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Abstract: Active pharmaceutical ingredient (API) particle size distribution is important for both
downstream processing operations and in vivo performance. Crystallization process parameters and
reactor configuration are important in controlling API particle size distribution (PSD). Given the
large number of parameters and the scale-dependence of many parameters, it can be difficult to
design a scalable crystallization process that delivers a target PSD. Population balance modeling
is a useful tool for understanding crystallization kinetics, which are primarily scale-independent,
predicting PSD, and studying the impact of process parameters on PSD. Although population balance
modeling (PBM) does have certain limitations, such as scale dependency of secondary nucleation,
and is currently limited in commercial software packages to one particle dimension, which has
difficulty in predicting PSD for high aspect ratio morphologies, there is still much to be gained from
applying PBM in API crystallization processes.

Keywords: crystallization; active pharmaceutical ingredient; population balance modeling; particle
size control

1. Introduction

The preferred method for purification, form, and particle size distribution (PSD) control of an
active pharmaceutical ingredient (API) is crystallization [1]. While the necessity for purity and form
control is clear, the importance of PSD control should not be overlooked. PSD can impact a variety of
operations and properties, ranging from downstream processing operations, such as blending and
granulation, to the bioavailability of an oral solid dosage [2–4]. For example, the content uniformity of
the dosage unit can be significantly impacted by PSD of the API, which is especially of concern for
low-dosage drugs [5]. For pulmonary delivery applications, PSD impacts particle penetration into
airways and also impacts clinical response [6]. For APIs that are sparingly soluble in vivo, PSD has
a considerable impact on bioavailability [7,8]. The choice of granulation technique may be dictated by
the PSD of the API for high drug load substances, as materials with a large population of fines may
not be amenable to dry granulation [8]. The PSD of the API strongly impacts the dissolution rate of
the API in the polymer melt during pharmaceutical hot melt extrusion (HME) processes, which is
considered the most critical step in HME [9]. Thus, manufacturing an API with consistent PSD is of
great importance.

The PSD during the crystallization process results from the interaction of simultaneous phenomena,
such as nucleation, growth, agglomeration, and attrition [10], and can be impacted by both processing
parameters as well as equipment parameters. Process parameters include temperature profile,
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seed point, seed amount, seed PSD, antisolvent addition rates, age times, and agitation rates.
Equipment parameters include crystallizer size, impeller style and size, and baffling configuration [11].
As such, there are many factors that require investigation when designing a crystallization to
reproducibly deliver a target PSD.

Traditionally, the influence of various parameters on product PSD has been investigated empirically
by conducting multiple crystallization experiments at different scales across the parameter ranges of
interest. While a rough understanding of the relationship between PSD and key process parameters
can be obtained in this manner, the interdependency of many process parameters renders it difficult to
make robust quantitative assessments. Additionally, this approach suffers the limitation of being both
labor and resource intensive due to the high dimensionality of the process parameters. Due to the
scale-dependency of this approach, the common practice is to first establish a suitable set of process
parameter ranges that can robustly deliver an API with desired PSD at the lab scale. These ranges
are then utilized as guidelines for initial pilot scale execution. The PSD resulting from the plant scale
runs can differ from that generated at the lab scale, even when the runs are conducted using otherwise
similar processes with linear scaling of most parameters. This can be due to different mixing time
scales, equipment configurations, and hydrodynamics, all of which can impact the kinetics of many
crystallization mechanisms. The impacts of process volume do not scale in a similar manner as other
process parameters, and as such it is difficult to match process parameters with the power per unit
volume achieved across the different scales [2,12]. Therefore, the current empirical paradigm faces
some limitations in the ability to design a scalable process for delivering an API of consistent PSD.

Utilizing modeling to understand the fundamental crystallization kinetics can help to overcome
the limitations of the design of experiments (DOE) approach. Prediction of PSD requires keeping track
of the number and size of particles throughout the crystallization process, and, therefore, is a good
application for population balance equations (PBEs) [13], which were developed by Hulbert and
Katz [14] in 1964. Although population balance modeling (PBM) was initially applied to crystallization
processes back in 1971 by Randolph and Larson [15], broader utilization of PBM as a crystallization
process tool did not start to occur until the last decade [13,16]. This is due to improvements in process
analytical tools (PAT) and numerical software packages that can solve complex differential algebraic
systems [13,16,17]. As such, there are now many publications on the application of PBM for API
crystallization from academic groups. For example, Hu et al. [18] utilized PBE to optimize a cooling
profile for a cooling crystallization, and Nowee et al. [11] utilized PBE to optimize an antisolvent
addition protocol based on predicted PSD. However, there seems to be a lag in mainstreaming PBM
into the pharmaceutical industry workflow, with relatively few literature examples of industry utilizing
PBM to guide crystallization process development [19,20].

