five variables need
to be optimized, and the boundaries of the optimization variables need to be well-designed in order to
obtain suitable optimal parameters.
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As shown in Table 2, to avoid the shock of gear shifting, the limits of the speed ratios for the
AMT were predefined by restricting the adjacent gear speed ratio within a scope from 1.4 to 1.8.
In addition, the boundary of the final drive speed ratio was designed within 5.5 to 6.5 according to the
existing products.

Table 2. The boundaries of the optimization parameters.

Speed Ratios Gear 1 Gear 2 Gear 3 Gear 4 Final Drive

The current ratios 3.64 2.29 1.32 0.75 5.785
The upper boundary 4.2 3.0 1.8 1.0 6.5
The lower boundary 3.2 2.2 1.2 0.7 5.5

4.3. Optimization Results Analysis

For a multiobjective optimization problem, the objectives usually conflict with each other. Inspired
by Reference [46], we established an evaluation index, including fuel consumption and acceleration
time, to determine the best driveline parameters with respect to the comprehensive performance of the
PHEB, which is governed by

E_index =
w1

s1
f uel(x) +

w2

s2
Acc_time(x), (13)

where E_index represents the evaluation index; w1 and w2 denote the weight factors of the two objectives,
and the sum of w1 and w2 must be 1; and s1 and s2 denote the scale factors utilized to balance the order
of magnitude between different performance requirements.

In this paper, the order of magnitude for the two objectives is consistent, and herein, the scale
factors s1 and s2 are prescribed as 1. Meanwhile, the weight factors w1 and w2 are defined as 0.5 to
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give a further explanation for the solution of the co-optimization problem. Moreover, to analyze the
influence of weight factors on the optimization results, 11 solutions were obtained with diverse weight
factors w1 varying from 0 to 1. The initial parameter settings of the NSGA-II solution are shown in
Table 3, and the main steps and a detailed explanation can be found in References [47,48].

Table 3. Initial parameter settings.

Option Value

Population size 50
Number of generations 20
Crossover probability 0.9
Mutation probability 0.01

The Pareto front of the co-optimization problem is shown in Figure 12, where there are multiple
sets of solutions in a feasible region, and the best-found point can be obtained according to the
minimum evaluation index based on the given weight factors between two objectives. Moreover, some
solutions in the infeasible region also exist due to the constraint of acceleration time.
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The optimization process is shown in Figure 13, where the maximum iterations endured for
1000 generations. It could be found that the speed ratios and the evaluation index gradually converged
with increments of the iteration steps, and both became stable after 600 iteration steps. The optimal
speed ratio could be obtained and corresponded to the best-found point with a minimum evaluation
index, at the 854th iteration step [46,47].Processes 2019, 7, x FOR PEER REVIEW 13 of 23 
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As shown in Figure 14a, the optimal speed ratios change with the weight factor w1 which is
varying from 0 to 1, and the variations in the different variables have distinguished characteristics. Gear
1, gear 4, and the final drive have tiny changes in the variation of the weight factor, while gear 2 and
gear 3 are fairly distinguishing. Without the consideration of the case that w1 is 0 or 1, the speed ratio of
the gear 2 descends with an increase in w1, while gear 3 ascends gradually. In addition, the variation in
the optimization objectives corresponding to the changing of the weight factor is shown in Figure 14b.
With an increase in the weight factor w1, the fuel consumption decreases from 11.784 L/100 km to
11.755 L/100 km, and the acceleration time increases from 18.827 s to 18.874 s. This indicates that the
variation in the weight factor does have an impact on the optimization results. Moreover, there is an
incompatibility between the two objectives. To achieve a compromise, the best driveline parameters
are determined corresponding to the minimum evaluation index when the weight factor w1 is chosen
as 0.5, and the optimization result is shown in Table 4.
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Table 4. A comparison of the optimization results.

Current Best-Found Point Improvement

Gear 1 3.64 4.2 —
Gear 2 2.29 2.26 —
Gear 3 1.32 1.45 —
Gear 4 0.75 1 —
Final drive 5.785 6.5 —
Fuel consumption (L/100 km) 12.226 11.765 4.71%
Acceleration time (s) 19.74 18.834 4.59%

The fuel economy and acceleration performance of the best-found design point were respectively
improved by 4.71% and 4.59%, compared to the current driveline. Therefore, the proposed
co-optimization method has a remarkable advantage for the improvement of dynamic and economic
performance. More importantly, the driveline parameters are obtained on the basis of the optimal
EMS, which is of great significance in adopting them into a real-time application of energy
management optimization.