Herein, application of PBM to an active pipeline compound (Bristol-Myers Squibb, BMS,
compound A) via gPROMS FormulatedProducts (gFP; Process Systems Enterprise, Ltd, London,
UK) is utilized to highlight advantages that PBM affords. BMS compound A is crystallized via a cooling
antisolvent crystallization process, and generates equant, non-agglomerated particles. Although there
was not a specific target PSD for this compound, delivery of consistent PSD across various scales
and reactor configurations was desired. Consistent PSD would avoid the potential for unexpected
differences in batch-to-batch powder properties that could arise from deviations in PSD. PBM is
employed to help understand the crystallization mechanisms, and to probe processing parameters that
are impactful on final PSD. This understanding is then utilized to guide lab-scale experiments, to ensure
that the processing parameters that influence final PSD are explored appropriately. The general
workflow that was utilized to generate the PBM is described here, along with model outputs, with the
hopes of seeing PBM more readily adopted into the pharmaceutical workflow.
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2. Generalized PBE

A generalized form of the PBE for calculating the number distribution of crystals as a function of
size is [21]:

∂(n(L, t)V(t)
∂t

= −V(t)
∂(GL(L, t)n(L, t))

∂L
+ B(L, t)V(t) −D(L, t)V(t) + ϕin + ϕout (1)

where n is the particle number density, L is the length of the particle, V is the volume, t is time,
G is the growth rate, B is birth rate, D is the death rate, and ϕin and ϕout are the inlet and outlet
streams, respectively. The ϕ terms, while important for continuous crystallizations, are zero for
a batch crystallization, as there are no inlet and outlet streams. Birth at larger sizes happens due to
agglomeration, while nucleation is only responsible for birth at very small sizes [21]. Therefore, at the
smallest size, the birth rate is described by the nucleation rate. In the case of BMS compound A,
no agglomeration occurs, so the birth rate at larger sizes is zero. The death term describes disappearance
of certain size crystals, which can occur at smaller sizes due to agglomeration (small size crystals
“disappear” as they agglomerate into a larger size), or at larger sizes due to breakage, which is rare
unless the shape of the crystal lends itself to breaking (i.e., long thin needles) [21]. In the case of BMS
compound A, agglomeration and breakage did not occur; thus, the death rate is zero. The PBE is
a first-order partial differential equation with respect to crystal length and time. The PSD is discretized
into particle size “bins” (50 for the BMS compound A case study), and, using the seed PSD as the
initial condition, and the nucleation rates as the boundary condition, the equation is solved for each
size bin utilizing a one-dimensional finite volume method via gPROMS FormulatedProducts (gFP,
Version 1.2.2, Process Systems Enterprise, Ltd, London, UK), or other software platforms.

3. Crystallization Mechanisms

To solve the generalized PBE (Equation (1)), equations describing the relevant crystallization
mechanisms (growth, nucleation, and agglomeration if relevant) are required. This necessitates
some qualitative knowledge about the crystallization, such as whether or not agglomeration,
Ostwald ripening, etc., is occurring. Typically, in seeded batch crystallizations, the common mechanisms
governing the crystallization process are growth, secondary nucleation, and agglomeration [22]; primary
nucleation has negligible contributions to the process, and can be neglected [22,23]. In the case of BMS
compound A, agglomeration did not occur; as such, it was not included in the model. Classical two-step
growth [24] and Evans’ secondary nucleation kinetics [25], which attributes generations of nuclei
to particle–impeller collisions, were selected for developing the PBM for the BMS compound A
crystallization process.

The mass transfer step of the classical two-step growth model is described by [24]:

G(L) = kd(L)
[

Cbulk −Cint(L)
ρcrys

]
(2)

where G is the linear growth rate of the crystal, kd is a mass transfer coefficient (a component of which
is estimated by gFP), Cbulk and Cint are the concentration of the solute in the bulk liquid phase and the
concentration at the crystal surface, respectively, and ρcrys is the molar density of the crystal phase.