In addition, the economic gear shifting schedule can be designed based on the co-optimization
results of the best-found point so as to be utilized as a real-time strategy for the AMT control. As shown
in Figure 15, the circles with various colors indicate the optimal AMT gear position, which is required
for the economic working points of the engine. Hence, it can roughly pick up the economic gear
shifting schedule between the adjacent gears. To avoid frequent gear shifting, a gear shifting delay was
also designed, where the solid line and the dotted line represent upshift and downshift, respectively.
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5. Real-Time Application of the Energy Management Strategy

Currently, Pontryagin’s minimum principle (PMP) has been widely adopted for the energy
management of PHEBs [25,49]. However, it is still a great challenge to apply the PMP to the EMS in
real time for unknown driving cycles. Inspired by previous literature, we transformed this challenge
into an SOC trajectory tracking problem in our research [6,25]. Meanwhile, a novel controller based on
a model-free adaptive control (MFAC) was employed to adjust the co-state of the PMP online to realize
a real-time application. The scheme for our proposed PMP-based real-time energy management is
shown in Figure 16.
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5.1. PMP Problem Formulation

When energy management is treated as a constrained optimization problem for a given driving
cycle, PMP can be utilized to achieve real-time energy management control. Assuming the battery is
exhausted exactly at the end of a round trip for the given bus route, the optimization objective of the
PMP-based EMS can be dominated just by fuel consumption, and the objective function is expressed as

J = min
∫ t f

t0

Lfuel(u(t)) · dt, (14)
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where Lfuel can be obtained by Equation (1); u(t) is the control input of the PMP, which denotes the
throttle opening of the engine; and [t0, tf] is the optimization horizon. During the application of the
PMP, the optimal solution is usually solved by the Hamilton function, H, which can be presented as

H(SOC(t), u(t),λ(t)) = L f uel(u(t)) + λ(t) · S
.

OC(t), (15)

where λ(t) denotes the co-state in PMP, and the
.

SOC(t) is given by Equation (5). Furthermore, the PMP
can transform the global problem into a local instantaneous problem by capturing the optimal control
variable u*(t) at each instantaneous time to minimize the Hamilton function,

u∗(t) = argminH(SOC(t), u(t),λ(t)), (16)

where λ(t) is regarded as the optimization variable, and the state together with the co-state dynamic
equations can be expressed as [25] S

.
OC = ∂H

∂λ = f (SOC(t), Pbat(t)).
λ(t) = − ∂H

∂SOC = −λ
∂ f (SOC(t),Pbat(t))

∂SOC

. (17)

Accordingly, two constrained boundaries are necessary for the sake of optimality, which are
denoted as SOC(t0) and SOC(tf), representing the initial and terminal states of the SOC, respectively.
Meanwhile, some physical limitations on the components are also needed to ensure the availability of
the PMP, which are incorporated as

S.t.


ωe_min(t) ≤ ωe(t) ≤ ωe_max(t)
ωm_min(t) ≤ ωm(t) ≤ ωm_max(t)
Pe_min(ωe(t)) ≤ Pe(t) ≤ Pe_max(ωe(t))
Pm_min(ωm(t)) ≤ Pm(t) ≤ Pm_max(ωm(t))

. (18)

5.2. Reference SOC

To decrease the fuel consumption of the engine, the battery energy is expected to be depleted to
its minimum. Therefore, it is reasonable to treat the battery minimum SOC as the terminal value of the
reference SOC at the end of the trip. Moreover, the historical driving data (in Section 2.2) indicated that
the road slope can be neglected. Hence, the reference SOC is approximately treated as a linear function
of the current driving distance [6,31], which can be described as

SOCref = SOC0 −

(
SOC0 − SOC f

)
dtotal

· d, (19)

where SOCref is the linear reference SOC; SOC0 and SOCf are the initial and terminal SOC values,
respectively; dtotal denotes the whole trip distance; and d represents the travel distance.

5.3. MFAC Controller Design

Despite the initial and terminal SOC being completely defined in the optimization problem, the
optimal co-state λ(t) can only be calculated by an offline method. To apply the PMP-based EMS in real
time without offline calculation, an MFAC controller was designed to adjust the co-state value λ online.
As shown in Figure 17, the MFAC controller mainly consists of a control module and an estimating
module, where the currently estimated variables with the control variables are calculated and updated
in a discrete-time state [50,51].
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The real-time adjustment of the co-state for PMP is treated as a discrete-time nonlinear problem,
which can be successfully realized by the MFAC controller. The system is expressed by the following
data model: 

SOC(k + 1) = SOC(k) + ϕ(k) · ∆λ(k)
∆λ(k) = λ(k) − λ(k− 1)
∆SOC(k) = SOC(k) − SOC(k− 1)

, (20)

where ϕ(k)∈R is the bounded pseudopartial derivative (PPD) of the system; and SOC(k) and λ(k) are
the output variable and control variable of the system at time k, representing the current SOC and
co-state, respectively.

For the control algorithm of the MFAC, the one-step-ahead prediction error cost function is used
to eliminate excessive control efforts [50]. The control law is expressed as

λ(k) = λ(k− 1) +
ρkϕ(k)

λk +
∣∣∣ϕ̂(k)∣∣∣2 [SOC∗(k + 1) − SOC(k)], (21)

where ρk is the step factor, which is added to make the control algorithm more general; λk is the
weighting factor that restricts the changing rate of the control input; SOC*(k + 1) denotes the value of
reference SOC at the k + 1 step; and ϕ̂(k) is the estimation value of ϕ(k), which is calculated by the
following equation: 

ϕ̂(k) = ϕ̂(k− 1)

+
ηk∆λ(k−1)×[∆SOC(k)−ϕ̂(k−1)∆λ(k−1)]

µk+|∆λ(k−1)|
2

ϕ̂(k) = ϕ̂(1) if ϕ̂(k) ≤ ε, or
∣∣∣∆λ(k− 1)

∣∣∣ ≤ ε

, (22)

where ηk denotes the step factor, µk denotes the weighting factor, ε denotes a small positive constant,
and ϕ̂(1) denotes the initial value of ϕ̂(k).

5.4. Results and Discussion

To verify the applicability and reliability of the real-time PMP-based EMS controlled by the
MFAC, six driving cycles with the same trip distance were chosen for simulation. As shown in
Figures 18a, 19a, 20a, 21a, 22a and 23a, Cycle 1 was composed of typical Chinese urban driving
cycles, and Cycles 2–6 were stochastic driving cycles obtained from the researched bus route, which
is given in Section 2.2. It is worth noting that the optimal co-state of the PMP is not a constant
value: Due to the changing battery, the SOC will cause a variation in the open-circuit voltage and
internal resistance. To simplify the problem, the primary work area of the battery was constrained
within a scope from 0.3 to 0.8 in our research, and thereby the impact of the SOC on the open-circuit
voltage and internal resistance was neglected according to the characteristics of the battery (as shown
in Figure 8). Therefore, the constant co-states obtained from the aforementioned six driving cycles
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through a shooting method were regarded as the optimal co-states of the PMP to derive the optimal
solution of the EMS [31]. The results were employed as a benchmark to be contrasted to the MFAC
method. Moreover, a proportional-integral-differential (PID) controller, which has been widely used for
self-identification control, was also applied to a real-time co-state adjustment of the mentioned problem
to illustrate the advantages of the proposed MFAC method. Figures 18–24 show the simulation results
of different driving cycles.
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(d) Fuel consumption.

As shown in Figures 18b, 19b, 20b, 21b, 22b and 23b, the co-state trajectories of the three control
methods were distinctly different. However, the variation tendency of the same control methods
had approximate agreement with regard to different driving cycles. The co-state trajectories of
the PID control and the MFAC were both adjusted around the co-state trajectory of the optimal
co-state control. Moreover, a significant discovery could be concluded: The co-state trajectory of
the MFAC had a smaller fluctuation with respect to the optimal co-state trajectory after a quick
self-adjustment. Eventually, it gradually converged to the optimal co-state trajectory, which had no
obvious correlation with the changing of the driving cycles. However, the fluctuation of the co-state
trajectory for the MFAC also has a certain distinction for different driving cycles. It may have had
a slight disadvantage on the further enhancement of the fuel economy of the PHEB. Nevertheless,
it will be of great significance in adopting the MFAC for a real-time application of the PMP with an
unknown driving cycle, as the optimal co-state trajectory can be approximately identified online
with no requirements for offline calculations.
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Figure 20. The simulation results of driving Cycle 3. (a) Driving cycle; (b) Co-state; (c) SOC;
(d) Fuel consumption.