The surface integration step is described by [24]:

G(L) = kge(
−EA,g

RT )

[
Cint(L) −Csat

Csat

]s

(3)

where kg is a proportional factor for surface integration estimated by gFP, EA,g is the activation energy
for surface integration estimated by gFP, R is the gas constant, T is temperature in Kelvin, Cint and Csat

are the concentration of the solute at the crystal surface and the saturation concentration, respectively,
and s is the supersaturation dependency of the surface integration rate, estimated by gFP.
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Evans’ kinetics for secondary nucleation (resulting from crystal–impeller collisions) is described
by [25]:

Jsec = eln knσs
nci

NQ

NP
kvρcrysε

∫
∞

Lmin

nL3dL (4)

where ln kn is the natural logarithm of the secondary nucleation rate constant, which is estimated by
gFP, σs is the relative supersaturation, nci is the supersaturation dependency, which is estimated by gFP,
NQ and NP are the pumping and power numbers, respectively, kv is the volumetric shape factor of the
crystal, ρcrys is the crystal density, ε is the energy dissipation rate, Lmin is the size above which crystals
are prone to attrition, which is estimated by gFP, n is the number density, and L is the crystal size.

The energy dissipation rate ε (which appears in Equation (4)) is expressed as:

ε =
NpρlN3D5

M
(5)

where Np is the impeller power number, ρl is the fluid density, N is the impeller frequency, D is the
impeller diameter, and M is the total mass. The impeller power number and impeller pumping number
are related to the vessel and impeller configuration; thus, one can see how the vessel specifications
influence the crystallization kinetics.

In order for the software to estimate the various parameters above, experimental data and details
regarding the equipment are required; these are detailed in the following section.

4. Required Input for PBM

Generation of an accurate PBM requires accurate input. The necessary input can be classified
into two broad categories: parameters related to vessel configuration, and experimental data.
Vessel configuration includes impeller size, power number, and pumping number. The power number
and pumping number can be calculated in the solid-liquid mixing utility of DynoChem (Scale-up
Systems, Dublin, Ireland) or other mixing software. The general experimental data requirements
are: API solubility, PSD of seed material, in-process concentration of API in mother liquor, and PSD
of final material. As these data are typically generated during the course of traditional DOE-based
crystallization process development, the modeling does not impose an additional experimental burden.

The solubility of the API across a range of solvent/antisolvent ratios and temperatures (required
for cooling crystallizations, otherwise isothermal data are sufficient) is necessary. We have used both
HPLC and Crystal16 (Technobis, Netherlands) to generate API solubility data for our models, and have
found that an accurate solubility model across temperature and composition can be generated with
approximately 15 data points. Figure 1 shows measured API solubility (dotted shapes) compared
to predicted solubility (solid shapes) across a range of antisolvent (IPA) compositions for different
temperatures (as indicated with a marker shape). The predicted solubility, based on a hybrid
polynomial/exponential model, is close to or overlapping with the measured values.
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Figure 1. Comparison of measured and predicted solubility values for Bristol-Myers Squibb (BMS)
Compound A across a range of antisolvent (IPA) compositions, at different temperatures.

The standard method utilized for HPLC measurements is to stir the API at a known controlled
temperature in a prepared solvent/antisolvent ratio, such that there are excess solids. After 24 h,
the supernatant is then filtered, diluted, and run on HPLC. If the possibility of form conversion
exists, confirmation of the crystalline form of the solid phase via X-ray diffraction is recommended.
The standard method for solubility measurements via Crystal16 is to add a known weight of API to
known weights of solvent/antisolvent combinations, crash cool the solution to achieve equilibrium,
then slowly ramp up the temperature until the solution becomes clear again. When the instrument
detects 100% transmission, the sample is fully dissolved. Thus, the solubility can be determined by the
temperature at the point where 100% transmission occurs.

The PSD of both the seed material and final material is required. This can be inputted as quantiles
calculated from the PSD, or as the entire PSD. For BMS compound A, the PSD is always unimodal,
and as such, we can utilize calculated quantiles (D10, D50, D90) obtained from laser light scattering
PSD (Malvern Mastersizer 3000, Malvern Panalytical, Malvern, UK), using both wet and dry methods.
Use of chord length distributions from in-line probes should be used with caution, as there is not
currently a substantial enough correlation between these measurements and the previously mentioned
techniques. Optical microscopy is recommended as a qualitative check of crystal morphology
and potential agglomeration, as certain morphologies, such as long thin needles or agglomerates,
may require additional model parameters. We have found that a reasonably accurate model can be
generated with a minimum of four data sets of seed size quantiles, API solution concentration during
crystallization, and final product quantiles.

5. Application of PBM for Cooling Antisolvent Crystallization

PBM was utilized to model a cooling antisolvent crystallization of BMS (Britsol-Myers Squibb,
New Brunswick, NJ, USA) compound A. In a typical crystallization process, 10 g of BMS Compound
A was dissolved in 60 mL of N-Methyl-2-pyrrolidone (Sigma-Aldrich, St. Louis, MO, USA) at 70 ◦C,
using an impeller speed of 260 revolutions per minute (RPM), in a 250 mL Chemglass reactor (Chemglass
Life Sciences LLC, Vineland, NJ, USA) equipped with a half-moon impeller. Thirty milliliters (30 mL)
of isopropanol (IPA, Sigma-Aldrich, St. Louis, MO, USA) was added, followed by 1 wt% (of input
API) seeds. The seed bed was aged for 1 h, then 60 mL of IPA was added over 1 h. After the IPA
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addition, the reactor was cooled to 0 ◦C over 3.5 h. The final slurry was isolated on a Buchner funnel,
washed three times with 30 mL IPA, and dried approximately 16 h in a vacuum oven at 50 ◦C.

The required inputs detailed in Section 3 were collected and entered into gFP for four different lab
scale crystallization experiments, run with slightly different ratios of solvent to antisolvent. Based on
the experimental desupersaturation data and size quantiles, values for parameters indicated in the
kinetic equations listed above (Section 3) were estimated. The PBM was then utilized to elucidate the
crystallization mechanisms, and predict the PSD of crystallizations run under different processing
conditions, in order to highlight which processing parameters had the greatest impact on product
PSD. Follow-up lab-scale experiments were run to verify model predictions and to provide parameter
ranges for scale-up batches.

Simulated growth and nucleation rates throughout the crystallization process, predicted from
the PBM, are shown in Figure 2. They indicate that growth occurs in an early stage of the process,
and that secondary nucleation due to attrition occurs throughout the process. As such, one would
expect processing parameters that impact secondary nucleation to play an important role in impacting
the final PSD, possibly having a greater influence than factors impacting growth. To probe the impact
of various processing parameters on the final PSD, virtual DOEs were conducted via the PBM.
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Figure 2. Simulated growth and secondary nucleation rates throughout a crystallization process of
BMS compound A.

Figure 3 shows the model predictions of final D90 (circles) versus the seed D50. Three points
were verified experimentally (squares) with good agreement with model predictions. Error bars in the
measured quantile values are based on a linear variance model

σ =
∣∣∣αz + β

∣∣∣ (6)

where σ is the standard deviation, α is the relative term, with a value of 0.1 for this case, β is the
constant term, with a value of 1 µm for this case, and z is the value as measured. This is used to account
for the precision and accuracy of the experimental measurements. As seen from the plot, at seed
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D50 > ~40 µm, the impact on final D90 is small (a <~20 µm difference). These data were utilized to
provide guidance for recommended seed size range for the crystallization process.Processes 2019, 7, x FOR PEER REVIEW  7 of 11 
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Figure 3. Predicted impact of seed D50 (µm) on final D90 (µm) shown in circles, as compared with
experimentally validated points shown in squares (three points). Model predictions have good
agreement with experimental data.

The predicted impact of seed load on final D90 was less significant (Figure 4), resulting in a D90
variation of ~25 µm. Given that tight PSD control was not required for BMS compound A, this process
parameter was not probed further experimentally.
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Figure 4. Predicted impact of seed load on final D90 was not significant, and, therefore, this process
parameter was not further investigated experimentally.

The predicted impact of agitation rate (in a 250 mL Chemglass lab reactor) on final D90 (Figure 5)
is quite large, with D90 values ranging from ~220 µm at the low end of agitation (100 RPM) down to
~110 µm at the upper end of agitation (500 RPM).
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Figure 5. Predictions of D90 of final material as a function of agitation rate in a 250 mL Chemglass reactor,
for the crystallization process of BMS compound A, generated via population balance modeling (PBM).