As shown in Figures 18c, 19c, 20c, 21c, 22c, 23c and 24c, three control methods were constrained
with the same initial and terminal SOC values for different driving cycles. The feedback SOCs of
the PID control and the MFAC control tracked the corresponding linear reference SOC trajectories
well. Moreover, the MFAC control had more advantageous fluctuations than the PID control did
with respect to the reference SOC, due to the approximate identification of the co-state in real time.
This was a benefit in facilitating the feedback SOC trajectory in approaching the optimal. Moreover,
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the fluctuations in the feedback SOC for the MFAC corresponded to the adjustment of the co-state.
In addition, the feedback SOC trajectories of the optimal co-state control were observably different
from the other control methods due to the constant co-state obtained by the shooting method being the
optimal control.
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As shown in Figures 18d, 19d, 20d, 21d, 22d and 23d, the fuel consumption of the PHEB for
the selected driving cycles, controlled by three different methods, was calculated and compared.
The variations in the fuel consumption curves were closely related to the changing of the feedback
SOC trajectories, where the fluctuation in the fuel consumption line of the MFAC was greater than
the other two control methods. Meanwhile, fuel economy was dramatically improved by the MFAC
compared to the PID control.Processes 2019, 7, x FOR PEER REVIEW 20 of 23 
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Figure 23. The simulation results of driving Cycle 6. (a) Driving cycle; (b) Co-state; (c) SOC;
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Figure 24 and Table 5 give a comparison of fuel consumption for the selected driving cycles and
also the improvement in the MFAC control compared to the optimal co-state control and the PID
control. In the course of the simulation for different driving cycles, the fuel economy of the MFAC
control was always superior to the PID control, while slightly inferior to the optimal co-state control.
However, the optimal co-state of the PMP was strictly dependent on the given driving cycle, which
is inapplicable for a real-time application of the EMS with an unknown driving cycle. Although
the PID control can be utilized in real-time control of the PMP-based strategy, it cannot achieve the
expected objective of improving fuel economy. Therefore, the MFAC will be a preferable and acceptable
compromise to realize real-time PMP-based energy management and improve fuel economy.
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Table 5. Fuel consumption improvement of the MFAC.

Improvement (%)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

MFAC versus optimal co-state −2.42 −2.18 −5.65 −0.20 −2.91 −2.57
MFAC versus PID 4.28 1.52 3.01 3.43 1.10 2.83

6. Conclusions

In this paper, we proposed an integrated optimization methodology to optimize driveline
components and energy management control in consideration of optimization design and real-time
application for a PHEB. The main findings can be concluded as follows:

(1) To decouple the interaction between the component design and the EMS, a co-optimization
method that combines an NSGA-II with a DP algorithm was proposed for simultaneous
optimization of the driveline parameters and EMS, based on a synthesized real-road driving cycle.
The results indicated that fuel consumption and an acceleration performance of 0–50 km/h could
be respectively improved by 4.71% and 4.59%. Most significantly, the optimized driveline was on
the basis of a global optimal EMS;

(2) To develop an optimal real-time EMS after the component was optimized, a novel MFAC controller
was utilized for the online adjustment of the co-state to realize PMP-based energy management
by tracking the properly defined reference SOC. Moreover, the solutions for the optimal co-state
control and the PID control were both compared to the proposed method. Then, a validation of
the proposed EMS was carried out through six different driving conditions containing one typical
driving cycle and five stochastic driving cycles;

(3) The research results demonstrated that the MFAC controller could recognize the optimal co-state of
the PMP in real time while facilitating the feedback SOC in generating favorable fluctuations around
the reference SOC, thereby improving fuel economy compared to the PID controller. The MFAC-based
method was not an optimal solution to enhance fuel economy, contrasted to the optimal co-state
control. Nevertheless, it could achieve a suboptimal performance on a real-time application of the
PMP-based EMS for unknown driving cycles. Furthermore, the optimal co-state of the PMP obtained
from an offline iteration calculation could be approximately identified by the MFAC in real time.

The co-optimization method with two objectives will be expanded to more objectives in future
research, and more attention will be focused on the computational efficiency of the real-time control
strategy. Moreover, an accurate battery model considering the lifetime and depth of discharge is also
necessary for engineering applications of the proposed methodology.
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