As the predicted impact of this processing parameter was very significant, further lab-scale studies
were conducted to evaluate the impact of mixing conditions on the final D90. These were carried
out in 1 L reactors equipped with a pitched blade turbine (PBT) of different sizes, run at different
operating speeds. The blade configuration, agitation conditions, pumping number to power number
ratio, and measured D90 are summarized in Table 1.

Table 1. Summary of mixing conditions and resulting D90 for lab-scale experiments.

Blade Size (mm) Agitation Rate (RPM) Ratio NQ/NP Measured D90 (µm)

4PBT-50 300 0.695 172
4PBT-50 550 0.713 161
4PBT-75 550 0.774 109

The lowest D90 value resulted from the 75 mm pitched blade turbine operated at 550 RPM, and the
highest D90 resulted from 50 mm pitched blade turbine operated at 300 RPM. This correlates with the
ratio of pumping to power number, which appears directly in Evans’ secondary nucleation equation
(Equation (4)). This substantiates that the impact of the mixing environment on final D90 is a result of
secondary nucleation, which was predicted to occur throughout the crystallization (Figure 2).

The predicted D90 values for these experiments, as compared to the measured D90 values,
are shown in Figure 6. The predicted values have a reasonable agreement with the measured values,
as the points lie within a standard deviation away from the parity line.
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Figure 6. Predicted D90 values versus measured values for selected lab-scale mixing experiments
shows good fit of the model predictions to the measured data.

6. Development Opportunities

Despite the advantages of PBM, there are certain processes for which PBM may be less
successful. There may be cases where application of the kinetic parameter values obtained based
on lab-scale data may underestimate the PSD when used to predict scale-up batches. For example,
secondary nucleation due to attrition resulting from particle–impeller collisions can have scale
dependency [22]. Therefore, when using PBM for predicting PSD of initial scale-up batches,
caution should be exercised. Additionally, most software for PBM employs the assumption of
perfect mixing. As this is not always a valid assumption, care must be taken when utilizing PSD
predictions from PBM software.

Another challenge is that most PATs and PBM models developed to date use a one-dimensional
(1D) population balance approach, but crystals frequently form morphologies that significantly deviate
from cubes or spheres, e.g., needles with high aspect ratios that may fuse, agglomerate, which limits
the applicability of 1D PBM [13]. Our experience with modeling high aspect ratio thin needles has
been that it is difficult to generate highly accurate PSD predictions. Thus, there are still development
opportunities to be realized with application of PBM for API crystallization processes.

7. Conclusions

API particle size distribution is important for both downstream processing operations and in vivo
performance. Crystallization process parameters and reactor configuration are important in controlling
API PSD. Given the large amount of parameters and the scale-dependence of many parameters, it can
be difficult to design a scalable crystallization process that delivers a target PSD. Population balance
modeling is a useful tool for understanding crystallization kinetics, predicting PSD, and studying the
impact of process parameters on PSD. A PBM, developed for BMS compound A, is utilized to better
understand the crystallization kinetics, and probe the impact of various processing parameters on
final PSD, in order to help guide lab experiments in an efficient manner. PBM predictions indicated
that seed D50 impacted final PSD, and as such, this was further explored experimentally, with good
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agreement of the predictions to measured data. The PBM predictions, substantiated with the measured
data, were useful for guiding the selection of a desired seed size range for future scale-up batches.
Seed load was predicted to have only a negligible impact on final D90, and as such was not further
explored experimentally. PBM predictions indicated a strong effect of agitation rate on final D90.
This was investigated experimentally by conducting crystallization under different mixing conditions.
A relationship between the pumping number to power number ratio and the final D90 was observed,
indicating that the impact of RPM on final D90 is likely due to secondary nucleation, as depicted
by the PBM. This understanding is important when selecting agitation rates for future scale-up
batches. Although PBM does have certain limitations, such as potential scale-dependency of secondary
nucleation, and is currently limited in commercial software packages to one particle dimension,
which has difficulty in predicting PSD for high-aspect-ratio morphologies, there is still much to be
gained from applying PBM for API crystallization processes.
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